Estimating step and linear drift change point in contingency tables

Document Type : Research Paper

Authors

1 Department of Industrial Engineering , West Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Industrial Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran

10.22070/jqepo.2022.5744.1167

Abstract

In many practical cases, product or process quality is defined by frequency table of two or more qualitative variables. This frequency table is called contingency table. Monitoring the contingency tables is an area in statistical process control with many applications in industrial and service units.
On the other hand, reducing quality costs is the most fundamental issue preoccupying the minds of managers. It is clear that a quicker diagnosis of the assignable causes can reduce the quality costs. Estimating change point by limiting the probable interval of change, reduces the cost and time of detecting assignable causes. In this research, using maximum likelihood approach, the step and linear drift change points estimators are proposed for multivariate multi-nominal contingency tables. After the change point, parameters are estimated with making the average in the proposed step estimator, and using the linear regression in the proposed linear drift estimator. Results of the simulations demonstrated that the proposed step change point estimator carries out very well in all shift types and shift magnitudes from small to large. Furthermore, the proposed estimator of the linear drift change point has relatively good performance in moderate changes. Finally, the proposed estimators’ performance is assessed by a numerical example.

Keywords


Agresti, A. (2002). Categorical data analysis. Department of Statistics University of Florida Gainesville, Florida: John Wiley & Sons, Inc, Hoboken, New Jersey.
Alaeddini, A., Ghazanfari, M., & Nayeri, M. A., (2009). A hybrid fuzzy-statistical clustering approach for estimating the time of changes in fixed and variable sampling control charts. Information Sciences, 179(11), 1769-1784.
Amiri, A., & Allahyari, S., (2012). Change point estimation methods for control chart postsignal diagnostics: a literature review. Quality and Reliability Engineering International, 28(7), 673-685.
Amiri, A., & Khosravi, R., (2013). Identifying time of a monotonic change in the fraction nonconforming of a high-quality process. The International Journal of Advanced Manufacturing Technology, 68(1-4), 547-555.
Amiri, A., Niaki, S. T. A., & Moghadam, A. T., (2015). A probabilistic artificial neural network-based procedure for variance change point estimation. Soft Computing, 19(3), 691-700.
Ashuri, A., & Amiri, A., (2016). Estimating monotonic change in the rate and dependence parameters of INAR (1) process (Case study: IP counts data). Communications in Statistics-Simulation and Computation, 46(7), 5023-5053.
Atashgar, K., & Noorossana, R., (2011). An integrating approach to root cause analysis of a bivariate mean vector with a linear trend disturbance. The International Journal of Advanced Manufacturing Technology, 52(1-4), 407-420.
Atashgar, K., & Noorossana, R., (2012). Diagnosing the source (s) of a monotonic change in the process mean vector. The International Journal of Advanced Manufacturing Technology, 60(9-12), 1175-1183.
Ayoubi, M., Kazemzadeh, R. B., & Noorossana, R. (2014). Estimating multivariate linear profiles change point with a monotonic change in the mean of response variables. The International Journal of Advanced Manufacturing Technology, 75(9), 1537-1556.
Ayoubi, M., Kazemzadeh, R. B., & Noorossana, R. (2016). Change point estimation in the mean of multivariate linear profiles with no change type assumption via dynamic linear model. Quality and Reliability Engineering International, 32(2), 403-433.
Bersimis, S., & Sachlas, A. (2019). A one-sided procedure for monitoring variables defined on contingency tables. Journal of Quality Technology, 51(2), 125-142.
Dette, H., Pan, G., & Yang, Q. (2022). Estimating a change point in a sequence of very high-dimensional covariance matrices. Journal of the American Statistical Association, 117(537), 444-454.
Fahmy, H. M., & Elsayed, E. A., (2006). Detection of linear trends in process mean. International Journal of Production Research, 44(3), 487-504.
Ghazanfari, M., Alaeddini, A., Niaki, S.T.A, & Aryanezhad, M.B., (2008). A clustering approach to identify the time of a step change in shewhart control charts. Quality and Reliability Engineering International, 24(7), 765-778.
Ghazizadeh, A., Sarani, M., Hamid, M., & Ghasemkhani, A. (2021). Detecting and estimating the time of a single-step change in nonlinear profiles using artificial neural networks. International Journal of System Assurance Engineering and Management, DOI: https://doi.org/10.1007/s13198-021-01121-y.
Hakimi, A., Farughi, H., Amiri, A., & Arkat, J. (2019). New phase II control chart for monitoring ordinal contingency table based processes. Journal of Industrial and Systems Engineering, 12, (Special issue on Statistical Processes and Statistical Modelling), 15-34.
He, Q., Liu, W., & Wang, J. (2019). Change-Point Detection in Multivariate Categorical Processes with Variable Selection. IEEE Access, 7, 73065-73075.
Kamranrad, R., Amiri, A., & Niaki, S. T. A. (2019). Phase‐I monitoring of log‐linear model‐based processes (a case study in health care: Kidney patients). Quality and Reliability Engineering International, 35(6), 1766-1788.
Kamranrad, R., Amiri, A., & Niaki, S. T. A., (2017a). Phase-II monitoring and diagnosing of multivariate categorical processes using generalized linear test-based control charts. Communications in Statistics-Simulation and Computation, 46(8), 5951-5980.
Kamranrad, R., Amiri, A., & Niaki, S. T. A., (2017b). New Approaches in Monitoring Multivariate Categorical Processes based on Contingency Tables in Phase II. Quality and Reliability Engineering International, 33(5), 1105-1129.
Kazemi, M. S., Bazargan, H., & Yaghoobi, M. A., (2014). Estimating the drift time for processes subject to linear trend disturbance using fuzzy statistical clustering. International Journal of Production Research, 52(11), 3317-3330.
Kazemzadeh, R. B., Noorossana, R., Ayoubi, M., (2015). Change point estimation of multivariate linear profiles under linear drift. Communications in Statististics-Simulation and Computation, 44(6), 1570-1599.
Li, J., Tsung, F., and Zou, C., (2012). Directional control schemes for multivariate categorical processes. Journal of Quality Technology, 44 (2), 136-154.
Li, J., Tsung, F., and Zou, C., (2014). Multivariate binomial/multinomial control chart. IIE Transactions, 46 (5), 526-542.
Li, J., Zou, C., Wang, Z., and Huwang, L. A., (2013). Multivariate sign chart for monitoring process shape parameters. Journal of Quality Technology, 45 (2), 149-165.
Maleki, M. R., Amiri, A., Taheriyoun, A. R., & Castagliola, P. (2018). Phase I monitoring and change point estimation of autocorrelated poisson regression profiles. Communications in statistics-Theory and Methods, 47(24), 5885-5903.
Movaffagh, A., & Amiri, A., (2013). Monotonic change point estimation in the mean vector of a multivariate normal process. The International Journal of Advanced Manufacturing Technology, 69(5-8), 1895-1906.
Nedumaran, G., Pignatiello Jr, J. J., & Calvin, J. A., (2000). Identifying the time of a step-change with  control charts. Quality Engineering, 13(2), 153-159.
Niaki, S. T. A., & Khedmati, M. (2014a). Step change-point estimation of multivariate binomial processes. International Journal of Quality & Reliability Management, 31(5), 566-587.
Niaki, S. T. A., & Khedmati, M., (2014b). Monotonic change-point estimation of multivariate Poisson processes using a multi-attribute control chart and MLE. International Journal of Production Research, 52(10), 2954-2982.
Nishina, K., (1992). A comparison of control charts from the viewpoint of change point estimation. Quality and Reliability Engineering International, 8(6), 537–541.
Noorosana, R., Saghaei, A., Paynabar, K., & Abdi, S., (2009). Identifying the period of a step change in High yield processes. Quality and Reliability Engineering International, 25(7), 875-883.
Noorossana, R., & Shadman, A., (2009). Estimating the change point of a normal process mean with a monotonic change. Quality and Reliability Engineering International, 25(1), 79-90.
Noorossana, R., Atashgar, K., & Saghaei, A., (2011). An integrated supervised learning solution for monitoring process mean vector. The International Journal of Advanced Manufacturing Technology, 56(5-8), 755-765.
Page, E.S., (1954). Continuous inspection schemes. Biometrika, 41(1-2), 100–115.
Perry, M. B. (2020). An EWMA control chart for categorical processes with applications to social network monitoring. Journal of Quality Technology, 52(2), 182-197.
Perry, M. B., & Pignatiello Jr, J. J., (2011). Estimating the time of step change with Poisson CUSUM and EWMA control charts. International Journal of Production Research, 49(10), 2857-2871.
Perry, M. B., & Pignatiello Jr, J. J., (2006). Estimation of the change point of a normal process mean with a linear trend disturbance in SPC. Quality Technology and Quantitative Management, 3(3), 325-334.
Perry, M. B., & Pignatiello Jr, J. J., (2010). Identifying the time of step change in the mean of autocorrelated processes. Journal of Applied Statistics, 37(1), 119-136.
Perry, M. B., Pignatiello Jr, J. J., & Simpson J. R., (2006). Estimating the change point of a poisson rate parameter with a linear trend disturbance. Quality and Reliability Engineering International, 22(4), 371-384.
Perry, M. B., Pignatiello Jr, J. J., & Simpson, J. R., (2007). Change point estimation for monotonically changing Poisson rates in SPC. International Journal of Production Research, 45(8), 1791-1813.
Pignatiello Jr, J. J., & Samuel, T. R., (2001). Identifying the time of a step change in the process fraction nonconforming. Quality Engineering, 13(3), 357-365.
Samuel, T. R., & Pignatiello Jr, J. J., (1998). Identifying the time of a change in a poisson rate parameter. Quality Engineering, 10(4), 673-681.
Samuel, T. R., Pignatiello Jr, J. J., & Calvin, J. A., (1998). Identifying the time of a step change in a normal process variance. Quality Engineering, 10(3), 529-538.
Steward, R. M., & Rigdon, S. E., (2017). Risk adjusted Monitoring of Healthcare Quality: Model Selection and Change Point Estimation. Quality and Reliability Engineering International, 33(5), 979-992.
Venegas, J., Tercero-Gomez, V., Cordero Franco, A., Temblador-Pérez, M., & Beruvides, M., (2016). An evaluation of change-point estimators for a sequence of normal observations with unknown parameters. Communications in Statistics-Simulation and Computation, 46(6), 4297-4317.
Xiang, D., Pu, X., Ding, D., & Liang, W. (2021). An efficient charting scheme for multivariate categorical process with a sparse contingency table. Journal of Quality Technology, 53(1), 88-105.
Yashchin, E. (2012). On detection of changes in categorical data. Quality Technology & Quantitative Management, 9(1), 79-96.
Yeganeh, A., Pourpanah, F., & Shadman, A. (2021). An ANN-based ensemble model for change point estimation in control charts. Applied Soft Computing, 110, 107604.
Zarandi, M. H. F. & Alaeddini, A., (2010). A general fuzzy-statistical clustering approach for estimating the time of change in variable sampling control charts. Information Sciences, 180(16), 3033-3044.
Zou, C., and Tsung, F.A., (2011). Multivariate sign EWMA control chart. Technometrics, 53 (1), 84-97.