Aronis, K. P., Magou, I., Dekker, R., & Tagaras, G. (2004). Inventory control of spare parts using a Bayesian approach: A case study. European Journal of Operational Research, 154(3), 730–739.
https://doi.org/10.1016/S0377-2217(02)00837-8
Boudhar, H., Dahane, M., & Rezg. N. (2013). Joint optimization of spare parts demand and remanufacturing policy under condition-based maintenance for stochastic deteriorating manufacturing system. IFAC Proceedings, 46(7), 414–419.
https://doi.org/10.3 182/20130522-3-BR-4036.00097
Bousdekis, A., Papageorgiou, N., Magoutas, B., Apostolou, D., & Mentzas, G. (2017). A proactive event-driven decision model for joint equipment predictive maintenance and spare parts inventory optimization. Procedia CIRP, 59, 184–189.
https://doi.org/10.101 6/j.procir.2016.09.015
Cai, J., Yin, Y., Zhang, L., & Chen, X. (2017). Joint Optimization of preventive maintenance and spare parts inventory with appointment policy. Mathematical Problems in Engineering, vol 2017.
https://doi.org/10.1155/2 017/3493687
Rastgar, I., Rezaeian, J., Mahdavi, I., & Fattahi, P. (2021). Opportunistic maintenance management for a hybrid flow shop scheduling problem. Journal of Quality Engineering and Production Optimization, 6(2), 17–30.
Cheng, G., Zhou, B., Qi, F., & Li, L. (2016). Modeling condition-based maintenance and replacement strategies for an imperfect production-inventory system. Engineers Part B Journal of Engineering Manufacture, 232(10), 1858–1871.
https://doi.org/1 0.1177/0954405416675653
Wang, y., Gu, H., Zhao, J., & Cheng, Z. (2016). Modeling on spare parts inventory control under condition based maintenance strategy. Journal of Shanghai Jiaotong University (Science), 21, 600–604. https://doi.org/10.1007/s12204-016-1769-1
De Smidt-Destombes, K. S., van der Heijden, C. M., & van Harten, A. (2004). On the availability of a k-out-of-N system given limited spares and repair capacity under a condition-based maintenance strategy. Reliability Engineering and System Safety, 83(3), 287–300.
https://doi.org/10.1016/j.ress.2003.10.004
Bülbül, p., Bayındır, Z. P., & Bakal, I. S. (2019). Exact and heuristic approaches for joint maintenance and spare parts planning. Computers & Industrial Engineering, 129, 239–250. https://doi.org/10.1016/j.cie.2019.01.032
Ghodrati, B., & Kumar, U. (2005). Operating environment-based spare parts forecasting and logistics: a case study. International Journal of Logistics: Research and Applications, 8(2), 95–105. https://doi.org/10.1080/13 675560512331338189
Hellingrath, B., & Cordes, A. K. (2014). Conceptual approach for integrating condition monitoring information and spare parts forecasting methods. Production & Manufacturing Research: An Open Access Journal, 2(1), 725–737.
http://dx.doi.org/10.1080/2169 3277.2014.943431
Hu, Q., Bai, Y., Zhao, J., & Cao, W. (2015). Modeling Spare Parts Demands Forecast under Two-Dimensional Preventive Maintenance Policy. Mathematical Problems in Engineering, 2015.
http://dx.doi.org/10.1155/2015/728241
Ilgin, M. A., & Tunali, S. (2007). Joint optimization of spare parts inventory and maintenance policies using genetic algorithms. Int J Adv Manuf Technol, 34, 594–604.
https://doi.org/10.1007/s00170-006-0618-z
Kareem, B., & Lawal, A. S. (2015). Spare parts failure prediction of an automobile under criticality condition. Engineering Failure Analysis, 56, 69–79. https://doi.org/10.1016/j.engfailanal.2015.04.011
Kiesmüller, G. P., Sachsb, F. E. (2020). Spare parts or buffer? How to design a transfer line with unreliable machines. European Journal of Operational Research, 284(1), 121–134. https://doi.org/10.1016/j.ejor.2019.12.005
Lanza, G., Niggeschmidt, S., & Werner, P. (2009). Optimization of preventive maintenance and spare part provision for machine tools based on variable operational conditions. CIRP Annals, 58(1), 429–432. https://doi.org/10.1016/j.cirp.2009.03.030
Liu, B., Wu, S., Xie, M., & Kuo, W. (2017). A condition-based maintenance policy for degrading systems with age and state-dependent operating cost. European Journal of Operational Research, 263(3), 879–887.
https://doi.org/10.10 16/j.ejor.2017.05.006
Louit, D., Pascual, R., Banjevic, D., & Jardine, A. K. S. (2011). Condition-based spares ordering for critical components. Mechanical Systems and Signal Processing, 25(5), 1837–1848.
https://doi.org/10.1016 /j.ymssp.2011.01.004
Neves, M. L., Santiago, L. P., & Maia, C. A. (2011). A condition-based maintenance policy and input parameters estimation for deteriorating systems under periodic inspection. Computers & Industrial Engineering, 61(3), 503–511.
https://doi.org/10.1016/j. cie.2011.04.005
Kamranrad, R., Soltanzadeh, S., & Mardan, E. (2021). A combined data mining based-bi clustering and order preserved sub-matrices algorithm for set covering problem. Journal of Quality Engineering and Production Optimization, 6(2), 1–16.
Olde Keizer, M. C. A., Teunter, R. H., & Veldman, A. (2011). Joint condition-based maintenance and inventory optimization for systems with multiple components. European Journal of Operational Research, 257(1), 209–222.
https://doi.org/10.1016/j.ejor.2016.07.047
Bonab, A. A. G. (2022). A comparative study of demand forecasting based on machine learning methods with time series approach. Journal of Applied Research on Industrial Engineering, 9(3), 331–353. https://dx.doi.org/10.22105/jarie.2021.246283.1192
Panagiotidou, S. (2013). Joint optimization of spare parts ordering and maintenance policies for multiple identical items subject to silent failures. European Journal of Operational Research, 235(1), 300–314.
https://doi.org/10.1016/j.ejor.2013.10.065
Rausch, M., & Liao, H. (2010). Joint Production and Spare Part Inventory Control Strategy Driven by Condition Based Maintenance. IEEE Transactions on Reliability, 59(3), 507–516.
https://doi.org/10.1 109/T.R.2010.2055917
Saalmann, P., Zuccolotto, M., Silva, T. R. D., Wagner, C., Giacomolli, A., Hellingrath, B., & Pereira, C. E. (2016). Application Potentials for an Ontology-based Integration of Intelligent Maintenance Systems and Spare Parts Supply Chain Planning. Procedia CIRP, 41, 270–275.
https://doi.org/10.1016/j.procir.2015.12.135
Lin, X., Basten, R. J. I., Kranenburg, A. A., & van Houtum, G. J. J. A. N. (2017). Condition based spare parts supply. Reliability Engineering and System Safety, 168, 240-248. https://doi.org/10.1016/j.ress.2017.05.035
Tracht, K., Goch, G., Schuh, P., Sorg, M., & Westerkamp, J. F. (2013). Failure probability prediction based on condition monitoring data of wind energy systems for spare parts supply. CIRP Annals -Manufacturing Technology, 62(1), 127–130.
https://doi.org/10. 1016/j.cirp.2013.03.130
Turrini, L., & Meissner, J. (2017). Spare parts inventory management: new evidence from distribution fitting. European Journal of Operational Research, 273(1), 118–130.
https://doi.org/10.1016/j.ejor.2017.09.039
Wang, J., & Zhu, X. (2021). Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state degrading components. European Journal of Operational Research, 290(2), 514–529.
https://doi.org/10.1016/j.ejor.2020.08.016
Aliunir, F., Zagloel, T. Y. M., & Ardi, R. (2020). Discrete-Event Simulation and Optimization of Spare Parts Inventory and Preventive Maintenance Integration Model Considering Cooling Down and Machine Dismantling Time Factor. Evergreen - Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 7(1), 79–85. https://doi.org/10.5109/2740949
Muniz, L. R., Conceição, S. V., Rodrigues, L. F., Almeida, J. F. D. F., & Affonso, T. B. (2020). Spare parts inventory management: a new hybrid approach. The International Journal of Logistics Management, 31(1), 40–67. https://doi.org/10.1108/IJLM-12-2019-0361
Farsi, M., & Zio, E. (2020). Joint Optimization of Spare Parts Strategy and Maintenance Policies for Manufacturing Systems. ADMT journal, 13(4), 69–77. https://dx.doi.org/10.30495/admt.2021.1896948.1188
Dendauw, P., Goeman, T., Claeys, D., DeTurck, K., Fiems, D., & Bruneel, H. (2021). Condition-based critical level policy for spare parts inventory management. Computers & Industrial Engineering, 157, 107369.
https://doi.org/10.1016/j.cie.2021.107369
Kang, Z., Catal, C., & Tekinerdogan, B. (2021). Remaining useful life (RUL) prediction of equipment in production lines using artificial neural networks. Sensors, 21(3), 932. https://doi.org/10.3390/s21030932
Zhang, P., Zhu, X., & Xie, M. (2021). A model-based reinforcement learning approach for maintenance optimization of degrading systems in a large state space. Computers & Industrial Engineering, 161. https://doi.org/10.1016/j.cie.2021.107622
Tusar, M. I. H., & Sarker, B. R. (2022). Spare parts control strategies for offshore wind farms: A critical review and comparative study. Wind Engineering, 1–28. https://doi.org/10.1177/0309524X221095258
Wang, L., Chu, J., & Mao, W. (2009). A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure. European Journal of Operational Research, 194(1), 184–205.
https://doi.org/10.1016 /j.ejor.2007.12.012
Wang, W., & Syntetos, A. A. (2011). Spare parts demand: Linking forecasting to equipment maintenance. Transportation Research Part E: Logistics and Transportation Review, 47(6), 1194–1209.
https://doi.org/10.1016/j.tre.2011.04.008
Wang, W., Wang, Z., Hu, C., & Liu, X. (2013). An Integrated Decision Model for Critical Component Spare Parts Ordering and Condition-based Replacement with Prognostic Information. Chemical engineering transactions, 33, 1063–1068.
https://doi.org/10.33 03/CET1333178
Wang, Y., Zhao, Y., Cheng, Z., & Yang, Z. (2015). Integrated decision on spare parts ordering and equipment maintenance under condition-based maintenance strategy. Maintenance and Reliability, 17 (4), 591–599.
http://dx.doi.org/10.17531/ein.2015.4
Chicco, D., Toetsch, N., & Jurman, G. (2021). The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation". BioData Mining, 14 (13), 1-22.
https://doi.org/10.1186%2Fs13040-021-00244-z
Zakaria, N. N., Othman, M., Sokkalingam, R., Daud, H., Abdullah, L., & Kadir, E. A. (2019). Markov Chain Model Development for Forecasting Air Pollution Index of Miri, Sarawak. Sustainability, 11(19), 5190.
https://doi.org/10.3390/su11195190
Kathiria, P., & Arolkar, H. (2022). Trend analysis and forecasting of publication activities by Indian computer science researchers during the period of 2010–23. Expert Systems.
https://doi.org/10.1111/exsy.13070
Lewis, C. D. (1982) Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.
Hazra, T., Nene, M. J., & Kumar, C. R. S. (2017). A Strategic Framework for Searching Mobile Targets Using Mobile Sensors. Wireless Pers Commun, 95, 4681–4696. https://doi.org/10.1007/s11277-017-4113-7
Saito, T., & Rehmsmeier, M. (2015). The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE, 10(3), e0118432.
https://doi.org/10.1371/journal.pone.0118432
Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21, 6. https://doi.org/10.1186/s12864-019-6413-7.