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Abstract – Nowadays, most production units seek to minimize the amount of energy consumption due to the 

resulting economic pressures and the shortage of energy carriers such as electricity or fossil fuels. On the 

other hand, minimizing the total time to complete jobs aligns with reducing energy consumption. Therefore, 

efficient scheduling is one of the important concerns in industrial units. This research aims to minimize joint 

energy consumption and total job completion time in a flow-shop environment, considering speed level and 

tool wear level constraints. The increased speed level reduces the time to complete the job, and on the other 

hand, increases energy consumption. Moreover, the increase in the machine speed causes an increase in the 

level of wear and eventually a tool change. Since the flow-shop scheduling problem is NP-hard, it cannot be 

solved in a short time on a large scale. To cope with this issue, we solve this multi-objective optimization 

problem with two well-known metaheuristic methods, Non-dominated Sorting Genetic Algorithm (NSGA-II) 

and Multi-Objective Particle Swarm Optimization (MOPSO). The experimental results reveal that MOPSO 

outperforms NSGA-II in terms of MOCV and MID metrics. Conversely, NSGA-II outperforms MOPSO in 

terms of CPU time. 

 

Keywords– Flow-shop Scheduling Problem, Optimization, Tool Change, Energy Consumption, Tool Wear, 

Machine Speed. 
                                   

I. INTRODUCTION 

In the last decade, energy consumption management and greenhouse gas reduction have been of great importance 

for organizations and governments (Sola and Mota, 2020). Given that the industrial sector consumes about half of the 

world's energy, energy conservation is emerging as a competitive advantage (Ponzo et al., 2021). One of the most 

important sources of global heating is manufacturing companies (Utama et al., 2023). In industrial companies, 

operational planning is primarily focused on minimizing the time required to complete all tasks. However, this does not 

mean that other goals should be ignored (Stewart et al., 2023). Therefore, one of the essential sub-goals in 

manufacturing companies is to reduce energy consumption to save costs (Wu and Che, 2019; Mahdavi et al., 2023; Goli 

et al., 2023). 

Most of the research work deals primarily with the development of a mathematical model to solve scheduling 

problems. These models include limitations in the production environment due to the type of problem-solving spaces 

https://jqepo.shahed.ac.ir/article_4791.html
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and the desired variables and parameters. Furthermore, over the past few decades, there has been a significant focus on 

energy consumption and its impact on various economic sectors and the environment. The industrial sector, in 

particular, is a major consumer of energy, and monetary policymakers in numerous countries have consistently 

prioritized efforts to optimize energy use and manage consumption effectively due to resource limitations (Goli et al., 

2023). 

Many studies consider the passage of time to be the only reason for tool change in the flow-shop scheduling 

problem. They believe that the tool is substituted when a certain level of wear occurs (Zhang et al., 2024). Most studies 

in this domain have primarily focused on developing mathematical models to solve scheduling problems. These models 

include some limitations in the production environment due to the type of problem-solving spaces and the desired 

variables and parameters. Currently, operational strategies such as production planning are employed to enhance the 

efficiency of energy consumption. This activity requires less investment compared to purchasing new machines (Yan et 

al., 2016). Some studies (Soleimani et al., 2020) investigate the time needed to move work from one machine to 

another, with the objective functions of minimizing energy consumption and the weighted sum of delays, considering 

the sequence of operations and the correct allocation of resources. Other studies (Chen et al., 2020) use only the speed 

factor to minimize the amount of energy consumption and the completion time of the last job. However, previous 

research (Kumar and Das, et al., 2024) shows that the machining speed plays a vital role in tool wear. According to the 

studies conducted in this field, the most effective factors in the amount of energy consumption are the speed of each 

machine and the duration of work on the machine. In this way, the higher the speed of a machine, the higher the level of 

wear in the tool. Therefore, it is better to consider both processing speed and processing time simultaneously. Our 

literature review reveals that, as the level of wear in the tool increases (Oda et al., 2015), the amount of energy 

consumption also increases. Hence, another objective function should be added to the previous one to minimize the 

makespan. On the other hand, the faster the machine, the less time it takes to prepare. This, in turn, leads to an even 

greater increase in energy consumption. 

Since the flow-shop scheduling problem is NP-hard (Enayati et al., 2023), we will employ a high-performance 

metaheuristic algorithm to solve it. Specifically, we will solve a multi-objective optimization problem with two 

metaheuristic methods, Non-dominated Sorting Genetic Algorithm (NSGA-II)  (Mousavi et al., 2024; Wang et al., 

2023) and Multi-Objective Particle Swarm Optimization (MOPSO). The most important contributions of this paper are 

as follows: 

 We formulate a new multi-objective model for the flow-shop scheduling problem. Our objective functions 

consider the wear level, machining speed, and tool change time in the flow-shop environment. 

 Given the NP-hardness of the problem, we solve it with two well-known metaheuristic algorithms, one discrete 

(NSGA-II) and the other continuous (MOPSO). Then we compare the results. 
 

The rest of this paper is organized as follows: Section 2 presents the literature review. Section 3 elaborates on the 

formulating the mathematical model of the flow-shop scheduling problem. Section 4 presents the problem-solving 

method. Section 5 explains the validation of the proposed methods and the evaluation criteria. Section 6 is devoted to 

performance evaluation; Finally, Section 7 concludes the paper and highlights future research trends. 

II. LITERATURE REVIEW 

Table I shows the most important studies on the flow shop environment. Readers interested in a more in-depth study 

can refer to Utama et al. (2023). Some machines may not be available for various reasons, such as the replacement of 

parts or energy consumption considerations. Therefore, in most studies, the joint scheduling of resource usage and 

availability is considered (Arasteh, 2022). Some researchers urge that scheduling should not only focus on minimizing 

production time but also consider minimizing energy consumption (Utama, 2021). Today, many factories are compelled 

to reduce energy consumption and lower greenhouse gas emissions from fossil fuels due to government regulations 

(Zhang et al., 2017; Zhang et al., 2023; Chen et al., 2020). 
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Unfortunately, classical optimization methods are unable to cope with large-scale problems, which are mostly NP-

hard. For example, mixed integer linear programming techniques for a large number of variables are often unable to 

obtain a solution in a short time (Bruzzone et al., 2012). As an alternative, metaheuristic or heuristic methods are used 

in large-scale problems (Mousavi et al., 2024). Some of the most important metaheuristic algorithms used for the job 

shop problem are the genetic algorithm (Liou and Hsieh, 2015), particle swarm optimization (Nilakantan et al., 2015), 

and simulated annealing (Wang et al., 2019). Wen et al. (2023) conducted a study to perform intelligent production and 

minimize total energy consumption, while also considering makespan in flow shop scheduling. In their study, they 

proposed using robot production and coordinating the movement process of robots with the production process of 

machines. Shao et al. (2022) used a memetic algorithm to minimize the delay time of jobs and total carbon production. 

They found that by minimizing carbon production, energy consumption can be reduced. Huang et al. (2019) 

investigated flow shop problems by considering the sequence of jobs to minimize the makespan of the last job using a 

genetic algorithm. 

Dai et al. (2013) investigated the minimization of energy consumption during idle time in unrelated parallel 

machines. They employed the switching on/off strategy in this problem. Li et al. (2018) studied a similar problem that 

was investigated by (Dai et al., 2013). They considered the setup time of each machine as a new job. In this vein, Ding 

et al. (2016) examined the bi-objective flow shop scheduling problem and introduced innovative methods as the 

dominant solution. They chose greenhouse gas emissions and makespan as their objectives. Singh et al. (2021) 

demonstrated that the contributions of the exact method and the B&B method are 13% and 7%, respectively. Wang et 

al. (2019) investigated flow shop problems by considering the two objectives of makespan and energy consumption in 

the flexible mode where they used the Pareto optimality to obtain the solution. They also used two methods of ant 

colony (AC) and Tabu Search (TS) to solve such problems. Geng et al. (2020) investigated worker flexibility in the 

flow shop environment. They set cost minimization as their first objective. Also, considering that costs are important in 

manufacturing industries, they set minimizing energy costs as another objective and used the evolutionary algorithm to 

solve these problems. Schulz et al. )2019) discussed the minimization of job completion time in a flexible flow shop 

environment by considering different processing speeds. According to the improvement of old machines and the 

replacement of new machines, they sought to minimize the makespan and energy consumption. In another study 

(Schulz et al., 2020), they completed the previous work by solving the problem using the EPS constraint. The authors in 

(Chaudhry et al., 2018) presented a genetic algorithm to minimize the total completion time by considering energy 

consumption in the flow shop environment. In another research (Mokhtari and Hasani, 2017), the minimization of 

energy consumption in the flow shop model using a genetic algorithm was investigated. Also, in (Xin et al., 2021) the 

genetic algorithm is used on a population monitoring plan to solve flow shop problems on a large scale. 

In another study (Meng et al., 2019), a flexible flow shop scheduling algorithm for unrelated parallel machines was 

designed, utilizing a switching on/off strategy. To this end, the authors firstly examined the amount of energy 

consumption in the system. Then, by considering the mixed integer programming model, they studied two different 

ideas of idle time and energy consumption during idle time. Additionally, Esmaeili et al. (2021) employed the GA 

algorithm to solve single-machine problems, aiming to minimize the sum of tardiness and earliness. In another study 

(Rezvan et al., 2021), the NCDRA heuristic algorithm was employed to solve parallel machine problems using the MIP 

model to minimize a two-objective mathematical problem. In another study (Rastgar et al., 2021), a new mathematical 

model was presented to schedule hybrid flow shop problems with energy considerations. 

In a study by Xiong et al. (2022), the authors reduced energy consumption in a flexible workshop environment using 

a two-stage mathematical model with deterministic task sizes. Todorov et al. (2019) investigated the type of alloy used 

in electric wires and the amount of energy loss in electric wires. Ham et al. (2021), taking into account the right of 

priority and delay in work and minimizing the time of doing work, set the minimization of energy consumption as their 

goal function. Gholizadeh et al. (2021) investigated efficient planning for maintenance activities to significantly reduce 

costs. In this research, mathematical modeling is designed for a flexible workshop flow environment to reduce lost 

energy. Sekkal and Belkaid (2023) investigated sequence-dependent multi-objective flow shop scheduling and stated 
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that optimizing production systems has become increasingly important in industries due to increasing competition and 

market demand. In this research, the learning effect of employees is considered through mathematical modeling by 

minimizing two objective functions minimizing work time and energy consumption. Ghorbanzadeh et al. (2023) 

investigated flow shop problems by considering sequence-dependent start-up time, group scheduling, and restrictions. 

They aim to minimize the cost related to energy consumption. 

Table I. Major research in the literature 

Author Scope 
Number 

of 

Machines 

Tool 

Wear 
Machine 

Speed 

Tool 

Change 
Constraints Objective(s) Algorithm 

Mouzon et 

al. (2007) 
Single 

machine 
1 - - - Device idle time 

Minimizing makespan 

and energy 

consumption 

GA, SA, 

B&B 

Dai et al. 

(2013) 

Flexible 

flow 

shop 
n -  - 

The idle time of the 

device and cutting 

speed and volume 

of the machines 

Minimizing makespan 

and energy 

consumption 
SA & GA 

Mansouri 

et al. 

(2016) 

Flow 

shop 
2 -  - 

Setup time and 

machine speed 

Minimizing makespan 

and energy 

consumption 
GA 

Mokhtari 

and 

Hassani 

(2017) 

Job shop n - - - 

Without 

interruption and 

sequence of 

operations 

Minimizing energy 

consumption 
SA & GA 

Wang et 

al. (2018) 
Flow 

shop 
2 - - - Permutation 

Minimizing makespan 

and energy 

consumption 

Heuristic 

Algorithm 

Li et al. 

(2018) 

Flexible 

flow 

shop 
n - - - 

Device idle time 

and cost changes 

due to electricity 

consumption at 

different times 

Minimizing makespan 

and energy 

consumption 
EA-MOA 

Gadaleta 

et al. 

(2019) 

Flexible 

flow 

shop 
n - - - 

Non-dependent on 

the sequence and 

considering the 

transportation time 

between the 

machines 

Minimizing energy 

consumption 
GA 

Soleimani 

et al. 

(2020) 

Parallel 

machine

s 
n - - - 

The sequence of 

operations and 

appropriate 

allocation of 

resources to 

machines 

Minimizing the 

weighted sum of 

delays and energy 

consumption 

GA, CSO, 

& IABC 

Geng et al. 

(2020) 

Flexible 

flow 

shop 
n - - - 

Flexibility of 

machines and 

workers 

considering the 

sequence of 

operations 

Minimizing costs 

according to energy 

consumption 

HEA 

Hybrid 

Evolution

ary 

Algorithm 

Shao et al. 

(2022) 

Flexible 

flow 

shop 
n - - - 

Considering 

resource constraints 

and reworking 

some stations 

Minimizing energy 

consumption, 

customer 

dissatisfaction, and 

makespan 

NSGA-III 
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Continue Table I. Major research in the literature 

Author Scope 

Number 

of 

Machines 

Tool 

Wear 

Machine 

Speed 
Tool 

Change 
Constraints Objective(s) Algorithm 

Chen et al. 

(2020) 

Hybrid 

flow 

shop 

n -  - 
Considering speed 

machines 

Minimizing makespan 

and energy 

consumption 

NSGA-II 

Schulz et 

al. (2020) 

Flexible 

flow 

shop 

n -  - 
Considering speed 

machines 

Minimizing energy 

consumption and 

delays 

Eps limit 

Zhang et 

al. (2020) 

Parallel 

machine 
n  -  

Considering tool 

change and tool 

wear 

Minimizing makespan 

and energy 

consumption 

FFD 

Ham et al. 

(2021) 

Flexible 

flow 

shop 
n - - - 

Considering 

priority in doing 

jobs 

Minimizing energy 

consumption 
NSGA-II 

Shen et al. 

(2023) 

Flexible 

job shop 
n - - - 

Sequence-

dependent set-up 

time 

Minimizing makespan 

and cost of energy 

consumption 

Heuristic 

Algorithm 

Wang et 

al. (2023) 

Hybrid 

flow 

shop 

n -  - 

Considering the 

conditions of 

uncertainty 

Minimizing makespan 

and energy 

consumption 

NSGA-II 

Fontes et 

al. (2024) 
job shop n -  - 

Transport resources 

by considering 

speed-adjustable 

Minimizing makespan 

and energy 

consumption 

NSGA-II 

Zhang et 

al. (2023) 

Hybrid 

flow 

shop 

n -  - 

Lack of 

consideration of 

heterogeneous 

shops 

Minimizing makespan 

and energy 

consumption 

Memetic, 

MOPSO 

Our 

Research 

Flow 

shop 
n    

Sequence-

dependent set-up 

time by considering 

the machine speed 

and tool change 

according to the 

level of wear 

Minimizing makespan 

and energy 

consumption 

NSGA-II, 

MOPSO 

 

According to studies conducted in this field, the most effective factors influencing energy consumption are the speed 

of each machine and the duration of work on the machine. Therefore, we add another objective function to the problem 

to reduce the time taken to complete the last job. In this research, we also take into account the change of tools on the 

machine due to wear in the tools. In this way, with the passage of time and a change in the machine's speed, wear will 

occur on the tool, and we will need to change it. Therefore, a time, called sequence-dependent set-up time, is added to 

the model. Generally, the higher the machine's speed, the greater the wear on the tools. According to the above literature 

review, tool wear, tool change, and machine speed are among the factors affecting energy consumption, which have 

been less discussed. Therefore, in this research, we aim to minimize energy consumption using the above concepts, 

which have been the focus of many industries seeking to reduce costs and increase profitability, while also mitigating 

environmental effects. In summary, considering these concepts in the flow shop environment, we aim to develop an 

effective model to address the scheduling problem at the operational level.   
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III. PROPOSED MODEL 

A. Problem Formulation 

The number of n independent jobs consisting of   {          }  should be processed by m machines   

{          }, all of which are sequentially placed behind each other. Each machine enjoys an adjustable speed of 

  {            } and   displays the machine's standby mode. 

Performing each job    on the machine    has a processing time of    . Each job on each machine is processed at the 

speed of              . The higher the processing speed in the machine, the shorter the processing time. In other 

words, if       , we will have           . In addition,      shows the amount of energy consumed by the machine at 

speed  . Thus, it is obvious if       , we will have                      . This indicates that higher processing 

speeds result in lower processing time and higher energy consumption. 

Another parameter is to consider the maximum wear level of the tool  . There is a direct relationship between the 

tool wear level and processing speed. In this way, the higher speed in the machine will cause more wear on the tool. 

When the wear level of a tool reaches  , the corresponding machine must be stopped for tool change. At this time, the 

device lies in the standby mode and the tool change duration is   . The energy consumed in the standby mode of each 

machine is    . 

After the proposed problem is solved, the order of the jobs in the machine and the processing speed of the machines 

are calculated at the same time. The proposed model has the following two objective functions: 

1. Minimizing the completion time of the last job (    ) 

2. Minimizing the amount of energy consumption (   ) 

 

Also, the assumptions considered for this problem are as follows: 

 The first machine is available at zero time, and the start time of the next machine depends on the processing 

time of the previous machine. 

 It is not allowed to turn off the device until all jobs are completed. 

 Each machine can process the same job at the same speed and at the same time. 

 Each job is processed by only one machine at a time. 

 Each job must be processed by all machines. 

 Tool change is not allowed until the work processing on the machine is completed. 

 Permutation between jobs is allowed. It should be noted that Baker et al. (2013) state that it must be clarified 

whether a permutation is allowed or not when   ‖     problem is to be solved. If this is allowed, the non-

observance of a similar sequence on the machines will create sequences with a better objective function value 

in some cases. It has also been proven that considering one of the following two features can improve the value 

of the objective function: 

o Since all the criteria are considered in flow shop scheduling problems, it suffices that the sequences are the 

same for the first two machines. 

o According to the range of flow shop scheduling problems, those programs can be considered in which a 

similar sequence happens only in the last two machines. 

B. Mathematical Model 

This section introduces a multi-objective linear mathematical model designed for flow-shop scheduling issues. 

Initially, the indices, parameters, and decision variables related to the problem are outlined. Following that, the 

objective functions and constraints of the proposed model are detailed. Table II displays the notations utilized in this 

paper. 
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Table II. Notations and symbols  

Machine index   

Job index   

Index of speed levels   

Job sequence index   

Parameters: 

Number of jobs              

 Number of machines             

The number of expected speed levels of    so that             

The upper limit of wear (Martindale)   

Tool change duration    

Processing time of job   on machine   at speed    in sequence   (Second)       

Machine power unit   in standby mode (Kw)     

The power unit of the machine j  when it has speed     so that           (Kw)      

Unit of tool wear associated with speed    (Martindale)    

A large number   

Decision variables: 

It is a binary decision variable. If a job i  is processed on a machine    with speed   in sequence  , it 

will be equal to one; otherwise, it will be zero. 
      

It is a binary decision variable. It will be equal to one if it is required to change the tool in machine   and 

sequence  ; otherwise, it will be equal to zero. 
    

A positive value of the cumulative value of tool wear between the completion time of the previous tool 

and the completion time of the current job on the  th machine in sequence  . 
    

Completion time of the job    in a machine   in sequence  .      

 

Objective Functions and constraints of the problem are as follows: 

        
(1) 

       ∑∑∑ ∑     

 

   

 

   

 

   

 

   

          ∑∑   

 

   

  

 

   

    (2) 

 
Subject to: 

(3)                                                                                             
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(7)         ∑∑     
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(9)                                                                                                            

(10) ∑     

 

   

                                                                           

(11)         ∑     

 

   

                                                                  

(12) ∑        

 

   

  ∑    

 

   

 ∑∑                            

 

   

 

   

                                                    

(13) ∑        

 

   

  ∑    

 

   

 ∑∑                  

 

   

 ∑         

 

   

 

   

                                         

(14) ∑     ∑∑          

 

   

 

   

 

   

                                                  

 

Eqs. (1) and (2) are the objective functions that show the minimization of the job completion time and the total 

energy consumption. Eq. (3) indicates that the completion time of all jobs should be greater than that of each job. Eq. 

(4) states that no more than one job is assigned to each machine, and Eq. (5) ensures that a machine does not process 

more than one job at a time. Eq. (6) ascertains that some activity has been done on previous machines, and work needs 

to be done only on the next machine. In other words, it describes the order in which the machines process. Eqs. (7) and 

(8) ensure that the cumulative wear value between tools has been set correctly. In this way, Eq. (8) shows that the level 

of wear should not exceed the ceiling determined in a sequence. This means that if we change tools in the previous 

sequence, the second term of Eq. (7) is multiplied by the value B, and this limit will always be correct, and only the 

limit of Eq. (8) for wear levels in the same sequence will be obtained. However, if we do not change the tool, the wear 
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level in the previous sequence will be added to the wear level in the current sequence, and the cumulative sum of the 

wear level will be obtained. Fig. 1 shows an illustration of the concept of the value of tool wear. 

 
 

h-1   h 

  

 

  

Ejh 

 

 h-a 

 

… h   

 
 

     Ej(h-a) 

  

 

  
 

                    Ejh 

    

     
Fig. 1. The concept of the value of tool wear 

      

Eq. (9) ensures that the cumulative value of the instrument cannot exceed its upper limit.  Eqs. (10) and (11) 

guarantee that it is possible to calculate the completion time of a job on a machine in a specific sequence when that job 

is assigned to that machine in a specific sequence. Eq. (12) states that the completion time of each job in a larger 

sequence is equal to the sum of the completion time of the same job in the previous sequence, plus the processing time 

in the same sequence and the tool change time. Eq. (13) asserts that the completion time of each job on a machine is 

larger than or equal to the sum of the completion time of the job on the previous machine and the processing time on the 

same machine and tool change. Eq. (14) guarantees that the completion time of the job on the first machine is not 

smaller than the completion time of the same job on the first machine. 

IV. PROBLEM-SOLVING METHOD 

In this section, NSGA-II and MOPSO algorithms are used to solve the proposed mathematical model. 

A. NSGA-II 

The concept of the NSGA-II was first presented by Deb et al. (2002), and many researchers have used this algorithm 

to optimize multi-objective problems. This algorithm utilizes the principles of non-dominance and crowding distance to 

select and rank solutions. Thereafter, the two operators of intersection and mutation are applied to create a new set of 

solutions (children) and transfer the features to the next generation. Finally, according to the principle of non-

dominance and variety, the best solutions are selected as the Pareto front. 

In genetic algorithms, the solution is extracted through the coding of chromosomes. Then, extracting the solution to 

this problem from this chromosome is essential. The solution consists of two parts, namely Seq and Sp, where Seq 

shows the sequence of jobs and Sp shows the speed of processing the jobs in the sequence. 

Let I be the number of jobs and J represents the number of machines. So, the proposed chromosome contains two 

random vectors of numbers in the interval [0, 1]. The first chromosome is in I*1 dimension and the second chromosome 

is I*J dimension. For example, if three jobs are scheduled on two machines, the random chromosomes will be as 

follows: 
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Sequence determining chromosome: By sorting the above vector in the ascending order and determining each 

member of the initial vector in the sorted vector, the job sequence of all machines is obtained.  

 

  
 

 

0.710 0.121 0.310 

 

 
Processing speed determining chromosome: For example, if the vector of the processing speed determining 

chromosome corresponds to the following vector: 

 

0.810 0.490 0.610 

0.620 0.400 0.498 

 

To achieve the processing speed, each cell in the above matrix should be multiplied by the corresponding processing 

speed levels, and the result should be rounded up. In this way, the processing speed in each sequence and on each 

machine is also obtained.  

  

2.430 1.470 1.830 

1.860 1.200 1.494 

  

 

It shows that in the first machine, job 3 should be processed in the first sequence at speed 3, job 1 should be 

processed in the second sequence at speed 2, and job 2 should be executed in the third sequence with speed 2. On the 

other hand, in the second machine, job 3 should be processed in the first sequence with speed 2, job 1 should be 

processed in the second sequence at speed 2, and job 2 should be processed in the third sequence at speed 2. 

 Seq1 Seq2 Seq3 

Machine 1 3 2 2 

Machine 2 2 2 2 

 

The arrangement of the activities on the machine and the processing speed are obtained by the above display. After 

determining these items, the start and end times of the jobs and the amount of cumulative erosion are obtained. This 

problem has only one penalty function, which calculates the amount of violation of cumulative erosion from the upper 

limit of erosion. Then, this value is multiplied by a large value and is added to the objective functions. If the value of 

the violation is equal to zero, no penalty is considered. However, if there is a violation, the large value is added to the 

two objective functions, deteriorating their value. Thus, we write: 

 

Seq3 Seq2 Seq1 

2 1 3 

0.810 0.490 0.610 

0.620 0.400 0.498 

3 2 2 

2 2 2 
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    (15) 

 

In the above expression, CV shows the violation value. Based on the violation function, the value of the objective 

functions is considered as follows: 

                 (16) 

                 (17) 

 

In the above expressions,      denotes the obtained value of the k-th objective function, M is a large number, and 

CV represents the maximum of the m-th penalty function. 

B. MOPSO 

Coello (2002) made some changes in the PSO algorithm and developed this algorithm for multi-objective problems. 

The main difference between MOPSO and single-objective PSO lies in determining the best particle in the population 

and identifying the best personal memory for each particle. In the multi-objective particle swarm optimization 

algorithm, a new concept, namely the archive, has been introduced compared to the single-objective mode, which 

serves as a storage place for non-dominated solutions. By defining the archive in this algorithm, the concept of the best 

particle in the population has also changed. 

In the MOPSO paradigm, particles move in the search space based on social tendencies. The position of a particle 

changes based on both the experiences of the particle itself and the information of neighboring particles. The exchange 

of information among particles is accomplished by the velocity vector, according to the following equation: 

  
⃗⃗  ⃗       

⃗⃗  ⃗          (       
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     ⃗⃗  ⃗   )             

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     ⃗⃗  ⃗     (18) 

 

The velocity vector reflects the information that has been exchanged collectively. This vector consists of three steps. 

In the first step, the current speed is obtained from the previous speed change. In the second step, there is a cognitive 

part that represents the best personal memory of the particle. In the third step, there is the social part, which represents 

the best collective memory of the particles. This memory has already been obtained from the collective experiences of 

the particles, and 1 2, [0,1]r r   are the random values that cause diversity in the solutions. W , 1c , and 2c  are the 

coefficients of inertia, the best personal memory, and the best overall memory, respectively. 

Coello (2002) employed the concept of Pareto optimization to obtain the optimal solution, where each particle is 

evaluated by all objective functions. The best positions are generated by the non-dominated approach. When only one 

particle is selected to update the velocity vector, there may be numerous non-dominated solutions in the neighborhood 

of a particle. Due to the constraint of the archive size, it is impossible to save all non-dominated solutions. In other 

words, the Pareto front size may become larger than the front size. For this purpose, an external archive is used to store 

the unfavorable solutions searched during the process. It is noteworthy that the size of the considered external archive is 

also limited. For this reason, legal availability is highly necessary to replace existing solutions with newly developed 

ones. The replacement rule in this algorithm has been considered in such a way that it improves the degree of order in 

the dispersion of non-dominated particles in the regions of the target space. To achieve this purpose, particles in areas 

with the highest particle density will have a higher probability of removal, while those in quieter areas will have a lower 

probability of removal. The accomplishment of this job through the crowding distance determines the probability of 

removing each member. However, when it is done using the Roulette wheel, those members will be selected that have 

been supposed to be removed. The display of the solution in the multi-objective particle swarm optimization algorithm 

is the same as that in the NSGA-II algorithm. It specifies the position of each job and the processing speed, and each 
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chromosome in the NSGA-II algorithm represents a particle in the MOPSO algorithm. Due to space limitations, we 

refrain from repeating the details of this algorithm. 

V. PERFORMANCE CRITERIA AND MODEL VALIDATION 

To validate the proposed model, we designed a small example whose information is shown in detail in Table III. 

Then, we solved the proposed model as two single-objective problems for the given example. Each single-objective 

problem has been solved by the GAMS software using the CPLEX solver. The results of solving the two-objective 

model are shown in Fig. 2. 

Table III. Example of the proposed model 

3 CT 5 n 

Uniform(10,25) ijkhp 3 m 

1.364    2.291    3.121 jsp 3   

Uniform(30,65) jkpp 25 T 

500 B 1.545      1.032     1.792 kw 

 

              
M1 J2   J3   J5     J1   J4 

        

 

  

                   

 

   M2 

 

  J2   J3 

 

J5   J1   J4 

 

 

  

                    

 

   M3 

   

J2 

    

J5 J3     J1  J4 

 

 
                                    

Fig. 2. The sequence obtained from solving the proposed model by the GAMS software 

 

Fig. 2 shows the change of tool. The results from the solution in the GAMS software show the values of the first 

objective function (makespan) as 96.449 and the second objective function (energy consumption) as 8419.734. If we 

disable any of the target functions in the software and then run the program, the values of the target function will 

display the opposite numerical values of the obtained numbers. For example, in the case of deactivating the first 

objective function, which aims to minimize the makespan, the value of the second objective function is 7091.106, 

indicating a conflict between the objective functions. The sequence is the same in machines M1 and M2; however, in 

the third machine, between jobs 3 and 5, due to the permitted permutation in the problem model, displacement has 

occurred. 

30     50   70   90 
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A. Parameter Setting by Taguchi Method 

The Taguchi method is one of the methods for designing experiments, and it is also efficient in terms of the 

proposed algorithm (Unal and Dean, 1990). If the parameters of the algorithms are well-set, the efficiency of the 

solutions will improve. One method of parameter setting is to test all available modes, which is time-consuming and 

costly. Hence, the Taguchi method is used to set the parameters correctly. The Taguchi method is one of the most 

widely used statistical methods for analyzing the output sensitivity of a process in experimental design. This method is 

used when it is desired to determine the best output level of the process by performing only some part of the necessary 

tests. In this method, after defining the desired levels for each of the effective factors in the test, a set of designs is 

proposed to the examiner to determine whether it is possible to select one of the appropriate designs presented in the 

Taguchi method. This selected design should be consistent with the number of levels and type of experiments. Then, the 

examiner embarks on conducting the experiments. In the next step, the output data arising from the experiments is 

returned to the Taguchi design. Finally, the analysis carried out using the Taguchi method reveals the impact of each 

factor on the dependent variable of the process. This method converts the iterative data obtained from the experiments 

into an index of changes, which is called signal-to-noise ratio conversion. 

Considering the parameters in each algorithm, MINITAB 17 software calculates the number of times the algorithm 

needs to be executed. Using the defined values, a sample problem is executed according to the levels suggested by 

Taguchi, and the resulting solutions are documented. To normalize the values obtained from the algorithm's execution, 

the Relative Percentage Deviation (RPD) index is applied. It is obtained as follows: 

 PD  
 he mo   efficien   ol  ion  - exec  ion  ol  ion

 he mo   efficien   ol  ion
     (19) 

 

It is worth noting that the mean ideal distance is the index used for parameter setting, which has been employed in 

n mero      die . A lower  PD index i  more favorable. Hence,  he “Smaller i  be  er” op ion i    ed when exec  ing 

the Taguchi method. Moreover, a higher signal-to-noise ratio is more advantageous. As a result, the highest value of the 

vector is chosen for each parameter, and the associated level is regarded as the ideal level. The parameter settings of the 

NSGA-II and MOPSO algorithms are as follows: 

 Npop:  refers to the number of chromosomes or the size of the genetic algorithm population. 

 Pc: the percentage of solutions from the population of the algorithm that are intersected in each iteration of the 

algorithm 

 Pm: refers to the percentage of solutions from the algorithm's population that undergo mutation during each 

iteration. 

 maxit: the highest number of iterations allowed for each execution of the algorithm W: Inertia coefficient. 

 W: Inertia coefficient 

 C1: Coefficient of personal best memory 

 C2: Coefficient of the best collective memory 

 Swarm size (N): population size in MOPSO algorithm 

 

Table IV pre en    he val e  of parame er  in bo h algori hm . Ba ed on  he ob ained re  l  ,  he “Mean  of S/N 

ra io ” vec or  for NSGA-II and MOPSO algorithms are shown in Figs. 3 and 4, respectively. Based on the values 

shown in figures. Finally, the optimal values of the NSGA-II and MOPSO algorithm parameters can be summarized in 

Table V, items 3 and 4. 
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Table IV. Parameter values of NSGA-II and MOPSO algorithms 

Parameter values of the NSGA-II algorithm Parameter values of the MOPSO algorithm 

Parameter 1 2 3 Parameter 1 2 3 

Npop 200 350 550 C1 1 1.5 2 

Pc 0.5 0.6 0.7 C2 1 1.5 2 

Pm 0.15 0.20 0.25 Swarm size(N) 50 75 90 

MaxIt 100 200 300 MaxIt 200 400 600 

    Inertia factor(W) 0.6 0.75 0.9 

 

 

 

 

 

 

 

 

 
        

Fig. 3. S/N vector for NSGA-II algorithm 

 

 

 

 

 

 

 

 

 

 

Fig. 4. S/N vector for MOPSO algorithm 
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Table V. Optimum hyperparameter values for NSGA-II and MOPSO algorithms 

Optimal values for the parameters of NSGA-II algorithm Optimal values for the parameters of the MOPSO algorithm 

Npop 550 C1 1.5 

Pc 0.6 C2 1 

Pm 0.15 Swarm size(N) 75 

MaxIt 300 MaxIt 600 

 Itertia factor(W) 0.6 

 

B. Performance Criteria  

There are different ways to evaluate the efficiency of algorithms. One of these approaches is to thoroughly 

investigate the solution space obtain all the non-dominated points and compare the solutions obtained from the 

algorithms with them. However, in practice, this is only suitable for problems with a small number of problem 

dimensions, and it is not suitable for problems with large dimensions. As a result, the indices used to compare multi-

objective metaheuristic algorithms are employed to compare the efficiency of the algorithms with each other and to 

evaluate their performance. The evaluation criteria of algorithms are often divided into two categories. The first 

category affects the convergence and quality of the solutions, and the second category focuses on the dispersion and 

expansion of the solutions in the solution space. In this research, six metrics are presented for evaluating the 

performance of algorithms. Let us briefly review these metrics: 

a) Spacing Index: This criterion, presented by Schott (1998), calculates the relative distance of consecutive 

solutions as follows: 

  √
 

| |
∑     ̅  
 

   

 (20) 

 

, in which  

               ∑ |  
    

 | 
                 ,            ̅  ∑

  

| |

 
    (21) 

 

The measured distance is equal to the lowest value of the sum of the absolute value of the difference among the 

values of the objective functions between the i-th solution and the solutions located in the final infinite set. It is 

noteworthy that this distance metric is different from the minimum Euclidean distance criterion between solutions. The 

above criterion measures the standard deviation for different di values. When the solutions are uniformly next to each 

other, then the value of s will also be small. Thus, the algorithm whose final non-dominated solutions have a small 

spacing value will be more desired. 

b) Number of Non-dominated Solutions: This metric shows the number of members in the first front of the last 

solutions in the population. 

c) Mean Ideal Distance (MID): In the multi-objective functions based on the Pareto approach, one of the objectives 

is to have the fronts as close as possible to the origin of the coordinates. Hence, this index calculates the distance of the 

fronts from the best value of the population (Rabiei et al., 2023). The smaller this index, the more desired it would be. 
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d) Dispersion Index: This metric indicates the extent of Pareto solutions generated by an algorithm. The larger 

values of this index indicate that the solutions are better dispersed, meaning there are fewer identical solutions and the 

problem has a greater variety of solutions. This metric is calculated as follows: 

  
     {∑   

    
 
  

 

   

} (22) 

   √∑  
 

 

   

 (23) 

 

In the above formula,   
 and   

 
 are the m-th objective function values of the two Pareto solutions i and j. 

e) Multi-objective Coefficient of Variation (MOCV): This metric, which was presented by Rahmati et al. (2013), 

is calculated by dividing the Mean Ideal Distance (MID) by the Diversity Metric (DM). Lower values of this metric are 

more desired for comparing metaheuristic algorithms. 

VI. PERFORMANCE EVALUATION 

A. Experimental Setting 

Since the proposed model is new, 30 sample problems are used in Table VI, based on the central limit theorem and 

the normal distribution. These problems have been randomly generated and are used to solve the proposed algorithms. 

In Table VI, it can be observed that the dimensions have increased over time to measure the efficiency of the algorithms 

in high dimensions. 

Table VI. Features of random sample problems 

Sample problem No. Number of activities Number of Machines 

1 3 3 

2 8 3 

3 11 3 

4 12 4 

5 10 5 

6 12 5 

7 15 5 

8 22 5 

9 15 6 

10 14 7 

11 16 7 

12 8 8 
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Continue Table VI. Features of random sample problems 

Sample problem No. Number of activities Number of Machines 

13 5 8 

14 13 8 

15 20 4 

16 20 6 

17 30 6 

18 22 5 

19 28 5 

20 25 7 

21 32 8 

22 34 8 

23 30 9 

24 36 9 

25 36 10 

26 38 10 

27 40 11 

28 42 11 

29 40 12 

30 45 12 

 

The range of random number generation is also presented in Table VII. It is noteworthy that the tool change time is 

3, and the upper limit of wear has been considered to be 50. 

Table VII. Random number generation interval 

Range Parameter 

Uniform[10.40]       

Uniform[1.3]     

Uniform[30.65]      

Uniform[2.5]    

3   

B. Analysis of Results 

All algorithms mentioned in this research have been programmed and executed using MATLAB R2022a software in 

a Windows 10 (64-bit) environment. In the following, the performance of each of these two algorithms is compared 

with respect to the evaluation criteria. 
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Fig. 5. Spacing index for NSGA-II and MOPSO algorithms 

 

 

 

 

 

 

 

 

 

Fig. 6. NOS index  for NSGA-II and MOPSO algorithms 

 

 

 

 

 

 

 

 

 

               
Fig. 7. MID index  for NSGA-II and MOPSO algorithms 
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Fig. 8. DM index  for NSGA-II and MOPSO algorithms 

 

 

 

 

 

 

 

 

 

 

Fig. 9. CPU time index  for NSGA-II and MOPSO algorithms 

 

 

 

 

 

 

 

 

 

 

Fig. 10. MOCV index  for NSGA-II and MOPSO algorithms 
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Fig. 5 illustrates the spacing criterion in 30 problem examples, presented as a diagram. A visual inspection of this 

graph shows almost no difference in this criterion until the execution of 20 tests. Still, from the 20th test onwards, 

MOPSO is superior in some cases, while NSGA-II is superior in others. It should be noted that the lower this criterion 

is, the better. Fig. 6 illustrates the number of proposed solutions in each algorithm along the Pareto front. The decision-

maker can choose any of the solutions for implementation according to the existing conditions. Fig. 6 shows that 

NSGA-II gives better results in most cases. The MID metric shows the distance from the ideal point. Therefore, the 

lower this criterion, the better. Fig. 7 shows that in 30 of the test cases of the problem, this criterion is superior to the 

NSGA-II algorithm in most of the MOPSO tests. Fig. 8 shows the dispersion metric. In other words, higher values of 

this criterion indicate greater diversity in the solutions. Examining this criterion according to Fig. 8 shows that NSGA-II 

is superior in some cases, while MOPSO is superior in others. Fig. 8 shows that the NSGA-II algorithm is superior to 

MOPSO in almost all test cases. The MOCV criterion is illustrated in Fig. 10. As evident from the figure, the MOPSO 

algorithm yields lower values than NSGA-II in most of the tested cases. Here, the MOPSO algorithm is superior to the 

NSGA-II. 

Now, to inspect the superiority of each of the algorithms in each evaluation metric, the Analysis of Variance 

(ANOVA) should be conducted. In each test, if the p-value is smaller than 0.05, it means that there is a significant 

difference between the two algorithms in that metric. In such a case, the performance of one of the algorithms is better 

than the other one regarding the specified metric; otherwise, there is no significant difference between the two 

algorithms.  

Table VIII. Variance analysis of Spacing metric for NSGA-II and MOPSO algorithms 

Source SS df MS F Prob>F 

Columns 586945.8 1 586945.8 0.8 0.3744 

Error 42478647 58 732390.5 
  

Total 43065593 59 
   

 

As shown in Table VIII, the p-value is 0.3744, which is greater than 0.05. Thus, there is no significant difference 

between these two algorithms in the Spacing metric. 

 

Table IX. Variance analysis of NOS metric for NSGA-II and MOPSO algorithms 

Source SS df MS F Prob>F 

Columns 9.6 1 9.6 1.71 0.1967 

Error 326.4 58 5.62759 
  

Total 336 59 
   

 
As shown in Table IX, the p-value is 0.1967, which is greater than 0.05. Thus, there is no significant difference 

between these two algorithms in the NOS metric. 

As shown in Table X, the p-value is almost equal to zero and this value is less than 0.05. Therefore, there is a 

significant difference between the two algorithms concerning the MID metric. According to Fig. 11, the MOPSO 

algorithm has a better performance than the NSGA-II concerning the MID metric. 
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Table X. Variance analysis of MID metric for NSGA-II and MOPSO algorithms 

Source SS df MS F Prob>F 

Columns 9.99*10
11

 1 9.99*10
11

 32.81 1.82*10
-7

 

Error 1.62*10
11

 58 2.8*10
10

 
  

Total 2.5*10
12

 59 
   

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. MID metric obtained from NSGA-II and MOPSO algorithms 

  

Table XI. Variance analysis of DM metric for NSGA-II and MOPSO algorithms 

Columns SS df MS F Prob>F 

Columns 129.4 1 129.4 0.01 0.9128 

Error 619632.1 58 10683.3 
  

Total 619761.5 59 
   

 
As shown in Table XI, the p-value is equal to 0.9128, which is larger than 0.05. Hence, there is no significant 

difference between these two algorithms concerning the DM metric. 

Table XII. Variance analysis of MOCV metric for NSGA-II and MOPSO algorithms 

Source SS df MS F 

Columns 4.01*107 1 40118684 40.54 3.36*10-8 

Error 5.74*107 58 989642.2 
  

Total 9.75*107 59 
                 

As shown in Table XII, the p-value is almost equal to zero and this value is greater than 0.05. Therefore, there is a 

significant difference between these two algorithms in the MOCV metric. According to Fig. 12, the MOPSO algorithm 

exhibits better performance in terms of the MOCV metric. 
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Fig. 12. MOCV metric for NSGA-II and MOPSO algorithms 

Table XIII. Variance analysis of CPU time for NSGA-II and MOPSO algorithms 

Source SS df MS F Prob>F 

Columns 510.65 1 510.65 8.94 0.0041 

Error 3312.88 58 57.119 
  

Total 3823.53 59 
   

 
As shown in Table XIII, the p-value is equal to 0.0041 and this value is less than 0.05. Hence, there is a significant 

difference in CPU time between these two algorithms. As CPU time decreases, the algorithm becomes more efficient. 

According to Fig. 13, the NSGA-II algorithm performs better in this criterion. 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The efficiency of NSGA-II and MOPSO algorithms concerning the CPU time criterion 
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As shown in Table XIV, in the exact solution, as the amount of wear increases, energy consumption increases, and 

total task time decreases. As the table shows, at a given speed, the maximum wear level increases as the speed level 

increases. This in turn reduces the job completion time and reduces energy consumption. 

Table XIV. The impact of wear level changes on the amount of energy consumption and makespan 

Makespan Energy consumption T  

96.44 8419.73 25 1 

89.8 9019.57 50 2 

85.89 9632.95 100 3 

 
Fig. 14 shows the Pareto front diagram of the changes in energy consumption and makespan. As evident from the 

figure, at higher machine speeds, less time and more energy are consumed. Conversely, the lower the speed, the less 

energy is consumed and the longer the time to complete the work. For example, in the NSGA-II algorithm, the lowest 

amount of energy consumption, with a value of 8202.3, corresponds to the highest time, with a value of 124.72. The 

lowest time value of 103.77 jobs has the highest amount of energy consumption with a value of 8871.16. The same 

principle applies to the MOPSO algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14. Pareto front diagram of the changes in energy consumption and makespan 

 

Table XV. The results obtained from the solution NSGA-II and MOPSO algorithms 

MOPSO NSGA-II 

TEC Cmax Solution ID TEC Cmax Solution ID 

9125.2 112.34 1 8871.6 103.77 1 

8851.3 115.46 2 8667.7 108.23 2 

8758.9 116.45 3 8489.6 109.02 3 

 

MOPSO 

NSGA-II 

8000

8200
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9000
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Continue Table XV. The results obtained from the solution NSGA-II and MOPSO algorithms 

MOPSO NSGA-II 

TEC Cmax TEC Cmax TEC Cmax 

8642.8 117.89 4 8368.2 111.29 4 

8546.3 120.02 5 8318.3 117.17 5 

8457.6 123.12 6 8270.9 119.29 6 

- - - 8202.3 124.72 7 

 

C. Discussion and Managerial Insights 

By using the proposed modeling, the amount of energy consumption and the completion time of the last job are set 

to optimal values. Therefore, industrial units can achieve good results in saving costs and reducing environmental 

effects. Additionally, by reducing the time required to complete the last job, more products can be produced in a shorter 

timeframe. Therefore, our proposed mathematical model will increase the profitability of the industrial unit by reducing 

the costs associated with energy consumption and increasing production time. With this modeling, the right time will be 

spent on the right activity, and while increasing productivity, it will also cause the correct prioritization of the work. It 

should be noted that the implementation of this mathematical model will lead to the timely delivery of the product, and 

on the other hand, the timely replacement of tools will increase the level of product quality. This will increase customer 

satisfaction, sell more products, and ultimately increase the profitability of the industrial unit. 

Our analysis has revealed that more energy is consumed in a shorter period of time, and less energy is consumed 

over a longer period. Therefore, managers can use the work policies they consider in each solution. Our results showed 

that MOPSO outperforms NSGA-II in terms of MOCV and MID metrics. Conversely, NSGA-II outperforms MOPSO 

in  erm  of CPU  ime. In o her word , if manager ’ goal i   o red ce  he di  ance from  he ideal  ol  ion or red ce  he 

multi-objective coefficient of variation, MOPSO is recommended. 

VII. CONCLUSION 

This research addressed the effect of real changes due to tool wear with tool changes in the flow-shop environment. 

First, the relationship between tool changes, energy consumption, and job completion time was formulated in the flow-

shop scheduling problem. Then, the multi-objective scheduling problem was solved by jointly minimizing the energy 

consumption and the total job completion time. In this regard, the machine processing speed and the tool wear level in 

the flow-shop environment were considered. Due to the NP-hardness of the problem, it was solved using two well-

known metaheuristic methods: the Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi-Objective Particle 

Swarm Optimization (MOPSO). 

The experimental results revealed that MOPSO outperforms NSGA-II in terms of MOCV and MID metrics. 

Conversely, NSGA-II outperforms MOPSO in terms of CPU time. Also, no significant difference was observed 

between the two algorithms in other criteria. The results of this study reveal interesting implications for managers of 

manufacturing units. If the goal of managers is to reduce the distance from the ideal solution or to reduce the multi-

objective coefficient of variation, it is recommended to use MOPSO. Conversely, for managers who want to spend less 

time, NSGA-II is recommended. 
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As future research, several suggestions are offered for planning managers in manufacturing and industrial units. 

Considering the time it takes for parts to move between machines may have a significant impact on scheduling in the 

real world. Also, considering unexpected events such as machine failure is a suggestion for future research. The 

planning for dynamic flow-shop environments can also be an interesting area of research. Additionally, utilizing new 

metaheuristic methods that can establish a better tradeoff between exploration and exploitation may lead to further 

improvements in the quality of solutions. 
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