Agresti, A. (2002). Categorical data analysis. Department of Statistics University of Florida Gainesville, Florida: John Wiley & Sons, Inc, Hoboken, New Jersey.
Alaeddini, A., Ghazanfari, M., & Nayeri, M. A., (2009). A hybrid fuzzy-statistical clustering approach for estimating the time of changes in fixed and variable sampling control charts. Information Sciences, 179(11), 1769-1784.
Amiri, A., & Allahyari, S., (2012). Change point estimation methods for control chart postsignal diagnostics: a literature review. Quality and Reliability Engineering International, 28(7), 673-685.
Amiri, A., & Khosravi, R., (2013). Identifying time of a monotonic change in the fraction nonconforming of a high-quality process. The International Journal of Advanced Manufacturing Technology, 68(1-4), 547-555.
Amiri, A., Niaki, S. T. A., & Moghadam, A. T., (2015). A probabilistic artificial neural network-based procedure for variance change point estimation. Soft Computing, 19(3), 691-700.
Ashuri, A., & Amiri, A., (2016). Estimating monotonic change in the rate and dependence parameters of INAR (1) process (Case study: IP counts data). Communications in Statistics-Simulation and Computation, 46(7), 5023-5053.
Atashgar, K., & Noorossana, R., (2011). An integrating approach to root cause analysis of a bivariate mean vector with a linear trend disturbance. The International Journal of Advanced Manufacturing Technology, 52(1-4), 407-420.
Atashgar, K., & Noorossana, R., (2012). Diagnosing the source (s) of a monotonic change in the process mean vector. The International Journal of Advanced Manufacturing Technology, 60(9-12), 1175-1183.
Ayoubi, M., Kazemzadeh, R. B., & Noorossana, R. (2014). Estimating multivariate linear profiles change point with a monotonic change in the mean of response variables. The International Journal of Advanced Manufacturing Technology, 75(9), 1537-1556.
Ayoubi, M., Kazemzadeh, R. B., & Noorossana, R. (2016). Change point estimation in the mean of multivariate linear profiles with no change type assumption via dynamic linear model. Quality and Reliability Engineering International, 32(2), 403-433.
Bersimis, S., & Sachlas, A. (2019). A one-sided procedure for monitoring variables defined on contingency tables. Journal of Quality Technology, 51(2), 125-142.
Dette, H., Pan, G., & Yang, Q. (2022). Estimating a change point in a sequence of very high-dimensional covariance matrices. Journal of the American Statistical Association, 117(537), 444-454.
Fahmy, H. M., & Elsayed, E. A., (2006). Detection of linear trends in process mean. International Journal of Production Research, 44(3), 487-504.
Ghazanfari, M., Alaeddini, A., Niaki, S.T.A, & Aryanezhad, M.B., (2008). A clustering approach to identify the time of a step change in shewhart control charts. Quality and Reliability Engineering International, 24(7), 765-778.
Ghazizadeh, A., Sarani, M., Hamid, M., & Ghasemkhani, A. (2021). Detecting and estimating the time of a single-step change in nonlinear profiles using artificial neural networks. International Journal of System Assurance Engineering and Management, DOI:
https://doi.org/10.1007/s13198-021-01121-y.
Hakimi, A., Farughi, H., Amiri, A., & Arkat, J. (2019). New phase II control chart for monitoring ordinal contingency table based processes. Journal of Industrial and Systems Engineering, 12, (Special issue on Statistical Processes and Statistical Modelling), 15-34.
He, Q., Liu, W., & Wang, J. (2019). Change-Point Detection in Multivariate Categorical Processes with Variable Selection. IEEE Access, 7, 73065-73075.
Kamranrad, R., Amiri, A., & Niaki, S. T. A. (2019). Phase‐I monitoring of log‐linear model‐based processes (a case study in health care: Kidney patients). Quality and Reliability Engineering International, 35(6), 1766-1788.
Kamranrad, R., Amiri, A., & Niaki, S. T. A., (2017a). Phase-II monitoring and diagnosing of multivariate categorical processes using generalized linear test-based control charts. Communications in Statistics-Simulation and Computation, 46(8), 5951-5980.
Kamranrad, R., Amiri, A., & Niaki, S. T. A., (2017b). New Approaches in Monitoring Multivariate Categorical Processes based on Contingency Tables in Phase II. Quality and Reliability Engineering International, 33(5), 1105-1129.
Kazemi, M. S., Bazargan, H., & Yaghoobi, M. A., (2014). Estimating the drift time for processes subject to linear trend disturbance using fuzzy statistical clustering. International Journal of Production Research, 52(11), 3317-3330.
Kazemzadeh, R. B., Noorossana, R., Ayoubi, M., (2015). Change point estimation of multivariate linear profiles under linear drift. Communications in Statististics-Simulation and Computation, 44(6), 1570-1599.
Li, J., Tsung, F., and Zou, C., (2012). Directional control schemes for multivariate categorical processes. Journal of Quality Technology, 44 (2), 136-154.
Li, J., Tsung, F., and Zou, C., (2014). Multivariate binomial/multinomial control chart. IIE Transactions, 46 (5), 526-542.
Li, J., Zou, C., Wang, Z., and Huwang, L. A., (2013). Multivariate sign chart for monitoring process shape parameters. Journal of Quality Technology, 45 (2), 149-165.
Maleki, M. R., Amiri, A., Taheriyoun, A. R., & Castagliola, P. (2018). Phase I monitoring and change point estimation of autocorrelated poisson regression profiles. Communications in statistics-Theory and Methods, 47(24), 5885-5903.
Movaffagh, A., & Amiri, A., (2013). Monotonic change point estimation in the mean vector of a multivariate normal process. The International Journal of Advanced Manufacturing Technology, 69(5-8), 1895-1906.
Nedumaran, G., Pignatiello Jr, J. J., & Calvin, J. A., (2000). Identifying the time of a step-change with control charts. Quality Engineering, 13(2), 153-159.
Niaki, S. T. A., & Khedmati, M. (2014a). Step change-point estimation of multivariate binomial processes. International Journal of Quality & Reliability Management, 31(5), 566-587.
Niaki, S. T. A., & Khedmati, M., (2014b). Monotonic change-point estimation of multivariate Poisson processes using a multi-attribute control chart and MLE. International Journal of Production Research, 52(10), 2954-2982.
Nishina, K., (1992). A comparison of control charts from the viewpoint of change point estimation. Quality and Reliability Engineering International, 8(6), 537–541.
Noorosana, R., Saghaei, A., Paynabar, K., & Abdi, S., (2009). Identifying the period of a step change in High yield processes. Quality and Reliability Engineering International, 25(7), 875-883.
Noorossana, R., & Shadman, A., (2009). Estimating the change point of a normal process mean with a monotonic change. Quality and Reliability Engineering International, 25(1), 79-90.
Noorossana, R., Atashgar, K., & Saghaei, A., (2011). An integrated supervised learning solution for monitoring process mean vector. The International Journal of Advanced Manufacturing Technology, 56(5-8), 755-765.
Page, E.S., (1954). Continuous inspection schemes. Biometrika, 41(1-2), 100–115.
Perry, M. B. (2020). An EWMA control chart for categorical processes with applications to social network monitoring. Journal of Quality Technology, 52(2), 182-197.
Perry, M. B., & Pignatiello Jr, J. J., (2011). Estimating the time of step change with Poisson CUSUM and EWMA control charts. International Journal of Production Research, 49(10), 2857-2871.
Perry, M. B., & Pignatiello Jr, J. J., (2006). Estimation of the change point of a normal process mean with a linear trend disturbance in SPC. Quality Technology and Quantitative Management, 3(3), 325-334.
Perry, M. B., & Pignatiello Jr, J. J., (2010). Identifying the time of step change in the mean of autocorrelated processes. Journal of Applied Statistics, 37(1), 119-136.
Perry, M. B., Pignatiello Jr, J. J., & Simpson J. R., (2006). Estimating the change point of a poisson rate parameter with a linear trend disturbance. Quality and Reliability Engineering International, 22(4), 371-384.
Perry, M. B., Pignatiello Jr, J. J., & Simpson, J. R., (2007). Change point estimation for monotonically changing Poisson rates in SPC. International Journal of Production Research, 45(8), 1791-1813.
Pignatiello Jr, J. J., & Samuel, T. R., (2001). Identifying the time of a step change in the process fraction nonconforming. Quality Engineering, 13(3), 357-365.
Samuel, T. R., & Pignatiello Jr, J. J., (1998). Identifying the time of a change in a poisson rate parameter. Quality Engineering, 10(4), 673-681.
Samuel, T. R., Pignatiello Jr, J. J., & Calvin, J. A., (1998). Identifying the time of a step change in a normal process variance. Quality Engineering, 10(3), 529-538.
Steward, R. M., & Rigdon, S. E., (2017). Risk adjusted Monitoring of Healthcare Quality: Model Selection and Change Point Estimation. Quality and Reliability Engineering International, 33(5), 979-992.
Venegas, J., Tercero-Gomez, V., Cordero Franco, A., Temblador-Pérez, M., & Beruvides, M., (2016). An evaluation of change-point estimators for a sequence of normal observations with unknown parameters. Communications in Statistics-Simulation and Computation, 46(6), 4297-4317.
Xiang, D., Pu, X., Ding, D., & Liang, W. (2021). An efficient charting scheme for multivariate categorical process with a sparse contingency table. Journal of Quality Technology, 53(1), 88-105.
Yashchin, E. (2012). On detection of changes in categorical data. Quality Technology & Quantitative Management, 9(1), 79-96.
Yeganeh, A., Pourpanah, F., & Shadman, A. (2021). An ANN-based ensemble model for change point estimation in control charts. Applied Soft Computing, 110, 107604.
Zarandi, M. H. F. & Alaeddini, A., (2010). A general fuzzy-statistical clustering approach for estimating the time of change in variable sampling control charts. Information Sciences, 180(16), 3033-3044.
Zou, C., and Tsung, F.A., (2011). Multivariate sign EWMA control chart. Technometrics, 53 (1), 84-97.