Babazadeh, R., Razmi, J., & Ghodsi, R. (2013). Facility location in responsive and flexible supply chain network design (SCND) considering outsourcing. International Journal of Operational Research, 17(3), 295–310. https://doi.org/10.1504/IJOR.2013.054437
Chen, H. K., & Chou, H. W. (2006). Reverse supply chain network design problem (pp. 42–49). Retrieved from https://www.scopus.com
Demirel, N. Ö., & Gökçen, H. (2008). A mixed integer programming model for remanufacturing in reverse logistics environment. The International Journal of Advanced Manufacturing Technology, 39(11–12), 1197–1206. https://doi.org/10.1007/s00170-007-1290-7
Du, Y., Xie, L., Liu, J., Wang, Y., Xu, Y., & Wang, S. (2014). Multi-objective optimization of reverse osmosis networks by lexicographic optimization and augmented epsilon constraint method. Desalination, 333(1), 66–81. https://doi.org/10.1016/j.desal.2013.10.028
Fazli-khalaf, M., Mirzazadeh, A., & Pishvaee, M. S. (2017). Human and Ecological Risk Assessment : An International A robust fuzzy stochastic programming model for the design of a reliable green closed-loop supply chain network. Human and Ecological Risk Assessment, 23(8), 2119–2149. https://doi.org/10.1080/10807039.2017.1367644
Fleischman, M., Beullens, P., Bloemhof-Ruwaard, J. M., & Wassenhove, L. N. (2009). The impact of product recovery on logistics network design. Production and Operations Management, 10(2), 156–173. https://doi.org/10.1111/j.1937-5956.2001.tb00076.x
Ghassemi, A., Asl-Najafi, J., & Yaghoubi, S. (2018). A dynamic bi-objective closed-loop supply chain network design considering supplier selection and remanufacturer subcontractors. Uncertain Supply Chain Management, 6(2), 117–134. https://doi.org/10.5267/j.uscm.2017.9.001
Ghayebloo, S., Jafar, M., & Venkatadri, U. (2015). Developing a bi-objective model of the closed-loop supply chain network with green supplier selection and disassembly of products : The impact of parts reliability and product greenness on the recovery network. Journal of Manufacturing Systems, 36, 76–86. https://doi.org/10.1016/j.jmsy.2015.02.011
Ghomi-avili, M., Gholamreza, S., Naeini, J., Tavakkoli-moghaddam, R., & Jabbarzadeh, A. (2018). A fuzzy pricing model for a green competitive closed-loop supply chain network design in the presence of disruptions. Journal of Cleaner Production, 188, 425–442. https://doi.org/10.1016/j.jclepro.2018.03.273
Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A comprehensive review and future research directions. European Journal of Operational Research, 263(1), 108–141. https://doi.org/10.1016/j.ejor.2017.04.009
Haddadsisakht, A., & Ryan, S. M. (2018). Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax. International Journal of Production Economics, 195, 118–131. https://doi.org/10.1016/j.ijpe.2017.09.009
Kadambala, D. K., Subramanian, N., Tiwari, M. K., Abdulrahman, M., & Liu, C. (2017). Closed loop supply chain networks: Designs for energy and time value efficiency. International Journal of Production Economics, 183, 382–393. https://doi.org/10.1016/j.ijpe.2016.02.004
Kannan, G., Sasikumar, P., & Devika, K. (2010). A genetic algorithm approach for solving a closed loop supply chain model: A case of battery recycling. Applied Mathematical Modelling, 34(3), 655–670. https://doi.org/10.1016/j.apm.2009.06.021
Khalilpourazari, S., & Arshadi Khamseh, A. (2017). Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application. Annals of Operations Research, 1–39. https://doi.org/10.1007/s10479-017-2588-y
Krikke, H. R., van Harten, A., & Schuur, P. C. (1999). Business case Océ: Reverse logistic network re-design for copiers. OR Spectrum, 21(3), 381–409. https://doi.org/10.1007/s002910050095
Lee, J. E., Gen, M., & Rhee, K. G. (2009). Network model and optimization of reverse logistics by hybrid genetic algorithm. Computers & Industrial Engineering, 56(3), 951–964. https://doi.org/10.1016/j.cie.2008.09.021
Masoudipour, E., Amirian, H., & Sahraeian, R. (2017). A novel closed-loop supply chain based on the quality of returned products. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.03.067
Mavrotas, G. (2009). Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems. Applied Mathematics and Computation, 213(2), 455–465. https://doi.org/10.1016/j.amc.2009.03.037
Mavrotas, G., & Florios, K. (2013). An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems. Applied Mathematics and Computation, 219(18), 9652–9669. https://doi.org/10.1016/j.amc.2013.03.002
Min, H., & Ko, H. (2008). The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers. International Journal of Production Economics, 113, 176–192.
Nurjanni, K. P., Carvalho, M. S., & Costa, L. (2016). Green supply chain design: a mathematical modelling approach based on a multi-objective optimization model. International Journal of Production Economics, 183(Cl). https://doi.org/http://dx.doi.org/10.1016/j.ijpe.2016.08.028
Özceylan, E., & Paksoy, T. (2013). A Mixed Integer Programming Model for a Closed-loop Supply-chain Network. International Journal of Production Research, 51(3), 718–734.
Pishvaee, M. S., & Torabi, S. A. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets and Systems, 161(20), 2668–2683. https://doi.org/10.1016/j.fss.2010.04.010
Pishvaee, Mir Saman, Farahani, R. Z., & Dullaert, W. (2010). A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Computers and Operations Research, 37(6), 1100–1112. https://doi.org/10.1016/j.cor.2009.09.018
Pishvaee, Mir Saman, Jolai, F., & Razmi, J. (2009). A stochastic optimization model for integrated forward/reverse logistics network design. Journal of Manufacturing Systems, 28(4), 107–114. https://doi.org/10.1016/j.jmsy.2010.05.001
Ramezani, M., Bashiri, M., & Tavakkoli-Moghaddam, R. (2013). A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level. Applied Mathematical Modelling, 37(1–2), 328–344. https://doi.org/10.1016/j.apm.2012.02.032
Ramezani, M., Kimiagari, A. M., & Karimi, B. (2014). Closed-loop supply chain network design: A financial approach. Applied Mathematical Modelling, 38(15–16), 4099–4119. https://doi.org/10.1016/j.apm.2014.02.004
Saffar, M. M., Shakouri, H., & Razmi, J. (2015). A new multi objective optimization model for designing a green supply chain network under uncertainty. International Journal of Industrial Engineering Computations, 6, 15–32. https://doi.org/10.5267/j.ijiec.2014.10.001
Salema, M. I. G., Póvoa, A. P. B., & Novais, A. Q. (2009). A strategic and tactical model for closed-loop supply chains. OR Spectrum, 31(3), 573–599. https://doi.org/10.1007/s00291-008-0160-5
Sasikumar, P., & Kannan, G. (2008). Issues in reverse supply chains, part I: end‐of‐life product recovery and inventory management – an overview. International Journal of Sustainable Engineering, 1(3), 154–172. https://doi.org/10.1080/19397030802433860
Talaei, M., Farhang Moghaddam, B., Pishvaee, M. S., Bozorgi-Amiri, A., & Gholamnejad, S. (2016). A robust fuzzy optimization model for carbon-efficient closed-loop supply chain network design problem: a numerical illustration in electronics industry. Journal of Cleaner Production, 113, 662–673. https://doi.org/10.1016/j.jclepro.2015.10.074
Tavakkoli-moghaddam, R., Sadri, S., Pourmohammad-zia, N., & Mohammadi, M. (2015). A hybrid fuzzy approach for the closed-loop supply chain network design under uncertainty. Journal of Intelligent & Fuzzy Systems, 28, 2811–2826. https://doi.org/10.3233/IFS-151561
Pazhani, S., Ramkumar, N., Narendran, T. T., & Ganesh, K. (2013). A bi-objective network design model for multi- period , multi-product closed-loop supply chain. Journal of Industrial and Production Engineering, 30(4), 264–280. https://doi.org/10.1080/21681015.2013.830648
Yang, Y., Huang, Z., Qiang, Q. P., & Zhou, G. (2017). A Mathematical Programming Model with Equilibrium Constraints for Competitive Closed-Loop Supply Chain Network Design. Asia-Pacific Journal of Operational Research, 34(05), 1750026. https://doi.org/10.1142/S0217595917500269
Yun, Y. S., Anudari, C., Chen, X., & Hwang, R. (2016). Closed-loop supply chain network model with product recovery, reselling and waste disposal. 46th International Conferences on Computers and Industrial Engineering.