Aghezzaf, E. H., JAMALI, M., & Ait-Kadi, D. (2003). A production and maintenance planning model for production systems subject to preventive maintenance with minimal repair at failure. In Industrial Engineering and the New Global Challenges (pp. 1-9).
Aghezzaf, E. H., & Najid, N. M. (2008). Integrated production planning and preventive maintenance in deteriorating production systems. Information Sciences, 178(17), 3382-3392.
Alipour, M., Zare, K., & Abapour, M. (2017). MINLP probabilistic scheduling model for demand response programs integrated energy hubs. IEEE Transactions on Industrial Informatics, 14(1), 79-88.
Amiri, S., & Honarvar, M. (2018). Providing an integrated Model for Planning and Scheduling Energy Hubs and preventive maintenance. Energy, 163, 1093-1114.
Bahrami, S., Toulabi, M., Ranjbar, S., Moeini-Aghtaie, M., & Ranjbar, A. M. (2017). A decentralized energy management framework for energy hubs in dynamic pricing markets. IEEE Transactions on Smart Grid, 9(6), 6780-6792.
Barylski, R. V. (1995). Russia, the West, and the Caspian Energy Hub. The Middle East Journal, 217-232.
Batić, M., Tomašević, N., Beccuti, G., Demiray, T., & Vraneš, S. (2016). Combined energy hub optimization and demand side management for buildings. Energy and Buildings, 127, 229-241.
Brahman, F., Honarmand, M., & Jadid, S. (2015). Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system. Energy and Buildings, 90, 65-75.
Bruno, S. V., Moraes, L. A., & de Oliveira, W. (2017). Optimization techniques for the Brazilian natural gas network planning problem. Energy Systems, 8(1), 81-101.
Dolatabadi, A., Mohammadi-Ivatloo, B., Abapour, M., & Tohidi, S. (2017). Optimal stochastic design of wind integrated energy hub. IEEE Transactions on Industrial Informatics, 13(5), 2379-2388.
Geidl, M., & Andersson, G. (2007). Optimal power flow of multiple energy carriers. IEEE Transactions on power systems, 22(1), 145-155.
Heidari, A., Mortazavi, S. S., & Bansal, R. C. (2020). Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies. Applied Energy, 261, 114393.
Heidari, A., Mortazavi, S. S., & Bansal, R. C. (2020). Equilibrium state of a price-maker energy hub in a competitive market with price uncertainties. IET Renewable Power Generation, 14(6), 976-985.
Huang, Y., Zhang, W., Yang, K., Hou, W., & Huang, Y. (2019). An Optimal Scheduling Method for Multi-Energy Hub Systems Using Game Theory. Energies, 12(12), 2270.
Jamalzadeh, F., Mirzahosseini, A. H., Faghihi, F., & Panahi, M. (2020). Optimal operation of energy hub system using hybrid stochastic-interval optimization approach. Sustainable Cities and Society, 54, 101998.
Kamyab, F., & Bahrami, S. (2016). Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets. Energy, 106, 343-355.
Kang, K., & Subramaniam, V. (2018). Joint control of dynamic maintenance and production in a failure-prone manufacturing system subjected to deterioration. Computers & Industrial Engineering, 119, 309-320.
Karimi, F., & Khalilpour, K. R. (2019). Energy Hubs and Polygeneration Systems: A Social Network Analysis. In Polygeneration with Polystorage for Chemical and Energy Hubs (pp. 53-75). Academic Press.
Krause, T., Andersson, G., Frohlich, K., & Vaccaro, A. (2010). Multiple-energy carriers: modeling of production, delivery, and consumption. Proceedings of the IEEE, 99(1), 15-27.
Luo, X., Liu, Y., Liu, J., & Liu, X. (2020). Energy scheduling for a three-level integrated energy system based on energy hub models: A hierarchical Stackelberg game approach. Sustainable Cities and Society, 52, 101814.
Ma, T., Wu, J., & Hao, L. (2017). Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub. Energy conversion and management, 133, 292-306.
Majidi, M., Nojavan, S., & Zare, K. (2017). A cost-emission framework for hub energy system under demand response program. Energy, 134, 157-166.
Malakoti-Moghadam, M., Askarzadeh, A., & Rashidinejad, M. (2019). Transmission and generation expansion planning of energy hub by an improved genetic algorithm. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-15.
Moghaddas-Tafreshi, S. M., Jafari, M., Mohseni, S., & Kelly, S. (2019). Optimal operation of an energy hub considering the uncertainty associated with the power consumption of plug-in hybrid electric vehicles using information gap decision theory. International Journal of Electrical Power & Energy Systems, 112, 92-108.
Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., Hosseinzadeh, M., Yousefi, H., & Khorasani, S. T. (2018). Optimal management of energy hubs and smart energy hubs–a review. Renewable and Sustainable Energy Reviews, 89, 33-50.
Nojavan, S., Majidi, M., & Zare, K. (2018). Optimal scheduling of heating and power hubs under economic and environment issues in the presence of peak load management. Energy conversion and management, 156, 34-44.
O'kelly, M. E. (1986). The location of interacting hub facilities. Transportation science, 20(2), 92-106.
Pazouki, S., & Haghifam, M. R. (2016). Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty. International Journal of Electrical Power & Energy Systems, 80, 219-239.
Rakipour, D., & Barati, H. (2019). Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response. Energy, 173, 384-399.
Rastegar, M., Fotuhi-Firuzabad, M., Zareipour, H., & Moeini-Aghtaieh, M. (2016). A probabilistic energy management scheme for renewable-based residential energy hubs. IEEE Transactions on Smart Grid, 8(5), 2217-2227.
Sani, M. M., Noorpoor, A., & Motlagh, M. S. P. (2019). Optimal model development of energy hub to supply water, heating and electrical demands of a cement factory. Energy, 177, 574-592.
Shahmohammadi, A., Moradi-Dalvand, M., Ghasemi, H., & Ghazizadeh, M. S. (2014). Optimal design of multicarrier energy systems considering reliability constraints. IEEE Transactions on Power Delivery, 30(2), 878-886.
Skarvelis-Kazakos, S., Papadopoulos, P., Unda, I. G., Gorman, T., Belaidi, A., & Zigan, S. (2016). Multiple energy carrier optimization with intelligent agents. Applied energy, 167, 323-335.
Sovacool, B. K., & Brown, M. A. (2010). Competing dimensions of energy security: an international perspective. Annual Review of Environment and Resources, 35, 77-108.
Vahid-Pakdel, M. J., Nojavan, S., Mohammadi-Ivatloo, B., & Zare, K. (2017). Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response. Energy Conversion and Management, 145, 117-128.
Wang, Y., Zhang, N., Zhuo, Z., Kang, C., & Kirschen, D. (2018). Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch. Applied energy, 210, 1141-1150.
Weinstein, L., & Chung, C. H. (1999). Integrating maintenance and production decisions in a hierarchical production planning environment. Computers & operations research, 26(10-11), 1059-1074.
Winzer, C. (2012). Conceptualizing energy security. Energy policy, 46, 36-48.
Yalaoui, A., Chaabi, K., & Yalaoui, F. (2014). Integrated production planning and preventive maintenance in deteriorating production systems. Information Sciences, 278, 841-861.
Zhang, D., & Liu, T. (2019). A Multi-Step Modeling and Optimal Operation Calculation Method for Large-scale Energy Hub Model Considering Two Types Demand Responses. IEEE Transactions on Smart Grid.
Zhu, X., Zhou, M., Xiang, Z., Zhang, L., Sun, Y., & Li, G. (2020). Research on Optimal Configuration of Energy Hub Considering System Flexibility. In Proceedings of PURPLE MOUNTAIN FORUM 2019-International Forum on Smart Grid Protection and Control (pp. 243-257). Springer, Singapore.