A predictive data-driven state-dependent decision approach to determine inventory system states for critical spare parts

Document Type : Research Paper

Authors

1 Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Industrial Engineering, Bonab Branch, Islamic Azad University, Bonab, Iran.

10.22070/jqepo.2022.16129.1233

Abstract

The Markov chain is widely used in state-dependent inventory control of spare parts because of its ability to model the gradual degradation process of components and predict their condition. Also, according to previous studies, considering system information causes a significant reduction in costs. Therefore, the present study tries to extract the system information using a machine learning algorithm and provide it as a transition matrix to the Markov decision process (MDP) to determine the future states of the critical spare parts inventory system. In the presented method, the machine learning algorithm, here Adaptive Neuro-Fuzzy Inference System (ANFIS), is in charge of the training data. The Markov chain uses the trained data to predict the future states of the inventory system. For this purpose, four states have been considered, each representing a level of tension and demand in the inventory system. Applying the model to the data collected for a critical component showed that the model has good accuracy in predicting the following states of the system. Also, the presented model offers a lower error rate, RMSE, and MAPE, compared to the ARIMA model for predicting the next state of the inventory system.

Keywords


Aronis, K. P., Magou, I., Dekker, R., & Tagaras, G. (2004). Inventory control of spare parts using a Bayesian approach: A case study. European Journal of Operational Research, 154(3), 730–739. https://doi.org/10.1016/S0377-2217(02)00837-8
Basten, R. J. I., & Van Houtum, G. J. (2014). System-oriented inventory models for spare parts. Surveys in Operations Research and Management Science, 19(1), 34–55. https://doi.org/10.1016/j.sor ms.2014.05.002
Boudhar, H., Dahane, M., & Rezg. N. (2013). Joint optimization of spare parts demand and remanufacturing policy under condition-based maintenance for stochastic deteriorating manufacturing system. IFAC Proceedings, 46(7), 414–419. https://doi.org/10.3 182/20130522-3-BR-4036.00097
Bousdekis, A., Papageorgiou, N., Magoutas, B., Apostolou, D., & Mentzas, G. (2017). A proactive event-driven decision model for joint equipment predictive maintenance and spare parts inventory optimization. Procedia CIRP, 59, 184–189. https://doi.org/10.101 6/j.procir.2016.09.015
Cai, J., Yin, Y., Zhang, L., & Chen, X. (2017). Joint Optimization of preventive maintenance and spare parts inventory with appointment policy. Mathematical Problems in Engineering, vol 2017. https://doi.org/10.1155/2 017/3493687
Rastgar, I., Rezaeian, J., Mahdavi, I., & Fattahi, P. (2021). Opportunistic maintenance management for a hybrid flow shop scheduling problem. Journal of Quality Engineering and Production Optimization, 6(2), 17–30.
Chakravarthy, S. R. (2006). Analysis of a k-out-of-N system with spares, repairs, and a probabilistic rule. International Journal of Stochastic Analysis, 2006. https://doi.org/10.1155/JAM S.A./2006/39093
Cheng, G., Zhou, B., Qi, F., & Li, L. (2016). Modeling condition-based maintenance and replacement strategies for an imperfect production-inventory system. Engineers Part B Journal of Engineering Manufacture, 232(10), 1858–1871. https://doi.org/1 0.1177/0954405416675653
Wang, y., Gu, H., Zhao, J., & Cheng, Z. (2016). Modeling on spare parts inventory control under condition based maintenance strategy. Journal of Shanghai Jiaotong University (Science), 21, 600–604. https://doi.org/10.1007/s12204-016-1769-1
De Smidt-Destombes, K. S., van der Heijden, C. M., & van Harten, A. (2004). On the availability of a k-out-of-N system given limited spares and repair capacity under a condition-based maintenance strategy. Reliability Engineering and System Safety, 83(3), 287–300. https://doi.org/10.1016/j.ress.2003.10.004
Eruguz, A. S., Tan, T., & Houtum, G. J. V. (2017). Integrated maintenance and spare part optimization for moving assets. IISE Transactions, 50(18), 230–245. https://doi.org/10.1080/24725854.2017.13120 37
Bülbül, p., Bayındır, Z. P., & Bakal, I. S. (2019). Exact and heuristic approaches for joint maintenance and spare parts planning. Computers & Industrial Engineering, 129, 239–250. https://doi.org/10.1016/j.cie.2019.01.032
Ghodrati, B., & Kumar, U. (2005). Operating environment-based spare parts forecasting and logistics: a case study. International Journal of Logistics: Research and Applications, 8(2), 95–105. https://doi.org/10.1080/13 675560512331338189
Giorgio, M., Guida, M., & Pulcini, G. (2011). An age and state-dependent Markov model for degradation processes. IISE Transactions, 43(9), 621–632. https://doi.org/10.1080/0740817X.2010.532855
Hellingrath, B., & Cordes, A. K. (2014). Conceptual approach for integrating condition monitoring information and spare parts forecasting methods. Production & Manufacturing Research: An Open Access Journal, 2(1), 725–737. http://dx.doi.org/10.1080/2169 3277.2014.943431
Hu, Q., Bai, Y., Zhao, J., & Cao, W. (2015). Modeling Spare Parts Demands Forecast under Two-Dimensional Preventive Maintenance Policy. Mathematical Problems in Engineering, 2015. http://dx.doi.org/10.1155/2015/728241
Ilgin, M. A., & Tunali, S. (2007). Joint optimization of spare parts inventory and maintenance policies using genetic algorithms. Int J Adv Manuf Technol, 34, 594–604. https://doi.org/10.1007/s00170-006-0618-z
Kareem, B., & Lawal, A. S. (2015). Spare parts failure prediction of an automobile under criticality condition. Engineering Failure Analysis, 56, 69–79. https://doi.org/10.1016/j.engfailanal.2015.04.011
Kiesmüller, G. P., Sachsb, F. E. (2020). Spare parts or buffer? How to design a transfer line with unreliable machines. European Journal of Operational Research, 284(1), 121–134. https://doi.org/10.1016/j.ejor.2019.12.005
Lanza, G., Niggeschmidt, S., & Werner, P. (2009). Optimization of preventive maintenance and spare part provision for machine tools based on variable operational conditions. CIRP Annals, 58(1), 429–432. https://doi.org/10.1016/j.cirp.2009.03.030
Li, R., & Ryan, J. K. (2011). A Bayesian Inventory Model Using Real-Time Condition Monitoring Information. Production and Operations Management, 20(5), 754–771. https://doi.org/10.1111/j.1937-5956.2010.01200.x
Liu, B., Wu, S., Xie, M., & Kuo, W. (2017). A condition-based maintenance policy for degrading systems with age and state-dependent operating cost. European Journal of Operational Research, 263(3), 879–887. https://doi.org/10.10 16/j.ejor.2017.05.006
Louit, D., Pascual, R., Banjevic, D., & Jardine, A. K. S. (2011). Condition-based spares ordering for critical components. Mechanical Systems and Signal Processing, 25(5), 1837–1848. https://doi.org/10.1016 /j.ymssp.2011.01.004
Neves, M. L., Santiago, L. P., & Maia, C. A. (2011). A condition-based maintenance policy and input parameters estimation for deteriorating systems under periodic inspection. Computers & Industrial Engineering, 61(3), 503–511. https://doi.org/10.1016/j. cie.2011.04.005
Kamranrad, R., Soltanzadeh, S., & Mardan, E. (2021). A combined data mining based-bi clustering and order preserved sub-matrices algorithm for set covering problem. Journal of Quality Engineering and Production Optimization, 6(2), 1–16.
Olde Keizer, M. C. A., Teunter, R. H., & Veldman, A. (2011). Joint condition-based maintenance and inventory optimization for systems with multiple components. European Journal of Operational Research, 257(1), 209–222. https://doi.org/10.1016/j.ejor.2016.07.047
Bonab, A. A. G. (2022). A comparative study of demand forecasting based on machine learning methods with time series approach. Journal of Applied Research on Industrial Engineering, 9(3), 331–353. https://dx.doi.org/10.22105/jarie.2021.246283.1192
Panagiotidou, S. (2013). Joint optimization of spare parts ordering and maintenance policies for multiple identical items subject to silent failures. European Journal of Operational Research, 235(1), 300–314. https://doi.org/10.1016/j.ejor.2013.10.065
Rausch, M., & Liao, H. (2010). Joint Production and Spare Part Inventory Control Strategy Driven by Condition Based Maintenance. IEEE Transactions on Reliability, 59(3), 507–516. https://doi.org/10.1 109/T.R.2010.2055917
Rubino, S., Mossa, G., & Digiesi, S. (2010). Spare Parts inventory reduction: a multi-attribute approach. IFAC Proceedings, 43(3), 62–67. https://doi.org/10.3182/20100701-2-PT-4012.000 12
Saalmann, P., Zuccolotto, M., Silva, T. R. D., Wagner, C., Giacomolli, A., Hellingrath, B., & Pereira, C. E. (2016). Application Potentials for an Ontology-based Integration of Intelligent Maintenance Systems and Spare Parts Supply Chain Planning. Procedia CIRP, 41, 270–275. https://doi.org/10.1016/j.procir.2015.12.135
Lin, X., Basten, R. J. I., Kranenburg, A. A., & van Houtum, G. J. J. A. N. (2017). Condition based spare parts supply. Reliability Engineering and System Safety, 168, 240-248. https://doi.org/10.1016/j.ress.2017.05.035
Tracht, K., Goch, G., Schuh, P., Sorg, M., & Westerkamp, J. F. (2013). Failure probability prediction based on condition monitoring data of wind energy systems for spare parts supply. CIRP Annals -Manufacturing Technology, 62(1), 127–130. https://doi.org/10. 1016/j.cirp.2013.03.130
Turrini, L., & Meissner, J. (2017). Spare parts inventory management: new evidence from distribution fitting. European Journal of Operational Research, 273(1), 118–130. https://doi.org/10.1016/j.ejor.2017.09.039
Wang, J., & Zhu, X. (2021). Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state degrading components. European Journal of Operational Research, 290(2), 514–529. https://doi.org/10.1016/j.ejor.2020.08.016
Aliunir, F., Zagloel, T. Y. M., & Ardi, R. (2020). Discrete-Event Simulation and Optimization of Spare Parts Inventory and Preventive Maintenance Integration Model Considering Cooling Down and Machine Dismantling Time Factor. Evergreen - Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 7(1), 79–85. https://doi.org/10.5109/2740949
Muniz, L. R., Conceição, S. V., Rodrigues, L. F., Almeida, J. F. D. F., & Affonso, T. B. (2020). Spare parts inventory management: a new hybrid approach. The International Journal of Logistics Management, 31(1), 40–67. https://doi.org/10.1108/IJLM-12-2019-0361
Usanov, D., van de Ven,  P., & van der Mei, R. (2020). Integrating Condition-Based Maintenance into Dynamic Spare Parts Management. arXiv. https://doi.org/10.48550/arxiv.2004.01928
Farsi, M., & Zio, E. (2020). Joint Optimization of Spare Parts Strategy and Maintenance Policies for Manufacturing Systems. ADMT journal, 13(4), 69–77. https://dx.doi.org/10.30495/admt.2021.1896948.1188
Dendauw, P., Goeman, T., Claeys, D., DeTurck, K., Fiems, D., & Bruneel, H. (2021). Condition-based critical level policy for spare parts inventory management. Computers & Industrial Engineering, 157, 107369. https://doi.org/10.1016/j.cie.2021.107369
Kang, Z., Catal, C., & Tekinerdogan, B. (2021). Remaining useful life (RUL) prediction of equipment in production lines using artificial neural networks. Sensors, 21(3), 932. https://doi.org/10.3390/s21030932
Zhang, P., Zhu, X., & Xie, M. (2021). A model-based reinforcement learning approach for maintenance optimization of degrading systems in a large state space. Computers & Industrial Engineering, 161. https://doi.org/10.1016/j.cie.2021.107622
Tusar, M. I. H., & Sarker, B. R. (2022). Spare parts control strategies for offshore wind farms: A critical review and comparative study. Wind Engineering, 1–28. https://doi.org/10.1177/0309524X221095258
Wang, L., Chu, J., & Mao, W. (2009). A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure. European Journal of Operational Research, 194(1), 184–205. https://doi.org/10.1016 /j.ejor.2007.12.012
Wang, W., & Syntetos, A. A. (2011). Spare parts demand: Linking forecasting to equipment maintenance. Transportation Research Part E: Logistics and Transportation Review, 47(6), 1194–1209. https://doi.org/10.1016/j.tre.2011.04.008
Wang, W., Wang, Z., Hu, C., & Liu, X. (2013). An Integrated Decision Model for Critical Component Spare Parts Ordering and Condition-based Replacement with Prognostic Information. Chemical engineering transactions, 33, 1063–1068. https://doi.org/10.33 03/CET1333178
Wang, Y., Zhao, Y., Cheng, Z., & Yang, Z. (2015). Integrated decision on spare parts ordering and equipment maintenance under condition-based maintenance strategy. Maintenance and Reliability, 17 (4), 591–599. http://dx.doi.org/10.17531/ein.2015.4
Chicco, D., Toetsch, N., & Jurman, G. (2021). The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation". BioData Mining, 14 (13), 1-22. https://doi.org/10.1186%2Fs13040-021-00244-z
Zakaria, N. N., Othman, M., Sokkalingam, R., Daud, H., Abdullah, L., & Kadir, E. A. (2019). Markov Chain Model Development for Forecasting Air Pollution Index of Miri, Sarawak. Sustainability, 11(19), 5190. https://doi.org/10.3390/su11195190
Kathiria, P., & Arolkar, H. (2022). Trend analysis and forecasting of publication activities by Indian computer science researchers during the period of 2010–23. Expert Systems. https://doi.org/10.1111/exsy.13070
Lewis, C. D. (1982) Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.
Piccardi, C., Riccaboni, M., Tajoli, L., & Zhu, Z. (2017). Random walks on the world input-output network. J. Complex Netw 6, 187–205. https://doi.org/10.1093/comnet/cnx036
Hazra, T., Nene, M. J., & Kumar, C. R. S. (2017). A Strategic Framework for Searching Mobile Targets Using Mobile Sensors. Wireless Pers Commun, 95, 4681–4696. https://doi.org/10.1007/s11277-017-4113-7
Tserenjigmid, G. (2020). On the characterization of linear habit formation. Econ Theory 70, 49–93. https://doi.org/10.1007/s00199-019-01202-x
Olson, D. L., & Delen, D. (2008). Advanced Data Mining Techniques, Springer, 1st edition, p 138. https://doi.org/10.1007/978-3-540-76917-0
Saito, T., & Rehmsmeier, M. (2015). The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE, 10(3), e0118432. https://doi.org/10.1371/journal.pone.0118432
Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21, 6. https://doi.org/10.1186/s12864-019-6413-7.