Ade Irawan, C., Dan-Asabe Abdulrahman, M., Salhi, S., & Luis, M. (2022). An efficient matheuristic algorithm for bi-objective sustainable closed-loop supply chain networks. IMA Journal of Management Mathematics, 33(4), 603-636.
Agahgolnezhad Gerdrodbari, M., Harsej, F., Sadeghpour, M., & Molani Aghdam, M. (2021). A green closed-loop supply chain for production and distribution of perishable products. Journal of Quality Engineering and Production Optimization, 6(1), 189-214.
Akbari-Kasgari, M., Khademi-Zare, H., Fakhrzad, M., Hajiaghaei-Keshteli, M., & Honarvar, M. (2020). A closed-loop supply chain network design problem in copper industry. International Journal of Engineering, 33(10), 2008-2015.
Alizadeh Afrouzy, Z., Paydar, M. M., Nasseri, S. H., & Mahdavi, I. (2018). A meta-heuristic approach supported by NSGA-II for the design and plan of supply chain networks considering new product development. Journal of Industrial Engineering International, 14(1), 95-109.
Ardakan, M. A., Hamadani, A. Z., & Alinaghian, M. (2015). Optimizing bi-objective redundancy allocation problem with a mixed redundancy strategy. ISA transactions, 55, 116-128.
Atabaki, M. S., Khamseh, A. A., & Mohammadi, M. (2019). A priority-based firefly algorithm for network design of a closed-loop supply chain with price-sensitive demand. Computers & Industrial Engineering, 135, 814-837.
Atabaki, M. S., Mirzazadeh, A., & Fazayeli, S. (2018). Price, production and order decisions in a one-manufacturer multi-retailer supply chain with fuzzy costs: two parameter tuned meta-heuristics. International Journal of Industrial and Systems Engineering, 29(3), 303-337.
Atabaki, M. S., Mohammadi, M., & Naderi, B. (2017). Hybrid genetic algorithm and invasive weed optimization via priority based encoding for location-allocation decisions in a three-stage supply chain. Asia-Pacific Journal of Operational Research, 34(02), 1750008.
Atabaki, M. S., Mohammadi, M., & Naderi, B. (2020). New robust optimization models for closed-loop supply chain of durable products: Towards a circular economy. Computers & Industrial Engineering, 146, 106520.
Attia, P. M., Grover, A., Jin, N., Severson, K. A., Markov, T. M., Liao, Y.-H., Chen, M. H., Cheong, B., Perkins, N., & Yang, Z. (2020). Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature, 578(7795), 397-402.
Babaveisi, V., Paydar, M. M., & Safaei, A. S. (2018a). Optimizing a multi-product closed-loop supply chain using NSGA-II, MOSA, and MOPSO meta-heuristic algorithms. Journal of Industrial Engineering International, 14(2), 305-326.
Babaveisi, V., Paydar, M. M., & Safaei, A. S. (2018b). Optimizing a multi-product closed-loop supply chain using NSGA-II, MOSA, and MOPSO meta-heuristic algorithms. Journal of Industrial Engineering International, 14, 305-326.
Bahrampour, P., Najafi, S. E., Hosseinzadeh Lotfi, F., & Edalatpanah, A. (2022). Development of scenario-based mathematical model for sustainable closed loop supply chain considering reliability of direct logistics elements. Journal of Quality Engineering and Production Optimization, 7(2), 232-266.
Beamon, B. M. (1998). Supply chain design and analysis:: Models and methods. International journal of production economics, 55(3), 281-294.
Boronoos, M., Torabi, S. A., & Mousazadeh, M. (2019). A Bi-objective Mathematical Model for Closed-loop Supply Chain Network Design Problem. Journal of Quality Engineering and Production Optimization, 4(1), 85-98.
Boskabadi, A., Mirmozaffari, M., Yazdani, R., & Farahani, A. (2022). Design of a distribution network in a multi-product, multi-period green supply chain system under demand uncertainty. Sustainable Operations and Computers, 3, 226-237.
Braz, A. C., De Mello, A. M., de Vasconcelos Gomes, L. A., & de Souza Nascimento, P. T. (2018). The bullwhip effect in closed-loop supply chains: A systematic literature review. Journal of cleaner production, 202, 376-389.
De Angelis, R., Howard, M., & Miemczyk, J. (2018). Supply chain management and the circular economy: towards the circular supply chain. Production Planning & Control, 29(6), 425-437.
De Giovanni, P. (2022). Leveraging the circular economy with a closed-loop supply chain and a reverse omnichannel using blockchain technology and incentives. International Journal of Operations & Production Management(ahead-of-print).
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
Dehghanian, F., & Mansour, S. (2009). Designing sustainable recovery network of end-of-life products using genetic algorithm. Resources, conservation and recycling, 53(10), 559-570.
Dehshiri, S. J. H., & Amiri, M. (2024). Considering the circular economy for designing closed-loop supply chain under hybrid uncertainty: A robust scenario-based possibilistic-stochastic programming. Expert Systems with Applications, 238, 121745.
Dossa, A. A., Gough, A., Batista, L., & Mortimer, K. (2022). Diffusion of circular economy practices in the UK wheat food supply chain. International Journal of Logistics Research and Applications, 25(3), 328-347.
Dou, G., & Cao, K. (2020). A joint analysis of environmental and economic performances of closed-loop supply chains under carbon tax regulation. Computers & Industrial Engineering, 146, 106624.
Ehsanifar, M., Dekamini, F., Spulbar, C., Birau, R., Khazaei, M., & Bărbăcioru, I. C. (2023). A sustainable pattern of waste management and energy efficiency in smart homes using the internet of things (IoT). Sustainability, 15(6), 5081.
Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Mirjalili, S. (2018). Multi-objective stochastic closed-loop supply chain network design with social considerations. Applied Soft Computing, 71, 505-525.
Ferguson, M. E., & Souza, G. C. (2010). Closed-loop supply chains: new developments to improve the sustainability of business practices. Auerbach Publications.
Foroozesh, N., & Karimi, B. (2022). Designing a supply chain by considering secondary risks in the case of food industry: an integrated interval type-2 fuzzy approach. Journal of Quality Engineering and Production Optimization, 7(2), 93-106.
Garcia, D. J., & You, F. (2015). Supply chain design and optimization: Challenges and opportunities. Computers & Chemical Engineering, 81, 153-170.
Gebhardt, M., Spieske, A., & Birkel, H. (2022). The future of the circular economy and its effect on supply chain dependencies: Empirical evidence from a Delphi study. Transportation Research Part E: Logistics and Transportation Review, 157, 102570.
Gharye Mirzaei, M., Goodarzian, F., Maddah, S., Abraham, A., & Abdelkareim Gabralla, L. (2022). Investigating a dual-channel network in a sustainable closed-loop supply chain considering energy sources and consumption tax. Sensors, 22(9), 3547.
Gholipour, A., Sadegheih, A., Mostafaei Pour, A., & Fakhrzad, M. (2023). Designing an optimal multi-objective model for a sustainable closed-loop supply chain: a case study of pomegranate in Iran. Environment, Development and Sustainability, 1-35.
Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addion wesley, 1989, 102.
Goodarzian, F., Hosseini-Nasab, H., & Fakhrzad, M. (2020). A multi-objective sustainable medicine supply chain network design using a novel hybrid multi-objective metaheuristic algorithm. International Journal of Engineering, 33(10), 1986-1995.
Govindan, K., Mina, H., Esmaeili, A., & Gholami-Zanjani, S. M. (2020). An integrated hybrid approach for circular supplier selection and closed loop supply chain network design under uncertainty. Journal of cleaner production, 242, 118317.
Guan, G., Jiang, Z., Gong, Y., Huang, Z., & Jamalnia, A. (2020). A bibliometric review of two decades’ research on closed-loop supply chain: 2001-2020. Ieee Access, 9, 3679-3695.
Hajiaghaei-Keshteli, M., & Fathollahi Fard, A. M. (2019). Sustainable closed-loop supply chain network design with discount supposition. Neural computing and applications, 31(9), 5343-5377.
Harrison, T. P., Lee, H. L., Neale, J. J., & Harrison, T. P. (2004). Principles for the strategic design of supply chains. The practice of Supply Chain Management: Where theory and application converge, 3-12.
Hasani, A., Mokhtari, H., & Fattahi, M. (2021). A multi-objective optimization approach for green and resilient supply chain network design: a real-life case study. Journal of cleaner production, 278, 123199.
Hashemi, S. H., Karimi, A., & Tavana, M. (2015). An integrated green supplier selection approach with analytic network process and improved Grey relational analysis. International journal of production economics, 159, 178-191.
Jafarzadeh, J., Amoozad Khalili, H., & Shoja, N. (2022). A Multi-Objective Mathematical Model for Dynamic Cellular Manufacturing System Design under Uncertainty: A Sustainable approach. Journal of Quality Engineering and Production Optimization, 7(1), 98-120.
Javanshir, H., Ebrahimnejad, S., & Nouri, S. (2012). Bi-objective supply chain problem using MOPSO and NSGA-II. International Journal of Industrial Engineering Computations, 3(4), 681-694.
Jian, J., Li, B., Zhang, N., & Su, J. (2021). Decision-making and coordination of green closed-loop supply chain with fairness concern. Journal of cleaner production, 298, 126779.
Juybari, M. N., Guilani, P. P., & Ardakan, M. A. (2022). Bi-objective sequence optimization in reliability problems with a matrix-analytic approach. Annals of Operations Research, 312(1), 275-304.
Karimi, S. K., Sadjadi, S. J., & Naini, S. G. J. (2022). A bi-objective production planning for a flexible supply chain solved using NSGA-II and MOPSO. International Journal of Industrial Engineering and Management, 13(1), 18.
Kazemi, M. J., Paydar, M. M., & Safaei, A. S. (2021). Designing a bi-objective rice supply chain considering environmental impacts under uncertainty. Scientia Iranica.
Keshavarz-Ghorbani, F., & Pasandideh, S. H. R. (2022). A Lagrangian relaxation algorithm for optimizing a bi-objective agro-supply chain model considering CO2 emissions. Annals of Operations Research, 314(2), 497-527.
Keshavarz-Ghorbani, F., & Pasandideh, S. H. R. (2023). Designing a multi-objective closed-loop supply chain for multi-period multi-generational products with social impacts considerations. Computers & Industrial Engineering, 109056.
Khazaei, M., Ramezani, M., Padash, A., & DeTombe, D. (2021). The quantification role of BWM in problem structuring methods: SYRCS methodology. the international workshop on best-worst method,
Khorshidvand, B., Soleimani, H., Sibdari, S., & Esfahani, M. M. S. (2021). Developing a two-stage model for a sustainable closed-loop supply chain with pricing and advertising decisions. Journal of cleaner production, 309, 127165.
Mehrjerdi, Y. Z., & Shafiee, M. (2021). A resilient and sustainable closed-loop supply chain using multiple sourcing and information sharing strategies. Journal of cleaner production, 289, 125141.
Mohammadi, M., & Nikzad, A. (2023). Sustainable and reliable closed-loop supply chain network design during pandemic outbreaks and disruptions. Operations Management Research, 16(2), 969-991.
Mohtashami, Z., Aghsami, A., & Jolai, F. (2020). A green closed loop supply chain design using queuing system for reducing environmental impact and energy consumption. Journal of cleaner production, 242, 118452.
Motevalli-Taher, F., Paydar, M. M., & Emami, S. (2020). Wheat sustainable supply chain network design with forecasted demand by simulation. Computers and Electronics in Agriculture, 178, 105763.
Nayeri, M. D., Khazaei, M., & Abdolahbeigi, D. (2022). The drivers of success in new-service development: Rough set theory approach. International Journal of Services and Operations Management, 43(4), 421-439.
Olfati, M., & Paydar, M. M. (2023). Towards a responsive-sustainable-resilient tea supply chain network design under uncertainty using big data. Socio-Economic Planning Sciences, 88, 101646.
Pasandideh, S. H. R., Niaki, S. T. A., & Asadi, K. (2015). Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II and NRGA. Information Sciences, 292, 57-74.
Pasandideh, S. H. R., Rahbari, M., & Sadati-Keneti, Y. (2023). A Lagrangian relaxation algorithm and hybrid genetic algorithm-black widow optimization for perishable products supply chain with sustainable development goals consideration. Annals of Operations Research, 1-36.
Pourjavad, E., & Mayorga, R. V. (2019). Multi-objective fuzzy programming of closed-loop supply chain considering sustainable measures. International Journal of Fuzzy Systems, 21, 655-673.
Rahbari, M., Arshadi Khamseh, A., & Mohammadi, M. (2024). A novel robust probabilistic chance constrained programming and strategic analysis for Agri-food closed-loop supply chain under pandemic crisis. Soft Computing, 28(2), 1179-1214.
Rahbari, M., Khamseh, A. A., & Mohammadi, M. (2023a). A novel multi-objective robust fuzzy stochastic programming model for sustainable agri-food supply chain: case study from an emerging economy. Environmental Science and Pollution Research, 30(25), 67398-67442.
Rahbari, M., Khamseh, A. A., & Mohammadi, M. (2023b). Robust optimization and strategic analysis for agri-food supply chain under pandemic crisis: Case study from an emerging economy. Expert Systems with Applications, 225, 120081.
Ramanathan, U., He, Q., Subramanian, N., Gunasekaran, A., & Sarpong, D. (2023). Collaborative closed-loop supply chain framework for sustainable manufacturing: Evidence from the Indian packaging industry.
Technological Forecasting and Social Change,
191, 122489.
https://doi.org/https://doi.org/10.1016/j.techfore.2023.122489
Ramezani, M., Azar, A., & Khazaei, M. (2021). Gap analysis through a hybrid method: Critical systems heuristics and best worst method. the international workshop on best-worst method,
Ramezani, M., Khazaei, M., Gholian-Jouybari, F., Sandoval-Correa, A., Bonakdari, H., & Hajiaghaei-Keshteli, M. (2024). Turquoise hydrogen and waste optimization: A Bi-objective closed-loop and sustainable supply chain model for a case in Mexico. Renewable and Sustainable Energy Reviews, 195, 114329.
Raza, S. A. (2020). A systematic literature review of closed-loop supply chains. Benchmarking: An International Journal, 27(6), 1765-1798.
Rogers, D. S., & Tibben‐Lembke, R. (2001). An examination of reverse logistics practices. Journal of business logistics, 22(2), 129-148.
Salehi-Amiri, A., Zahedi, A., Gholian-Jouybari, F., Calvo, E. Z. R., & Hajiaghaei-Keshteli, M. (2022). Designing a closed-loop supply chain network considering social factors; a case study on avocado industry. Applied Mathematical Modelling, 101, 600-631.
Samadi, A., Mehranfar, N., Fathollahi Fard, A., & Hajiaghaei-Keshteli, M. (2018). Heuristic-based metaheuristics to address a sustainable supply chain network design problem. Journal of Industrial and Production Engineering, 35(2), 102-117.
Sarkis, J. (2003). A strategic decision framework for green supply chain management. Journal of cleaner production, 11(4), 397-409.
Sarkis, J. (2012). A boundaries and flows perspective of green supply chain management. Supply chain management: an international journal, 17(2), 202-216.
Seydanlou, P., Jolai, F., Tavakkoli-Moghaddam, R., & Fathollahi-Fard, A. M. (2022). A multi-objective optimization framework for a sustainable closed-loop supply chain network in the olive industry: Hybrid meta-heuristic algorithms. Expert Systems with Applications, 203, 117566.
Shabbir, M. S., Mahmood, A., Setiawan, R., Nasirin, C., Arshad, M. A., Khan, S., & Batool, F. (2021). Closed-loop supply chain network design with sustainability and resiliency criteria Petra Christian University].
Shayannia, S. A. (2023). Presenting an agile supply chain mathematical model for COVID-19 (Corona) drugs using metaheuristic algorithms (case study: pharmaceutical industry). Environmental Science and Pollution Research, 30(3), 6559-6572.
Shehadeh, H. A., Idna Idris, M. Y., Ahmedy, I., Ramli, R., & Mohamed Noor, N. (2018). The multi-objective optimization algorithm based on sperm fertilization procedure (MOSFP) method for solving wireless sensor networks optimization problems in smart grid applications. Energies, 11(1), 97.
Soleimani, H., Chhetri, P., Fathollahi-Fard, A. M., Mirzapour Al-e-Hashem, S., & Shahparvari, S. (2022). Sustainable closed-loop supply chain with energy efficiency: Lagrangian relaxation, reformulations and heuristics. Annals of Operations Research, 318(1), 531-556.
Soori, M., Jafari, A., & Sahraeian, R. (2022). A New Sustainable Multi-objective Agri-food Supply chain in Mushroom Industry. Journal of Quality Engineering and Production Optimization, 7(1).
Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.
Taghipour, A., Fooladvand, A., Khazaei, M., & Ramezani, M. (2023). Criteria clustering and supplier segmentation based on sustainable shared value using BWM and PROMETHEE. Sustainability, 15(11), 8670.
Taghipour, A., Foukolaei, P. Z., Ghaedi, M., & Khazaei, M. (2023). Sustainable Multi-Objective Models for Waste-to-Energy and Waste Separation Site Selection. Sustainability, 15(22), 15764.
Taghipour, A., Padash, A., Etemadi, V., Khazaei, M., & Ebrahimi, S. (2024). Sustainable and Circular Hotels and the Water–Food–Energy Nexus: Integration of Agrivoltaics, Hydropower, Solar Cells, Water Reservoirs, and Green Roofs. Sustainability, 16(5), 1985.
Taghipour, A., Ramezani, M., Khazaei, M., Roohparvar, V., & Hassannayebi, E. (2023). Smart transportation behavior through the COVID-19 pandemic: a ride-hailing system in Iran. Sustainability, 15(5), 4178.
Taghipour, A., Sohrabi, A., Ghaedi, M., & Khazaei, M. (2023). A robust vaccine supply chain model in pandemics: Case of Covid-19 in Iran. Computers & Industrial Engineering, 183, 109465.
Tavana, M., Kian, H., Nasr, A. K., Govindan, K., & Mina, H. (2022). A comprehensive framework for sustainable closed-loop supply chain network design. Journal of cleaner production, 332, 129777.
Ullah, M. (2023). Impact of transportation and carbon emissions on reverse channel selection in closed-loop supply chain management. Journal of cleaner production, 394, 136370.
Varas, M., Basso, F., Maturana, S., Osorio, D., & Pezoa, R. (2020). A multi-objective approach for supporting wine grape harvest operations. Computers & Industrial Engineering, 145, 106497.
Watson, M., Lewis, S., Cacioppi, P., & Jayaraman, J. (2013). Supply chain network design: applying optimization and analytics to the global supply chain. Pearson education.
Winkler, H. (2011). Closed-loop production systems—A sustainable supply chain approach. CIRP Journal of Manufacturing Science and Technology, 4(3), 243-246.
Yan, Y., Yao, F., & Sun, J. (2021). Manufacturer’s cooperation strategy of closed-loop supply chain considering corporate social responsibility. RAIRO-Operations Research, 55(6), 3639-3659.
Yavari, M., & Geraeli, M. (2019). Heuristic method for robust optimization model for green closed-loop supply chain network design of perishable goods. Journal of cleaner production, 226, 282-305.
Yavari, M., & Zaker, H. (2019). An integrated two-layer network model for designing a resilient green-closed loop supply chain of perishable products under disruption. Journal of cleaner production, 230, 198-218.
Yoo, S. H., & Cheong, T. (2021). Inventory model for sustainable operations of a closed-loop supply chain: Role of a third-party refurbisher. Journal of cleaner production, 315, 127810.
Yun, Y., Chuluunsukh, A., & Gen, M. (2020). Sustainable closed-loop supply chain design problem: A hybrid genetic algorithm approach. Mathematics, 8(1), 84.
Zarei-Kordshouli, F., Paydar, M. M., & Nayeri, S. (2023). Designing a dairy supply chain network considering sustainability and resilience: a multistage decision-making framework. Clean Technologies and Environmental Policy, 25(9), 2903-2927.
Zhang, X., Zhao, G., Qi, Y., & Li, B. (2019). A robust fuzzy optimization model for closed-loop supply chain networks considering sustainability. Sustainability, 11(20), 5726.
Zhao, S. T., Wu, K., & Yuan, X.-M. (2016). Optimal production-inventory policy for an integrated multi-stage supply chain with time-varying demand. European Journal of Operational Research, 255(2), 364-379.