1. Arizono, I., Kanagawa, A., Ohta H., Watakabe K., & Tateishi K. (1997). "Variable sampling plans for normal distribution indexed by Taguchi's loss function",Naval Research Logistics, 44(6) pp. 591-603. 
                                                                                                                2. Aslam, M., Jun, C.H,& Ahmad, M. (2009). "Double acceptance sampling plans based on truncated life tests in the weibull model"Journal of Statistical Theory and Applications, 8(2) pp. 191-206. 
                                                                                                                3. Aslam, M. & Jun, C.H. (2010)."A double acceptance sampling plan for generalized log-logistic distributions with known shape parameters",Journal of Applied Statistics, 37(3) pp. 405-414. 
                                                                                                                4. Aslam, M., Yasir, M., Lio, Y.L., Tsai, T.R.,& Khan, M.A. (2011). "Double acceptance sampling plans for burr type XII distribution percentiles under the truncated life test",Journal of the Operational Research Society, 63(7) pp.1010-1017. 
                                                                                                                5. Aslam, M., Niaki, S.T.A.., Rasool, M.,& Fallahnezhad, M.S. (2012). "Decision rule of repetitive acceptance sampling plans assuring percentile life",Scientia Iranica, 19(3) pp.879-884. 
                                                                                                                6. Elsayed, E. A. & Chen, A. (1994). "An economic design of control chart using quadratic loss function",International Journal of Production Research, 32(4) pp. 873-887. 
                                                                                                                7. Fallahnezhad, M.S., Niaki, S.T.A.,& VahdatZad, M.A. (2012). "A new acceptance sampling design using bayesian modeling and backwards induction",International Journal of Engineering, Transactions C: Aspects, 25(1) pp. 45-54. 
                                                                                                                8. Fallahnezhad, M.S.,& Aslam, M. (2013). "A new economical design of acceptance sampling models using bayesian inference",Accreditation and Quality Assurance, 18(3) pp.187-195. 
                                                                                                                9. Fallahnezhad, M.S.,& HosseiniNasab, H. (2011). "Designing a single stage acceptance sampling plan based on the control threshold policy",International Journal of Industrial Engineering & Production Research, 22(3) pp. 143-150. 
                                                                                                                10. Fallahnezhad, M.S.,& Ahmadi Yazdi, A. (2015). "Economic design of acceptance sampling plans based on conforming run lengths using loss functions",Journal of Testing and Evaluation, 44(1) pp. 1-8. 
                                                                                                                11. Ferrell, W. G.,& Chhoker, Jr. A. (2002). "Design of economically optimal acceptance sampling plans with inspection error",Computers & Operations Research, 29(1) pp. 1283-1300. 
                                                                                                                12. Govindaraju, K. (2005). "Design of minimum average total inspection sampling plans",Communications in Statistics - Simulation and Computation, 34(2) pp. 485-493 
                                                                                                                13. Guenther, W. C. (1969). "Use of the binomial, hyper geometric and Poisson tables to obtain Sampling plans",Journal of Quality Technology, 1(2) pp. 105-109. 
                                                                                                                14. Hailey W.A. (1980). "Minimum sample size single sampling plans: a computerized approach",Journal of Quality Technology, 12(4) pp. 230–5. 
                                                                                                                15. Kobayashia, J., Arizonoa, I. & Takemotoa, Y. (2003), "Economical operation of control chart indexed by Taguchi's loss function",International Journal of Production Research, 41(6) pp. 1115-1132. 
                                                                                                                16. Moskowitz, H. & Tang, K. (1992). "Bayesian variables acceptance-sampling plans: quadratic loss function and step loss function",Technometrics, 34(3) pp. 340-347. 
                                                                                                                17. Niaki, S.T.A.,& Fallahnezhad, M.S. (2009). "Designing an optimum acceptance plan using bayesian inference and stochastic dynamic programming",Scientia Iranica, 16(1) pp. 19-25. 
                                                                                                                18. Pearn, W.L.,& Wu. C.W. (2006). "Critical acceptance values and sample sizes of a variables sampling plan for very low fraction of nonconforming",Omega, 34(1) pp. 90 – 101. 
                                                                                                                19. Stephens, K. S. (2001). "The hand book of applied acceptance sampling-plans, principles, and procedures",American Society for Quality, Milwaukee, Wisconsin: ASQ Quality Press. 
                                                                                                                20. Squeglia, N. L. (1994). "Zero acceptance number sampling plans",American Society for Quality, Milwaukee, Wisconsin: ASQ Quality Press. 
                                                                                                                21. Wu, Z., Shamsuzzamana, M. & Panb., E. S. (2004). "Optimization design of control charts based on Taguchi's loss function and random process shifts",International Journal of Production Research, 42(2) pp. 379-390.