Arcelus, F., J, Shah, N., H., & Srinivasan, G. (2001). Retailer’s response to special sales: price discount vs. trade credit. Omega, 29(5), 417-428.
Arcelus, F., J., Shah, N., H., & Srinivasan, G. (2003). Retailer’s pricing, credit and inventory policies for deteriorating items in response to temporary price/credit incentives. International Journal of Production Economics, 81, 153-162.
Baykasoğlu, A., Subulan, K., & Karaslan, F., S. (2016). A new fuzzy linear assignment method for multi-attribute decision making with an application to spare parts inventory classification. Applied Soft Computing, 42, 1-17.
Bharani, B. (2018). Fuzzy Economic Production Quantity Model for a Sustainable System via Geometric programming. Journal of Global Research in Mathematical Archives (JGRMA), 5(6), 26-33.
Brown, R., G. (1982). Advanced Service Parts Inventory Control. Materials Management Systems. Inc. Norwich VT.
Brown, R. G. (1967). Decision Rules for Inventory Management. Aurora: Holt Rinehart & Winston.
Cárdenas-Barrón, L., E., Smith, N., R., & Goyal, S., K. (2010a). Optimal order size to take advantage of a one-time discount offer with allowed backorders. Applied Mathematical Modelling, 34(6), 1642-1652.
Cárdenas-Barrón, L., E., Smith, N., R., & Goyal, S., K. (2010b). Optimal order size to take advantage of a one-time discount offer with allowed backorders. Applied Mathematical Modelling, 34(6), 1642-1652.
Chanda, U., Kumar, A., & Kumar Das, J. (2018). Fuzzy EOQ model of a high technology product under trial-repeat purchase demand criterion. International Journal of Modelling and Simulation, 38(3), 168-179.
Chen, S., P. (2005). Parametric nonlinear programming approach to fuzzy queues with bulk service. European Journal of Operational Research, 163(2), 434-444.
Chen, S., P. (2007). Solving fuzzy queueing decision problems via a parametric mixed integer nonlinear programming method. European Journal of Operational Research, 177(1), 445-457.
Das, B., C., Das, B., & Mondal, S., K. (2015). An integrated production inventory model under interactive fuzzy credit period for deteriorating item with several markets. Applied Soft Computing, 28, 453-465.
De, S., K., & Mahata, G., C. (2017). Decision of a fuzzy inventory with fuzzy backorder model under cloudy fuzzy demand rate. International Journal of Applied and Computational Mathematics, 3(3), 2593-2609.
De, S., K., & Sana, S., S. (2013). Fuzzy order quantity inventory model with fuzzy shortage quantity and fuzzy promotional index. Economic Modelling, 31, 351-358.
De, S., K., & Sana, S., S. (2014). A multi-periods production–inventory model with capacity constraints for multi-manufacturers–a global optimality in intuitionistic fuzzy environment. Applied Mathematics and Computation, 242, 825-841.
Dey, O. (2017). A fuzzy random integrated inventory model with imperfect production under optimal vendor investment. Operational Research, 1-15.
Garai, T., Chakraborty, D., & Roy, T., K. (2019). Multi-objective Inventory Model with Both Stock-Dependent Demand Rate and Holding Cost Rate Under Fuzzy Random Environment. Annals of Data Science, 6(1), 61-81.
Ghosh, A., K. (2003). On some inventory models involving shortages under an announced price increase. International Journal of Systems Science, 34(2), 129-137.
Hsu, W., K., & Yu, H., F. (2011). An EOQ model with imperfective quality items under an announced price increase. Journal of the Chinese Institute of Industrial Engineers, 28(1), 34-44.
Hu, J., S., Xu, R., Q., & Guo, C., Y. (2011). Fuzzy economic production quantity models for items with imperfect quality. International Journal of Information and Management Sciences, 43-58.
Huang, H., I., Lin, C., H., & Ke, J., C. (2006). Parametric nonlinear programming approach for a repairable system with switching failure and fuzzy parameters. Applied Mathematics and Computation, 183(1), 508-517.
Jana, D., K., Das, B., & Maiti, M. (2014). Multi-item partial backlogging inventory models over random planninghorizon in random fuzzy environment. Applied Soft Computing, 21, 12-27.
Kazemi, N., Shekarian, E., Cárdenas-Barrón, L., E., & Olugu, E., U. (2015). Incorporating human learning into a fuzzy EOQ inventory model with backorders. Computers & Industrial Engineering, 87, 540-542.
Kumar, R., S. (2018). Modelling a type-2 fuzzy inventory system considering items with imperfect quality and shortage backlogging. Sādhanā, 43(10), 163.
Lev, B., & Soyster, A., L. (1979). An inventory model with finite horizon and price changes. Journal of the Operational Research Society, 30(1), 43-53.
Lev, B., Weiss, H., J., & Soyster, A., L. (1981). Optimal ordering policies when anticipating parameter changes in EOQ systems. Naval Research Logistics Quarterly, 28(2), 267-279.
Liu, J., & Zheng, H. (2012). Fuzzy economic order quantity model with imperfect items, shortages and inspection errors. Systems Engineering Procedia, 4(2011), 282-289.
Mahata, G., C., & Goswami, A. (2013). Fuzzy inventory models for items with imperfect quality and shortage backordering under crisp and fuzzy decision variables. Computers & Industrial Engineering, 64(1), 190-199.
Mojaveri, H., S., & Moghimi, V. (2017). Determination of Economic Order Quantity in a fuzzy EOQ Model using of GMIR Deffuzification. Indonesian Journal of Science and Technology, 2(1), 76-80.
Naddor, E. (1966). Inventory systems. New York: Wiley.
Patro, R., Nayak, M., M., & Acharya, M. (2019). An EOQ model for fuzzy defective rate with allowable proportionate discount. OPSEARCH, 1-25.
Qin, X., S., Huang, G., H., Zeng, G., M., Chakma, A., & Huang, Y., F. (2007). An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty. European Journal of Operational Research, 180(3), 1331-1357.
Rani, S., Ali, R., & Agarwal, A. (2019). Fuzzy inventory model for deteriorating items in a green supply chain with carbon concerned demand. OPSEARCH, 56(1), 91-122.
Sadeghi, J., Mousavi, S., M., & Niaki, S., T., A. (2016). Optimizing an inventory model with fuzzy demand, backordering, and discount using a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 40(15-16), 7318-7335.
Sadeghi, J., Niaki, S., T., A., Malekian, M., R., & Wang, Y. (2018). A Lagrangian relaxation for a fuzzy random EPQ problem with shortages and redundancy allocation: two tuned meta-heuristics. International Journal of Fuzzy Systems, 20(2), 515-533.
Samal, N., K., & Pratihar, D., K. (2014). Optimization of variable demand fuzzy economic order quantity inventory models without and with backordering. Computers & Industrial Engineering, 78, 148-162.
Saranya, R., & Varadarajan, R. (2018). A fuzzy inventory model with acceptable shortage using graded mean integration value method. Journal of Physics: Conference Series, 1000, 12009.
Sarker, B., R., & Al Kindi, M. (2006). Optimal ordering policies in response to a discount offer. International Journal of Production Economics, 100(2), 195-211.
Shaikh, A., A., Bhunia, A., K., Cárdenas-Barrón, L., E., Sahoo, L., & Tiwari, S. (2018). A Fuzzy Inventory Model for a Deteriorating Item with Variable Demand, Permissible Delay in Payments and Partial Backlogging with Shortage Follows Inventory (SFI) Policy. International Journal of Fuzzy Systems, 20(5), 1606-1623.
Taheri-Tolgari, J., Mohammadi, M., Naderi, B., Arshadi-Khamseh, A., & Mirzazadeh, A. (2018). An inventory model with imperfect item, inspection errors, preventive maintenance and partial backlogging in uncertainty environment. Journal of Industrial & Management Optimization, 275-285.
Taleizadeh, A., A., & Pentico, D., W. (2013). An economic order quantity model with a known price increase and partial backordering. European Journal of Operational Research, 228(3), 516-525.
Taleizadeh, A., A., Zarei, H., R., & Sarker, B., R. (2017). An optimal control of inventory under probablistic replenishment intervals and known price increase. European Journal of Operational Research, 257(3), 777-791.
Tersine, R., J. (1994). Principles of Inventory and Materials Management. (4th ed.). New Jersey: PTR Prentice Hall.
Tersine, R., J. (1996). Economic replenishment strategies for announced price increases. European Journal of Operational Research, 92(2), 266-280.
Vujošević, M., Petrović, D., & Petrović, R. (1996). EOQ formula when inventory cost is fuzzy. International Journal of Production Economics, 45(1-3), 499-504.
Wang, R., S., & Wang, L., M. (2010). Maximum cut in fuzzy nature: Models and algorithms. Journal of Computational and Applied Mathematics, 234(1), 240-252.
Yanasse, H., H. (1990). EOQ systems: the case of an increase in purchase cost. Journal of the Operational Research Society, 41(7), 633-637.
Zimmermann, H., J. (2011). Fuzzy set theory—and its applications. Springer Science & Business Media.