Arasteh, A., (2022). Mathematical modeling of flexible production lines with different part types on unreliable machines by a priority rule. Journal of Quality Engineering and Production Optimization, 7(2), 34-59.
Baker, K. R. (2013). Computational results for the flowshop tardiness problem. Computers & Industrial Engineering, 64(3), 812-816.
Bruzzone, A. A., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP annals, 61(1), 459-462.
Chaudhry, I. A., Elbadawi, I. A., Usman, M., & Tajammal Chugtai, M. (2018). Minimising total flowtime in a no-wait flow shop (NWFS) using genetic algorithms. Ingeniería e Investigación, 38(3): 68-79.
Chen, T. L., Cheng, C. Y., & Chou, Y. H. (2020). Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming. Annals of Operations Research, 290, 813-836.
Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer methods in applied mechanics and engineering, 191(11-12), 1245-1287.
Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
Ding, J. Y., Song, S., & Wu, C. (2016). Carbon-efficient scheduling of flow shops by multi-objective optimization. European Journal of Operational Research, 248(3), 758-771.
Enayati, M., Yousefi Nejad Attari, M., & Lotfian Delouyi, F. (2023). Optimizing Open Shop Scheduling: Minimizing Makespan through Whale Optimization Algorithm and Transportation Time Consideration. Journal of Quality Engineering and Production Optimization, 8(1), 133-150.
Esmaeili, M., Ahmadizar, F., & Sadeghi, H. (2021). Minimizing the sum of earliness and tardiness in single-machine scheduling. Journal of Quality Engineering and Production Optimization, 6(2), 59-78.
Fontes, D.B., Homayouni, S.M. & Fernandes, J.C., (2024). Energy-efficient job shop scheduling problem with transport resources considering speed adjustable resources. International Journal of Production Research, 62(3), 867-890.
Gadaleta, M., Pellicciari, M., & Berselli, G. (2019). Optimization of the energy consumption of industrial robots for automatic code generation. Robotics and Computer-Integrated Manufacturing, 57, 452-464.
Geng, K., Ye, C., Dai, Z. H., & Liu, L. (2020). Bi‐Objective Re‐Entrant Hybrid Flow Shop Scheduling considering Energy Consumption Cost under Time‐of‐Use Electricity Tariffs. Complexity, 2020(1), 8565921.
Gholizadeh, H., Fazlollahtabar, H., Fathollahi-Fard, A. M., & Dulebenets, M. A. (2021). Preventive maintenance for the flexible flowshop scheduling under uncertainty: A waste-to-energy system. Environmental Science and Pollution Research, 1-20.
Ghorbanzadeh M., & Ranjbar, M. (2023). Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints. European Journal of Operational Research, 307(2), 519-537.
Goli, A., Ala, A., & Hajiaghaei-Keshteli, M. (2023). Efficient multi-objective meta-heuristic algorithms for energy-aware non-permutation flow-shop scheduling problem. Expert Systems with Applications, 213, 119077.
Ham, A., Park, M. J., & Kim, K. M. (2021). Energy‐Aware Flexible Job Shop Scheduling Using Mixed Integer Programming and Constraint Programming. Mathematical Problems in Engineering, 2021(1), 8035806.
Huang, J., Pan, Q., & Chen, Q. (2019, October). A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem with sequence-dependent setup times. In IOP conference series: materials science and engineering (Vol. 646, No. 1, p. 012037).
IOP Publishing.Kumar, N. & Das, A.K., (2024). Critical review on tool wear and its significance on the µ-ECSM process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(4), pp.907-925.
Li, J. Q., Sang, H. Y., Han, Y. Y., Wang, C. G., & Gao, K. Z. (2018). Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions. Journal of Cleaner Production, 181, 584-598.
Liou, C. D., & Hsieh, Y. C. (2015). A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times. International Journal of Production Economics, 170, 258-267.
Mahdavi, K., Mohammadi, M. & Ahmadizar, F., (2023). Efficient scheduling of a no-wait flexible job shop with periodic maintenance activities and processing constraints. Journal of Quality Engineering and Production Optimization, 8(1), 33-56.
Mansouri, S. A., Aktas, E., & Besikci, U. (2016). Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption. European Journal of Operational Research, 248(3), 772-788.
Meng, L., Zhang, C., Shao, X., Ren, Y., & Ren, C. (2019). Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines. International Journal of Production Research, 57(4), 1119-1145.
Mokhtari, H., & Hasani, A. (2017). An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Computers & Chemical Engineering, 104, 339-352.
Mousavi, T.S., Shankar, A., Rezvani, M.H. & Ghadiri, H. (2024). Entropy‐aware energy‐efficient virtual machine placement in cloud environments using type information. Concurrency and Computation: Practice and Experience, 36(15), e7950.
Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271.
Nilakantan, J. M., Huang, G. Q., & Ponnambalam, S. G. (2015). An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems. Journal of Cleaner Production, 90, 311-325.
Oda, Y., Fujishima, M. & Takeuchi, Y., (2015). Energy-saving machining of multi-functional machine tools. International Journal of Automation Technology, 9(2), 135-142.
Ponzo, F. C., Antonio, D. C., Nicla, L., & Nigro, D. (2021). Experimental estimation of energy dissipated by multistorey post-tensioned timber framed buildings with anti-seismic dissipative devices. Sustain. Struct, 1(000007).
Rabiei, P., Arias-Aranda, D. & Stantchev, V. (2023). Introducing a novel multi-objective optimization model for Volunteer assignment in the post-disaster phase: Combining fuzzy inference systems with NSGA-II and NRGA. Expert Systems with Applications, 226, 120142.
Rahmati, S. H. A., Hajipour, V., & Niaki, S. T. A. (2013). A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem. Applied Soft Computing, 13(4), 1728-1740.
Rastgar, I., Rezaean, J., Mahdavi, I., & Fattahi, P. (2021). Opportunistic maintenance management for a hybrid flow shop scheduling problem. Journal of Quality Engineering and Production Optimization, 6(2), 17-30.
Rezvan, M. T., Gholami, H., & Zakerian, R. (2021). A new algorithm for solving the parallel machine scheduling problem to maximize benefit and the number of jobs processed. Journal of Quality Engineering and Production Optimization, 6(2), 115-142.
Schott, J. R. (1998). Estimating correlation matrices that have common eigenvectors. Computational statistics & data analysis, 27(4), 445-459.
Schulz, S., Buscher, U., & Shen, L. (2020). Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices. Journal of Business Economics, 90, 1315-1343.
Schulz, S., Neufeld, J. S., & Buscher, U. (2019). A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling. Journal of cleaner production, 224, 421-434.
Sekkal, D. N. & Belkaid, F. (2023). A multi-objective optimization algorithm for flow shop group scheduling problem with sequence dependent setup time and worker learning. Expert Systems with Applications, 233, 120878.
Shao, W., Shao, Z., & Pi, D. (2022). A multi-neighborhood-based multi-objective memetic algorithm for the energy-efficient distributed flexible flow shop scheduling problem. Neural Computing and Applications, 34(24), 22303-22330.Shen, L., Dauzère-Pérès, S., & Maecker, S. (2023). Energy cost efficient scheduling in flexible job-shop manufacturing systems. European Journal of Operational Research, 310(3), 992-1016.
Singh, H., Oberoi, J. S., & Singh, D. (2021). Multi-objective permutation and non-permutation flow shop scheduling problems with no-wait: a systematic literature review. RAIRO-Operations Research, 55(1), 27-50.
Sola, A. V., & Mota, C. M. (2020). Influencing factors on energy management in industries. Journal of Cleaner Production, 248, 119263.
Soleimani, H., Ghaderi, H., Tsai, P. W., Zarbakhshnia, N., & Maleki, M. (2020). Scheduling of unrelated parallel machines considering sequence-related setup time, start time-dependent deterioration, position-dependent learning and power consumption minimization. Journal of Cleaner Production, 249, 119428.
Stewart, R., Raith, A., & Sinnen, O. (2023). Optimising makespan and energy consumption in task scheduling for parallel systems. Computers & Operations Research, 154, 106212.
Todorov, G. N., Volkova, E. E., Vlasov, A. I., & Nikitina, N. I. (2019). Modeling energy-efficient consumption at industrial enterprises. International Journal of Energy Economics and Policy, 9(2), 10-18.
Unal, R. & Dean, E.B. (1990, January). Taguchi approach to design optimization for quality and cost: an overview. In 1991 Annual conference of the international society of parametric analysts.
Utama, D. M. (2021, March). Minimizing number of tardy jobs in flow shop scheduling using a hybrid whale optimization algorithm. In Journal of Physics: Conference Series (Vol. 1845, No. 1, p. 012017). IOP Publishing.
Utama, D. M., Primayesti, M. D., Umamy, S. Z., Kholifa, B. M. N., & Yasa, A. D. (2023). A systematic literature review on energy-efficient hybrid flow shop scheduling. Cogent Engineering, 10(1), 2206074.
Wang, F., Deng, G., Jiang, T., & Zhang, S. (2018). Multi-objective parallel variable neighborhood search for energy consumption scheduling in blocking flow shops. Ieee Access, 6, 68686-68700.
Wang, S., Yao, J., Zhang, Z., & Zhang, K. (2019). Design and numerical simulations of a temperature tunable hybrid structure metamaterials. Journal of Nanophotonics, 13(3), 036019-036019.
Wang, Y. J., Wang, G. G., Tian, F. M., Gong, D. W., & Pedrycz, W. (2023). Solving energy-efficient fuzzy hybrid flow-shop scheduling problem at a variable machine speed using an extended NSGA-II. Engineering Applications of Artificial Intelligence, 121, 105977.
Wen, X., Sun, Y., Ma, H. L., & Chung, S. H. (2023). Green smart manufacturing: energy-efficient robotic job shop scheduling models. International Journal of Production Research, 61(17), 5791-5805.
Wu, X., & Che, A. (2019). A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega, 82, 155-165.
Xin, X., Jiang, Q., Li, S., Gong, S., & Chen, K. (2021). Energy-efficient scheduling for a permutation flow shop with variable transportation time using an improved discrete whale swarm optimization. Journal of Cleaner Production, 293, 126121.
Xiong, H., Shi, S., Ren, D., & Hu, J. (2022). A survey of job shop scheduling problem: The types and models. Computers & Operations Research, 142, 105731.
Yan, J., Li, L., Zhao, F., Zhang, F., & Zhao, Q. (2016). A multi-level optimization approach for energy-efficient flexible flow shop scheduling. Journal of cleaner production, 137, 1543-1552.
Zhang, H., Deng, Z., Fu, Y., Lv, L., & Yan, C. (2017). A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions. Journal of Cleaner Production 148: 174-184.
Zhang, J., Li, R., Yang, H., Qing, Z. & Chen, S. (2024). Tool wear characteristics of interrupted-cutting Zr-based bulk metallic glasses with cemented carbide tool. The International Journal of Advanced Manufacturing Technology, 133(5), 2623-2637.
Zhang, L., Deng, Q., Gong, G. & Han, W., (2020). A new unrelated parallel machine scheduling problem with tool changes to minimise the total energy consumption. International Journal of Production Research, 58(22), 6826-6845.
Zhang, W., Geng, H., Li, C., Gen, M., Zhang, G. & Deng, M., (2023). Q-learning-based multi-objective particle swarm optimization with local search within factories for energy-efficient distributed flow-shop scheduling problem. Journal of Intelligent Manufacturing, 36(1), 185-208.