Al-Juboori, M., & Datta, B. (2019). Optimum design of hydraulic water retaining structures incorporating uncertainty in estimating heterogeneous hydraulic conductivity utilizing stochastic ensemble surrogate models within a multi-objective multi-realisation optimisation model. Journal of Computational Design and Engineering, 6(3), 296–315.
Altiparmak, F., Gen, M., Lin, L., & Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks,
Computer & Industrial Engineering-Special Issue on Computational Intelligence and Information Technology: Applications to Industrial Engineering33rd, ICC&IE – Computational Intelligence & Information, 51(1), 196 – 215.
https://doi.org/10.1016/j.cie.2006.07.011
Azaron, A., Brown, K.N., Tarim, S.A., & Modarres M. (2008). A multi-objective stochastic programming approach for supply chain design considering risk. International Journal of Production Economics, 116(1), 129 – 138.
Babazadeh, R., Razmi, J., & Ghodsi, R. (2013). Facility location in responsive and flexible supply chain network design (SCND) considering outsourcing. International Journal of Operational Research, 17(3), 295–310.
Bera S., Jana D.K., Basu K., Maiti M. (2020). Novel Multi-objective Green Supply Chain Model with
CO2 Emission Cost in Fuzzy Environment via Soft Computing Technique.
In: Castillo O., Jana D., Giri D., Ahmed A. (eds) Recent Advances in Intelligent Information Systems and Applied Mathematics. ICITAM 2019. Studies in Computational Intelligence, vol 863. Springer, Cham.
https://doi.org/10.1007/978-3-030-34152-7_36
Cardona-Valdes, Y., Alvarez, A., Ozdemir D. (2011). A bi-objective supply Alvarez chain design problem with uncertainty, Transportation Research Part C, 19: 821 – 832.
https://doi.org/10.1016/j.trc.2010.04.003
Chopra, S., & Meindl, P., (2007). Supply chain management. Strategy, planning & operation. In: Boersch C., Elschen R. (eds)
Das summa summarum des management. Gabler. 265 -275.
https://doi.org/10.1007/978-3-8349-9320-5_22
Devikaa, K., Jafarian, A., & Nourbakhsh, V. (2014). Designing a sustainable closed-loop supply chain network based on triple bottom line approach, European Journal of Operational Research, 235(3): 594 – 615.
https://doi.org/10.1016/j.ejor.2013.12.032
Fakhrzad, M. B., & Goodarzian, F. (2019). A fuzzy multi-objective programming approach to develop a green closed-loop supply chain network design problem under uncertainty: Modifications of imperialist competitive algorithm. (2019).
RAIRO-Operation Research, 53, 963–990.
https://doi.org/10.1051/ro/2019018
Fathollahi-Fard, A. M., & Hajiaghaei-Keshteli, M. (2018). A stochastic multi-objective model for a closed-loop supply chain with environmental considerations.
Applied Soft Computing, 69, 232-249.
https://doi.org/10.1016/j.asoc.2018.04.055 (
Giarola, S., Zamboni, A., Bezzo, F., (2011). Spatially explicit multi-objective optimisation for design and planning of hybrid first and second generation biorefineries.
Computer & Chemical Engineering, 35(9), 1782–1797, Energy Systems Engineering.
https://doi.org/10.1016/j.compchemeng.2011.01.020
Haddadsisakht, A., & Ryan, S. M. (2018). Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax. International Journal of Production Economics, 195, 118–131.
Heidari-Fathian, H., & Pasandideh, S. H. R. (2018). Green-blood supply chain network design: Robust optimization, bounded objective function & Lagrangian relaxation. Computer & Industrial Engineering, 122, 95-105.
Imran, M., Kang, C. W., & Ramzan M. B. (2018). Medicine supply chain model for an integrated healthcare system with uncertain product complaints.
Journal of Manufacturing Systems, 46, 13–28.
https://doi.org/10.1016/j.jmsy.2017.10.006
Kamali, A., Ghomi, S. M., & Jolai, F. (2011). A multi objective quantity discount and joint optimization model for coordination of a single-buyer multi-vendor supply chain. Computers & Mathematics with Applications, 62(8), 3251–3269.
https://doi.org/10.1016/j.camwa.2011.08.040.
Khatami, M., Mahootchi, M., & Farahani, R. Z. (2015). Benders' decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties.
Transportation Research, Part E: Logistic and Transportation Review, 79, 1–21.
https://doi.org/10.1016/j.tre.2015.03.003
Mardan, E.,Govindan, K., Mina, H., & Gholami-Zanjani,S., M. (2019). An accelerated benders decomposition algorithm for a bi-objective green closed loop supply chain network design problem
, Journal of Cleaner Production. 235, 1499-1514.
https://doi.org/10.1016/j.jclepro.2019.06.187
Mohammed, A., and Wang, Q. (2017). The fuzzy multi-objective distribution planner for a green meat supply chain,
International Journal of Production Economics, 184, 47 – 58.
https://doi.org/10.1016/j.ijpe.2016.11.016
Nurjanni, K. P., Carvalho, M. S., & Costa, L. (2017). Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model. International Journal of Production Economics, 183, 421–432.
zceylan, E., Demirel, N., ¸Cetinkaya, C., & Demirel, E. (2016). A closed-loop supply chain network design for automotive industry in Turkey
. Computer and Industrial Engineering, 113, 727-745.
https://doi.org/10.1016/j.cie.2016.12.022
Pasandideh, S. H. R., Niaki, S. T. A., and Asadi, K. (2014). Bi-objective optimization of a multi-product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II and NRGA, Information Science, 292, 57 - 74.
Pishvaee, M. S., Razmi, J., & Torabi S. A. (2014). An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain.
Transportation Research Part E: Logistics and Transportation Review, 67, 14-38.
https://doi.org/10.1016/j.tre.2014.04.001
Qu, X., Liu, G., Duan, S., & Yang J. (2016). Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller. Journal of Computational Design and Engineering, 3(3), 179–190.
Rezaee, A., Dehghanian, F., Fahimnia, B., & Beamon, B. (2017). Green supply chain network design with stochastic demand and carbon price.
Annals of Operations Research, 250(2), 463–485.
https://doi.org/10.1007/s10479-015-1936-z )نه
Shaw, K., Irfan, M., Shankar, R., & Yadav, S. S. (2016). Low carbon chance constrained supply chain network design problem: A benders decomposition based approach. Computers & Industrial Engineering, 98, 483–497.
Song, D.-P., Dong, j-x., Xu, J. (2014). Integrated inventory management and supplier base reduction in a supply chain with multiple uncertainties,
European Journal of Operation Research, 232 (3), 522 – 536.
https://doi.org/10.1016/j.ejor.2013.07.044
Tsao, Y-C., Thanh, V-V., Lu, J-C., & Yu, V. (2018). Designing sustainable supply chain networks under uncertain environments: Fuzzy multi-objective programming. Journal of Cleaner Production, 174, 1550-1565.
Varsei, M., & Polyakovskiy S. (2017). Sustainable supply chain network design: A case of the wine industry in Australia.
Omega-International Journal of Management Science, 66, 236–47.
https://doi.org/10.1016/j.omega.2015.11.009
Yavari, M., & Geraeli, M. (2019). Heuristic method for robust optimization model for green closed-loop supply chain network design of perishable goods.
Journal of Cleaner Production, 226, 282-305.
https://doi.org/10.1016/j.jclepro.2019.03.279
Zailani, S., Jeyaraman, K., Vengadasan, G., & Premkumar, R. (2012). Sustainable supply chain management (SSCM) in Malaysia: A survey.
International Journal of Production Economics, 140 (1), 330-340.
https://doi.org/10.1016/j.ijpe.2012.02.008
Zeballos, L. J., M_endez, C. A., Barbosa-Povoa, A. P., & Novais, A. Q. (2014). Multi-period design and planning of closed-loop supply chains with uncertain supply and demand. Computers & Chemical Engineering, 66, 151–164.