Analia, M., Vecchietti, A. R., Harjunkoski, I., & Grossmann, I. E. (2014). Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I : MINLP and MILP models. Computers and Chemical Engineering, 62, pp. 194–210.
Asl-Najafi, J., et all. (2017). A dynamic closed- loop location-inventory problem under disruption risk. Computers & Industrial Engineering, 90, pp. 414–428.
Correia, I., & Melo, T. (2017). A multi-period facility location problem with modular capacity adjustments and flexible demand fulfillment. Computers & Industrial Engineering, 110, 307-321.
Cortinhal, M. J. , Lopes, M. J. , & Melo, M. T. (2015). Dynamic design and redesign of multi-echelon, multi-product logistics networks with outsourcing opportunities: A computational study. Computers & Industrial Engineering, 90, pp. 118–131.
Feitó-Cespón, M., Sarache, W., Piedra-Jiminez, F., & Cespón-Castro, R. 2017, Redesign of a sustainable reverse supply chain under uncertaintyA case study , Journal Of Cleaner production Production, 151, pp. 206–217.
Farahani, M., Shavandi, H., and Rahmani, D. (2017). A Location-Inventory Model Considering a Strategy to Reduce Disruption Risk in Supply Chain by substitutable products. Computers & Industrial Engineering, 108, pp. 213–224.
Fattahi, M., Govindan, K., & Keyvanshokooh, E. (2018). A multi-stage stochastic program for supply chain network redesign problem with price-dependent uncertain demands. Computers & Operations Research, 100, 314-332.
Gitinavard, H., & Akbarpour Shirazi, M. (2018). An extended intuitionistic fuzzy modified group complex proportional assessment approach. Journal of Industrial and Systems Engineering, 11(3), 229-246.
Gitinavard, H., & Zarandi, M. H. F. (2016). A mixed expert evaluation system and dynamic interval-valued hesitant fuzzy selection approach. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 10, 337-345.
Gitinavard, H., & Akbarpour Shirazi, M. (2018). An extended intuitionistic fuzzy modified group complex proportional assessment approach. Journal of Industrial and Systems Engineering, 11(3), 229-246.
Gitinavard, H., Akbarpour Shirazi, M., & Ghodsypour, S. H. (2019). A bi-objective multi-echelon supply chain model with Pareto optimal points evaluation for perishable products under uncertainty. scientiairanica, 26(5), 2952-2970.
Hammami, R. & Frein Y. (2014). Redesign of global supply chains with integration of transfer pricing : Mathematical modeling and managerial insights. International Journal of Production Economics, 158, pp. 267–277.
Jena, S. D., Cordeau, J., & Gendron, B. (2015). Dynamic Facility Location with Generalized Modular Capacities. Transportation Science, 49(3), pp. 484–49.9.
Jahani, H., Abbasi, B., Alavifard, F., & Talluri, S. (2018). Supply chain network redesign with demand and price uncertainty. International Journal of Production Economics, 205, 287-312.
Jena, S. D. , Cordeau, J. F. , & Gendron, B. (2016). Solving a dynamic facility location problem with partial closing and reopening. Computers & Operations Research, 67, pp. 143–154.
Khatami, M., et all. (2015). Benders' decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties. TransportationResearchPartE,79, pp.1–21.
Melo, T., & Nickel, S .(2014). An efficient hdseuristic approach for a multi-period logistics network redesign problem.Operations Research Proceedings, 22(1), pp.80-108.
Melo, M. T., et all. (2011). A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon. Interntional Journal of Production Economics, 136(1), pp.218–230.
Mousazadeh, M., Torabi, S. A., Pishvaee, M. S., & Abolhassani, F. (2018). Accessible, stable, and equitable health service network redesign: A robust mixed possibilistic-flexible approach. Transportation Research Part E: Logistics and Transportation Review, 111, 113-129.
Paz, J., Orozco, J., Salinas, J., Buriticá, N., & Escobar, J. (2015). Redesign of a supply network by considering stochastic demand. International Journal of Industrial Engineering Computations, 6(4), 521-528.
Peeters, D. (2001). On solving complex multi-period location models using simulated annealing. European Journal of Operational Research, 130, pp. 190–201.
Razmi, J., Zahedi-Anaraki, A., & Zakerinia, M. (2013). A bi-objective stochastic optimization model for reliable warehouse network redesign. Mathematical and Computer Modelling , 58(11-12), pp. 1804–1813.
Razm, S., Nickel, S., & Sahebi, H. (2019). A multi-objective mathematical model to redesign of global sustainable bioenergy supply network. Computers & Chemical Engineering, 128, 1-20.
Razm, S., Nickel, S., & Sahebi, H. (2019). A multi-objective mathematical model to redesign of global sustainable bioenergy supply network. Computers & Chemical Engineering, 128, 1-20.
Santoso, T., Ahmed, S., Goetschalckx, M., and Shapiro, A. (2005). A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167, pp. 96–115.
Torabi, S. A., Namdar, J., Hatefi, S. M., & Jolai, F. (2016). An enhanced possibilistic programming approach for reliable closed-loop supply chain network design. International Journal of Production Research, 54(5), 1358-1387.
Vakili, R., Akbarpour Shirazi, M., & Gitinavard, H. (2020). Multi-echelon green open-location-routing problem: A robust-based stochastic optimization approach. Scientia Iranica.