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Abstract– Acceptance control charts (ACC), as an effective tool for monitoring highly capable processes, 

establish control limits based on specification limits when the fluctuation of the process mean is permitted or 

inevitable. For designing these charts by minimizing economic costs subject to statistical constraints, an 

economic-statistical model is developed in this paper. However, the parameters of some processes are in 

practice uncertain. Such uncertainty could be an obstacle to getting the best design. Therefore, the parameters 

are investigated by a robust optimization approach. For this reason, a solution procedure utilizing a genetic 

algorithm (GA) is presented. The algorithm procedure is illustrated based on numerical studies. Additionally, 

sensitivity analysis and some comparisons are carried out for more investigations. The results indicate better 

performance of the proposed approach in designing ACC and more reliable solutions for practitioners. 

 

Keywords– Acceptance control chart, Economic-statistical design (ESD), Genetic algorithm, Robust 

optimization. 

 

 

 
I. INTRODUCTION 

Statistical Process Control (SPC) is an industry-standard methodology for measuring, controlling, and improving the 

quality and productivity of manufacturing and service enterprises. Control charts, as the most popular tool in SPC, 

graphically show plotted quality data of a process in time order. These charts are widely used to stabilize and monitor the 

main characteristics of a process over time (Montgomery, 2009).  

Some processes naturally experience unavoidable fluctuations in their mean value while being still capable of 

satisfying the voice of customers based on specification limits. To protect such processes against preventing the 

nonconforming fraction from exceeding the desired value, acceptance control charts (ACCs) were introduced to monitor 

the mean of high capable processes distributed according to a Normal distribution (Freund, 1957). Let USL and LSL be 

the upper and lower specification limits, respectively. The simplest capability index is defined as Cp=(USL-LSL)/6σ 

where σ is a standard deviation. Now, consider a process with Cp≥2. The difference between specification limits can be 

6 standard deviations or more. Therefore, it may be acceptable to allow the process mean to vary over a specific range 

without producing undesirable amounts of nonconforming products.  

The aim of ACC is different from that of classic control charts in which stability behavior of a process mean overtime 

is of importance. ACC has been largely neglected in the literature and there exist only a few studies about its developments 
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or applications. In Wesolowsky’s study (1990), simultaneous ACC was proposed to jointly control two positively or 

negatively correlated quality characteristics; sample sizes and control limits were optimally found by minimization of 

cost or maximum-sample-size criteria. Wesolowsky (1992) proposed another simultaneous ACC for monitoring two or 

more independent processes creating a product, or two or more characteristics of a product. By extending the simultaneous 

ACC introduced by Wesolowsky (1990), the general case of multiple correlated processes or characteristics was 

considered in the study by Steiner & Wesolowsky (1994). Moreover, a convex nonlinear optimization model was applied 

to find optimal solutions using a multi-dimensional search. Holmes and Mergen (2000) combined ACC concept with the 

exponentially weighted moving average (EWMA). For non-normal data or measurements, Chou et al. (2005) used Burr 

distribution to propose Burr acceptance control chart (BACC), and Tsai and Chiang (2008) developed a Skew Normal 

ACC (SNACC). Recently, Taherian and Balouchestani Asl (2016) used Shewhart and acceptance control charts in 6-

Sigma applications as well as the capability analysis. They provided a case study of a pharmaceutical company to clarify 

the mentioned concepts. In this study, the design of ACC was considered through parameters related to them.  

Generally, the design of a control chart requires specifying sample size (n), sampling interval (h), and control limits 

width (k). Duncan (1956) proposed the first economic design (ED) for X-bar chart by optimizing the expected cost per 

hour. Subsequently, many researchers (e.g., Lorenzen and Vance (1986) and Celano and Fichera (1999)) further addressed 

obtaining the optimal design parameters through an economic approach. For ACC, Mohammadian and Paynabar (2008) 

proposed an economic model as well. 

However, EDs have been criticized for their poor statistical characteristics such as weakness in detecting shifts 

compared to statistical designs. Thus, Saniga (1989) introduced an economic-statistical model, which minimized 

Duncan’s cost model (1956) subject to statistical constraints. Some recent studies on ESD of various control charts can 

be found in the studies of Amiri and Jafarian-Namin (2015), Naderi et al. (2018), Fallahnezhad et al. (2018), and Jafarian-

Namin et al. (2019). Also, Mohammadian and Amiri (2012) implemented ESD approach to ACC.  

All the researches performed to design ACC have considered certainty for model parameters until now. Nevertheless, 

the parameters of some processes are not exactly defined or estimated in practice. Such uncertainty could be an obstacle 

to getting the best design. Therefore, the parameters are investigated by a robust optimization approach, based on 

Bertsimas and Sim (2004), which is built on the notion of the budget of uncertainty. In this approach, range estimates for 

some imprecise parameters are proposed instead of point estimates. Accordingly, Safaei et al. (2015) recently proposed a 

robust economic-statistical design (RESD) of X-bar control chart considering the cost function introduced by Lorenzen 

and Vance (1986). The optimization procedure in their study was based on Genetic algorithm (for more information about 

meta-heuristic algorithms, refer to Tavakkoli-Moghaddam et al. (2013)). 

Since there is no work in the literature performed on the robust design of ACC, a model is provided in which Duncan's 

cost function (1956) is minimized subject to statistical constraints. Uncertainty in model parameters is investigated by a 

robust optimization approach. For this reason, a solution procedure utilizing a GA is presented. In this regard, the rest of 

the paper is planned as follows. In Section II, ACC is briefly reviewed. After making some assumptions and introducing 

the economic model, the proposed robust model for ACC is presented in Section III. Then, employing a solution procedure 

based on a genetic algorithm (GA) for solving the proposed model is illustrated in the next section. In Section V, a 

numerical example is presented to investigate the best design of the proposed model. Subsequently, a sensitivity analysis 

is performed to study the effects of various values of parameters on optimal solutions. A comparison among statistical 

design (SD), ED, ESD, and RESD of ACC is carried out in Section VII. Finally, conclusions and final remarks are 

provided. 
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II. ACCEPTANCE CONTROL CHART 

The proposed ACC, introduced in Freund (1957), is applied to monitor the high capable processes when the natural 

spread of the process is too tighter than the spread of specification limits. To describe the principles of this chart, let USL 

and LSL be the upper and lower specification limits, respectively. The process mean is permitted to fluctuate over a range, 

known as acceptance process levels (APLs). Assuming normal distribution for the quality characteristic, APL limits are 

obtained using the following equations: 





AQLL

AQLU

ZLSLAPL

ZUSLAPL





 
(1) 

where σ is known the standard deviation and ZAQL is a standard normal value associated with the probability AQL. On the 

other hand, rejectable process levels (RPLs) are proposed to preserve process against possible assignable causes. Given 

that ZRQL is a standard normal value associated with the probability RQL, these limits are defined according to the 

following equations:  
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Fig. (1) shows different zones defined by AQL, APL, RQL, and RPL for distribution of x in ACC. Note that in the 

indifference zone, the process is neither accepted nor rejected. 

Commonly, a control chart has an upper control limit (UCL) and a lower control limit (LCL) to display the range of 

expected variation. The control limits of ACC, derived from Montgomery (2009, pp. 454–458), can statistically be 

computed in three different ways: 

1. Based on the desired Type I error (α-risk), APL, and specified sample size (n), the control limits of ACC are obtained 

as follows: 

n
ZAPLLCL

n
ZAPLUCL

L
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 (3) 

where Zα is a standard normal value corresponding to the probability α. 

2. Based on the desired Type II error (β-risk), RPL, and specified sample size, UCL and LCL can be calculated according 

to the following equations: 

n
ZRPLLCL

n
ZRPLUCL

L

U













 

(4) 

where Zβ is a standard normal value corresponding to the probability β. 

3. In this method, a sample size, which satisfies the specified Type I and Type II errors, APL, and RPL, is determined. 

By equating the upper control limits from Eqs. (3-4), the sample size (rounded upward to an integer) is calculated as 

follows: 
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Substituting the determined sample size in Eq. (3) or (4), the corresponding control limits are set. 

It must be noted that, despite three different ways of setting the limits, only one chart type is generated for monitoring 

the situation of a process. In this paper, the control limits obtained using the first method are considered. Moreover, LSL 

is assumed to be active and therefore, all computations are under this limit. Notice that similar studies could be easily 

extended to USL as well. 

Fig. (2) shows α and β corresponding to the control limit. These errors are defined as follows: 

 Type I error: the probability of indicating an unacceptable status when the process mean is at an APL, 

 Type II error: the probability of indicating an acceptable status when the process mean is at an RPL. 

Using the following equations respectively, the values of risks based on LCL can be obtained (fz(z) is the probability 

destiny function of the standard normal distribution) (Mohammadian & Amiri, 2012):  
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(7) 

Since the values of risks corresponding to UCL are almost zero, these parts of calculations are neglected. In practice, 

the production process is aimed to be permanently sampled with size n in specific time intervals of h hours. The sampled 

data, via control charts with the coefficient k considered for standard deviation, are inspected and the results are interpreted 

to monitor the state of the process. 

In the next section, a model is proposed for optimally selecting the design parameters, i.e., n, h, and k. It is worth 

noting that with the attitude of quality improvement, one assignable cause or multiple assignable causes of variation in 

the process must be discovered and eliminated to reach a stable and predictable process. In this study, a single assignable 

cause is assumed to occur. 

Fig. 1. Different zones defined for distribution of x in an ACC 
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III. ECONOMIC-STATISTICAL DESIGN OF ACC 

In this section, we look at how optimal cost and design parameters are obtained using the models. Thus, we begin by 

making some assumptions about the model. Then, the economic cost function is introduced. The proposed model is 

presented in the last subsection. 

Fig. 2. Control limits obtained based on Type I and Type II errors in an ACC  

 
A. Assumptions of the model 

To simplify the mathematical analysis, some assumptions are stated to be held as follows: 

1. The quality characteristic follows a normal distribution with known σ, 

2. Only the lower specification limit is considered to be active, 

3. The control limits based on the desired probability of Type I error, APL, and specified sample size are applied for 

monitoring the process, 

4. Only the lower specification limit is considered for calculations, 

5. The process is accepted when the mean alters inside the acceptable process level, i.e., APLL≤µ≤ APLU, 

6. The occurrence of a random assignable cause leads to upward or downward shifts in the process mean. In these states, 

the process is rejected when µ≤RPLL or µ≥ RPLU, 

7. The occurrence of an assignable cause has an exponential distribution with meantime 1/λ, 

8. The process is allowed to continue during the search and repair. 

 

B. Economic cost function 

To propose a constrained nonlinear model for finding the best design parameters of ACC with economic-statistical 

considerations, the traditional definition of the economic objective function is presented in this subsection. This function 

is based on a single quality control cycle of monitoring the production process. According to Duncan’s definition (1956) 

of the expected hourly cost, an expected cycle length and an expected cost of the cycle can be formulated in an economic 

function. As a ratio of the expected cost during a cycle to the expected cycle time length, the expected hourly cost, adapted 

for ACC by applying the probability of Type I and Type II errors, is as follows: 
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The parameters of the model, presented in Eq. (8), are defined in Table I. For different sets of design parameters n, h, 

and k, the optimal setting in the ED of ACC is selected with a minimum cost function. However, this optimal set is 

provided based on a single scenario, which is a single-point estimate of parameters. In practice, these estimates are often 

not accurately known. In the proposed model, we aim to discover a robust setting given the set of scenarios that could 

potentially be realized within the bounds of the uncertain parameters. Suppose that for each scenario s S , vectors of 

cost parameters C s = {fs, vs, Ws, Ts, Ms} and process parameters P s = {λs, gs, Ds} are defined. Therefore, different values 

of the expected hourly cost EHCs will be obtained for different scenarios of cost and process parameters. 

Table I. Notations of Duncan’s model 

f fixed cost of sampling A average number of false alarms per cycle 

v variable cost of sampling M hourly loss due to poor quality 

n sample size B average time of the process being in out-of-control state 

h sampling interval α probability of false alarm or Type I error 

λ Poisson distribution parameter for process failure rate p detection power, which is equal to (1-β) 

W average cost to detect an assignable cause g time required to sample, inspect, and interpret the results 

T cost of verifying a false alarm D time to discover and repair the assignable cause 

 

C. The proposed model for ACC 

In ESD, some statistical constraints are added to the cost function to obtain proper statistical properties for ACC. 

According to Saniga (1989), these statistical constraints under scenario s include: 1) the probability of false alarm (αs), 

which is not allowed to be more than a maximum value, 2) the detection power (ps), which is confined by a minimum 

value, and 3) a maximum value to limit average time to signal (ATS1
s) when an assignable cause occurs. These extreme 

values, i.e., αmax, pmin, and ATS1
max, may be determined as desired bounds by the decision-maker (DM) or quality 

engineers. Thus, taking into account such properties, the proposed model is formulated as follows: 
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(9) 

where the design parameters n, h, and k are set between lower and upper bounds as well. Briefly speaking, we altered the 

model presented by Safaei et al. (2015) as follows: 1) optimizing the model for ACC, 2) changing the cost function 

according to Duncan’s definition (1956), and 3) substituting some constraints from the study by Saniga (1989). In the 
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proposed model, the parameters are divided into two classes: 1) with uncertainty, and 2) with nominal value or point 

estimation. Therefore, different scenarios can be generated by putting lower and upper bounds on uncertain parameters. 

The scenario generation procedure is described in the next section. Despite largely disturbed uncertainties for parameters, 

the feasibility of the solution is ensured through this RESD. 

The design of a control chart requires the specification of three decision variables (i.e., n, h, and k). These variables 

are determined by optimization of the robust counterpart of the proposed model. As noted, uncertainty in the model means 

that some of the parameters in the planning phase are not exactly defined. In the next section, a methodology is introduced 

to tackle the uncertainty in the model. Then, a procedure is provided for optimization. 

 

IV. SOLUTION ALGORITHM 

In the study by Ben-Tal et al. (2006), a robust optimization methodology was proposed to tackle the uncertainty in 

mathematical models. In such cases, the uncertainty set is defined in which possible values of the uncertain parameters 

are determined. Indeed, uncertain parameters are unknown but bounded. Furthermore, to avoid having an infinite number 

of constraints, the set of uncertain values is separated into a limited set of scenarios. 

The concept of “budget of uncertainty” is developed by Bertsimas et al. (2011) to avoid excessive conservatism and 

it enables the designer to trade risk-off (robustness) for performance. Parameter Γ, as budget of uncertainty, is an integer 

number (Γ  [0, m]), which is equal to a maximum number of uncertain parameters in each scenario, and m is the number 

of uncertain parameters in the proposed model. If Γ=0, all parameters take nominal values and no uncertainty is considered 

in the model. In contrast, if Γ=m, all uncertain parameters take values between their lower and upper bounds and the 

results are quite conservative. If Γ [0, m], a trade-off is made between performance and the degree of conservatism of 

the solution.  

Due to the non-linear nature of our model, a metaheuristic approach can be used. For ESD of control charts, Niaki et 

al. (2011) investigated the use of four well-known algorithms, namely genetic algorithm (GA), simulated annealing (SA), 

differential evolution (DE), and particle swarm optimization (PSO). Their results approved the best performance of GA 

among the others. Moreover, Safaei et al. (2015) used GA in the optimization of a model for determining design 

parameters of X-bar control chart. Thus, a GA procedure, shown in Fig. (3), is developed in this section for getting the 

best solutions. 

 

A. Scenario generation 

The first step to solve the problem is scenario generation based on the value of Γ. As mentioned earlier, the value of 

Γ (budget of uncertainty) is equal to the maximum number of uncertain parameters in each scenario. The scenarios are 

randomly generated and in each scenario, the number of Γ uncertain parameters is selected and the values are taken within 

their given bounds. The scenario generation procedure is described as follows: 

Procedure 1: Scenario generation 

Step 1: generate 𝑆𝑐(𝑚
𝛤
) “random scenarios” in each of them; Γ uncertain parameters take values within their bounds 

randomly and (m-Γ) parameters take their nominal values. Sc is the number of times that (𝑚
𝛤
) scenarios are selected. 

Step 2: generate 2𝛤(𝑚
𝛤
) “extreme scenarios” in each of them; Γ uncertain parameters take extreme values of their bounds 

and (m-Γ) parameters take their nominal values. 

Step 3: total number of scenarios (S) is equal to S= 𝑆𝑐(𝑚
𝛤
)+2𝛤(𝑚

𝛤
). 
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B. Proposed genetic algorithm 

Steps of the proposed GA are presented in Fig. (3). In each iteration, offspring are generated using crossover and 

mutation operators as follows: 

Procedure 2: crossover operator  
Begin 

  Choose 2 parents from the population (P1, P2) 

If rand<0.5 (arithmetical crossover) 

    r=rand (); 

    offspring1=r*P1+ (1-r)*P2 

    offspring2= (1-r)*P1+r*P2 

Else (uniform crossover) 

    For i=1:3 

        If rand<0.5 

            offspring1 (i)=P1(i) 

            offspring2 (i)=P2(i) 

        Else 

            offspring1 (i)=P2(i) 

            offspring2 (i)=P1(i) 

        End 

    End 

End 

                 End 

Procedure 3: mutation operator 
Begin 

  Choose 1 parent from the population (P) 

If rand<0.5 (uniform mutation) 

    Select one gen in P and substitute its value with a random number within the lower and upper bounds of the 

variable  

   Else (boundary mutation) 

    For i=1:3 

        If rand<0.5 

            Offspring (i)= upper or lower bound of the decision variable (with equal chance) 

        Else 

            Offspring (i)=P(i)    

        End 

    End 

End 

                 End 

In each iteration, evaluation of all chromosomes (parents and offspring) is done to select the next generation based on 

the following procedure. 

Procedure 4: evaluation 
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Step 1: calculate the objective function of each chromosome in all scenarios (EHCX,S). The fitness of each chromosome 

is equal to Maximum (EHCX,S). 

Step 2: based on the constraints, if a chromosome is infeasible (in one or more scenarios), penalize its fitness by 10 times.  

After evaluation of all chromosomes, the best chromosome with minimum fitness is selected for the next generation 

(elitism) and the rest of the chromosomes of the next generation are selected using the roulette wheel selection operator. 

It is necessary to determine the appropriate values for GA operators, i.e., crossover and mutation. Based on the results 

of Safaei et al. (2015), who used the Taguchi method to set the parameters of GA, we set the value of crossover to 0.6, 

mutation to 0.3, and pop-size to 150 in this study. Also, the probability of changing any gene in the mutation operator is 

assumed to be 0.05. Moreover, since 100 replicates are sufficient for the convergence of the algorithm, it is considered as 

the stop condition. 

 

V. AN ILLUSTRATIVE EXAMPLE 

In this section, an illustrative example is presented to compare the economic-statistical design versus the economic 

design of ACC by optimization of the robust counterpart. The parameter values shown in Table II are point estimates or 

nominal values. Also, a range estimate of parameters is needed to describe the uncertainty corresponding to various quality 

and cost effects that can lead to a loss for manufacturer and customer. Cost parameters Cs = {fs, vs, Ws, Ts, Ms} and process 

parameters Ps = {λs, gs, Ds} are considered as uncertain parameters for each scenario Ss . Deviation of these parameters 

from their nominal values includes two scenarios: 1) 10% shift scenarios from nominal estimates, and 2) 20% shift 

scenarios from the nominal estimates. The maximum number of uncertain parameters (m) is set to 8 considering the 8 

uncertain parameters. Hence, we can consider all combinations of expected uncertain parameters, i.e., Γ= 0, …, 8. 

Moreover, feasible space is determined by considering [l, 20] items for the sample size, [0.1, 8] hours for the sampling 

interval, and [1, 4] standard deviation coefficients. The right-hand-side values of constraints in Eq. (9) are respectively 

set to 0.005, 0.98, and 4. All calculations have been facilitated under a program coded in MATLAB (version R2016b) 

environment in this study.  

Table III shows the results for different scenarios based on budgets Γ= 0, …, 8. Additionally, the trends for the model 

cost under different shift scenarios and budgets of uncertainty are presented in Fig. (4). For the nominal scenario, when 

Γ=0, the best plan for ACC is obtained as n=17, h=2.25, and k=2.61. The expected hourly cost is 5.18. For different 

scenarios; it is obvious that design parameters are almost unchanged. The only sampling time interval is slightly variable, 

about 24 minutes when designs for Γ=0 and Γ=3 are compared for the 20% shift scenario. This value for h decreases to 

15 minutes under 10% shift scenario. 

Interesting results can be obtained from Fig. (4) when comparing various RESD with the nominal design. The least 

expected hourly cost is calculated for the nominal design. It leads to 10% lower cost than the least expensive RESD in 

10% shift scenario and 13% lower cost than that in 20% shift scenario. 
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Start

Set GA parameters: Number of iterations 
(imax), Population size(PopSize), Crossover 

rate (Pc), Mutation rate (Pm)

Generate initial random population
i=0

Select Pc% of population and generate 
offsprings using cross-over procedure.
Select Pm% of population and generate 

offsprings using mutation procedure.

Select next generation from current population 
and new offsprings using selection procedure.

i=i+1

i<imaxYes

No

End

Load model parameters: Cost, Process and 
Control chart Parameters, lower and upper 

bounds of decision variables also constraints

Scenario generation according to procedure 1. 
Set parameters include Budget of uncertainty 

(Γ), Indicator of the number of random 
scenarios(Sc), The numbr of uncertain 

parameters(m) and generationg scenarios

 

Fig. 3. Framework of the proposed solution algorithm 

       

Table II. Nominal values of parameters derived from the study by Steiner & Wesolowsky (1994)  

f=0.5 v=0.1 M=100 T=50 W=25 

λ=0.01 g=0.05 D=2 AQL=0.001 RQL=0.025 

µ=10 σ=0.01 USL=10.5 LSL=9.5  

 

Besides, a consistent increase in cost is detected as the budget of uncertainty becomes larger. It is expected that 

incorporating more uncertainty in the model will lead to an increase in the optimal cost. On the other hand, the most 

conservative robust design, when Γ = 8, has the most expected hourly cost. 
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Table III. S of the proposed model under different shift scenarios and different budgets 

Γ 

10% shift scenario 20% shift scenario 

n h k EHC n h k EHC 

0 17 2.25 2.61 5.18 17 2.25 2.60 5.18 

1 17 2.17 2.60 5.46 17 2.08 2.61 5.96 

2 17 2.08 2.61 5.99 17 1.85 2.61 6.85 

3 17 2.02 2.61 6.21 17 1.85 2.61 7.37 

4 17 2.08 2.60 6.31 17 1.92 2.61 7.59 

5 17 2.08 2.61 6.39 17 2.00 2.61 7.76 

6 17 2.08 2.61 6.41 17 2.02 2.61 7.82 

7 17 2.17 2.60 6.44 17 2.08 2.61 7.87 

8 17 2.17 2.60 6.45 17 2.08 2.60 7.89 

 

 

  
Fig. 4. Changes in cost under different scenarios (10% and 20%) and budgets of uncertainty 

          
VI. SENSITIVITY ANALYSIS 

In this section, the parameters of the model are changed to investigate their effects on the optimal solution. The results 

of the sensitivity analysis for ESD and RESD are respectively presented in  

Table IV and V (note that valueless cells in both tables are duplicated in the first row). Accordingly, the following 

points are deduced: 

  By increasing AQL and RQL, the sample size and the sampling interval are reduced. As a result, the expected cost 

declines. However, the trend of changes for k is not realizable.  

  Increasing λ, despite making no change in sample size and control limit width, decreases h and thus, increases the 

expected hourly cost. 

  When m decreases, only h increases and EHC decreases. 

  The larger values of parameter g cause increase in sampling interval. However, it does not have any influence on n and 

k. This change, in turn, results in the growth of EHC. Similar results are observed for the increase in D. 

  The simultaneous growth of T and W increases all design parameters to some extent and causes an increase in EHC. 

nominal 1 2 3 4 5 6 7 8

10% shift scenario 5.18 5.46 5.99 6.21 6.31 6.39 6.41 6.44 6.45

20% shift scenario 5.18 5.96 6.85 7.37 7.59 7.76 7.82 7.87 7.89
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  Increasing f and v separately leads to increase in h and decrease in k. Therefore, the expected hourly cost is raised. 
 

Table IV. Results of the sensitivity analysis for ESD under 10% scenarios 

Experiment no. RQL AQL λ M g D T W f v n h k EHC 

1 0.025 0.001 0.01 100 0.05 2 50 25 0.5 0.1 17 2.25 2.61 5.18 

2 0.050 0.002         15 2.10 2.72 4.97 

3 0.075 0.003         13 2.02 2.66 4.80 

4 0.100 0.004         12 1.94 2.69 4.69 

5   0.02        17 1.60 2.61 8.84 

6   0.03        17 1.35 2.61 12.10 

7    1       17 3.92 2.61 0.90 

8    10       17 3.92 2.61 1.32 

9     0.5      17 2.42 2.61 11.74 

10      20     17 2.60 2.61 19.29 

11       5 2.5   17 2.17 2.58 4.88 

12       500 250   20 2.58 3.00 7.78 

13       5000 2500   20 3.92 3.00 30.85 

14         5  17 3.83 2.59 6.67 

15          1 17 3.92 2.58 9.43 

16          10 17 3.92 2.58 48.50 

17   0.02 50       17 2.33 2.61 5.26 

18    10      1 13 3.92 2.66 4.20 

19 0.050 0.002  12.87       15 3.92 2.72 1.38 

20 0.050 0.002  128.7       15 1.85 2.72 6.02 

21 0.050 0.002  12.87   500 250   19 3.92 3.32 3.66 

22 0.050 0.002  12.87     5  15 3.92 2.72 2.53 

23 0.050 0.002  12.87      1 15 3.92 2.72 4.82 

24 0.075 0.003  2.25       13 3.92 2.66 0.85 

25 0.075 0.003  225       13 1.35 2.66 9.01 

26 0.075 0.003  2.25     5  13 3.92 2.66 1.99 

27 0.075 0.003  2.25      1 13 3.92 2.66 3.83 
      

Here, another investigation is carried out by depicting the effects of the right-hand-side (RHS) values of constraints 

on the expected hourly cost. Note that when a specific RHS value is altered, the others are assumed to remain unchanged. 

As shown in Figs. (5) – (7), the expected hourly cost increases when feasible space is limited by increasing α, decreasing 

p, and increasing ATS. On the other hand, when a constraint is relaxed, it is logical to expect lower EHC, which is 

confirmed here. 
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Moreover, it is observed that the results of RESD are costlier than those of ESD. As indicated before, they are 

consequences of applying uncertainty to the parameters. 

 

Table V. Results of the sensitivity analysis for RESD under 10% scenarios 

Experiment no. RQL AQL λ M g D T W f v n h k EHC 

1 0.025 0.001 0.01 100 0.05 2 50 25 0.5 0.1 17 2.17 2.60 5.46 

2 0.050 0.002         15 2.02 2.72 4.97 

3 0.075 0.003         13 1.94 2.66 4.98 

4 0.100 0.004         12 1.85 2.69 5.05 

5   0.02        17 1.58 2.61 8.89 

6   0.03        17 1.33 2.61 13.06 

7    1       17 3.92 2.61 0.90 

8    10       17 3.92 2.61 1.35 

9     0.5      17 2.29 2.61 12.42 

10      20     17 2.50 2.61 19.30 

11       5 2.5   17 2.02 2.58 4.88 

12       500 250   20 2.58 3.00 7.80 

13       5000 2500   20 3.92 3.00 30.85 

14         5  17 3.60 2.60 6.68 

15          1 17 3.92 2.59 9.90 

16          10 17 3.92 2.58 48.52 

17   0.02 50       17 2.25 2.61 5.26 

18    10      1 13 3.92 2.66 4.20 

19 0.050 0.002  12.87       14 3.92 2.58 1.36 

20 0.050 0.002  128.7       15 1.77 2.72 6.03 

21 0.050 0.002  12.87   500 250   19 3.92 3.32 3.66 

22 0.050 0.002  12.87     5  15 3.92 2.72 2.55 

23 0.050 0.002  12.87      1 15 3.92 2.72 4.90 

24 0.075 0.003  2.25       13 3.92 2.66 0.85 

25 0.075 0.003  225       13 3.92 2.72 8.30 

26 0.075 0.003  2.25     5  13 3.92 2.66 1.99 

27 0.075 0.003  2.25      1 13 3.92 2.66 3.50 
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Fig. 5. Effect of changes in the RHS value of α constraint on EHC in ESD and RESD (under 10% scenarios) 

 

    
 

 

 

 

 

 

 

 

        
Fig. 6. Effect of changes in the RHS value of power constraint on EHC in ESD and RESD (under 10% scenarios) 

     
 

 

       
 

 

 

 

 

 

 

Fig. 7. Effect of changes in the RHS value of ATS constraint on EHC in ESD and RESD (under 10% scenarios) 
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VII. COMPARISON 

In this section, the performances of SD, ED, ESD, and RESD of ACC are compared. The parameters for this study 

are assumed to be the same as shown in Section VI. For each experiment number, 3 values including the expected hourly 

cost, the probability of Type I error, and the probability of Type II error are calculated. Moreover, the bounds of constraints 

are α=0.005, P=0.98, and ATS=4. The results are summarized in Table VI. 

Table VI. Performance comparison among statistical, economic, economic-statistical, and robust economic-statistical design 

of ACC 

Exp. no. 

SD ED ESD RESD 

EHC α P EHC α P EHC α P EHC α P 

1 5.58 0.004 0.984 4.79 0.0069 0.823 5.18 0.0046 0.980 5.46 0.0046 0.980 

2 5.37 0.004 0.983 4.63 0.0059 0.839 4.97 0.0032 0.980 4.97 0.0032 0.980 

3 5.24 0.004 0.981 4.53 0.0048 0.867 4.80 0.0039 0.980 4.98 0.0039 0.980 

4 5.16 0.004 0.982 4.45 0.0048 0.852 4.69 0.0035 0.980 5.05 0.0035 0.980 

5 10.10 0.004 0.984 8.10 0.0078 0.788 8.84 0.0046 0.980 8.89 0.0046 0.980 

6 14.26 0.004 0.984 11.04 0.0083 0.788 12.10 0.0046 0.980 13.06 0.0046 0.980 

7 0.92 0.004 0.984 0.49 0.0038 0.549 0.90 0.0046 0.980 0.90 0.0046 0.980 

8 1.34 0.004 0.984 1.14 0.0055 0.886 1.32 0.0046 0.980 1.35 0.0046 0.980 

9 12.39 0.004 0.984 6.86 0.0146 0.418 11.74 0.0046 0.980 12.42 0.0046 0.980 

10 19.49 0.004 0.984 18.99 0.0079 0.835 19.29 0.0046 0.980 19.30 0.0046 0.980 

11 5.32 0.004 0.984 4.07 0.0663 0.847 4.88 0.0049 0.981 4.88 0.0050 0.981 

12 8.15 0.004 0.984 7.41 0.0007 0.818 7.78 0.0013 0.980 7.80 0.0013 0.980 

13 33.87 0.004 0.984 29.37 0.0001 0.837 30.85 0.0014 0.980 30.85 0.0013 0.980 

14 6.73 0.004 0.984 6.51 0.0132 0.939 6.67 0.0047 0.981 6.68 0.0047 0.980 

15 9.70 0.004 0.984 7.08 0.0450 0.797 9.43 0.0049 0.981 9.90 0.0049 0.981 

16 50.86 0.004 0.984 11.48 0.1587 0.552 48.50 0.0049 0.981 48.52 0.0049 0.981 

17 5.59 0.004 0.984 4.89 0.0072 0.827 5.26 0.0046 0.980 5.26 0.0046 0.980 

18 46.19 0.004 0.984 1.87 0.0200 0.178 4.20 0.0200 0.178 4.20 0.0218 0.187 

19 1.38 0.004 0.983 1.26 0.0044 0.900 1.38 0.0032 0.980 1.36 0.0050 0.980 

20 6.69 0.004 0.983 5.58 0.0058 0.833 6.02 0.0032 0.980 6.03 0.0032 0.980 

21 3.96 0.004 0.983 3.47 0.0004 0.902 3.66 0.0004 0.980 3.66 0.0004 0.980 

22 2.53 0.004 0.983 1.88 0.0066 0.948 2.53 0.0032 0.980 2.55 0.0032 0.980 

23 4.82 0.004 0.983 2.05 0.0372 0.762 4.82 0.0032 0.980 4.90 0.0402 0.768 

24 0.85 0.004 0.981 0.58 0.0037 0.791 0.85 0.0039 0.980 0.85 0.0039 0.980 

25 10.85 0.004 0.981 8.41 0.0058 0.826 9.01 0.0039 0.980 8.30 0.0039 0.980 

26 1.99 0.004 0.981 1.14 0.0037 0.790 1.99 0.0039 0.980 1.99 0.0039 0.980 

27 3.83 0.004 0.981 0.96 0.0197 0.417 3.83 0.0039 0.980 3.50 0.0039 0.980 
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For SD, the sample size was determined by Eq. (5), k was obtained from Zα, and h was calculated by ATS × (1-β). As 

indicated by Mohammadian and Amiri (2012), the decimal values of n were rounded up to the next integer value for 

easier application in reality. Thus, the values of β and h should be computed again because of an increase in power values 

effected by larger sample sizes. For example, in the second experiment, the design parameters were obtained as n=14.09, 

h=3.92, and k=2.58 with the cost of 5.33 and statistical properties of α=0.0049, P=0.979, and ATS=4. When sample size 

was rounded up to 15, k remained the same as before. However, h changed to 3.94, the cost was raised to 5.37, and the 

power increased to 0.983.  

In the following, some points inferred from Table VI are mentioned: 

 For all experiments, the expected hourly costs for SD are the greatest among all three designs. 

 In ED, the lowest expected hourly costs are obtained because only the economical features are of importance. 

 Statistical features of ED get worse than those of SD. For example, in the second experiment, α increases to 0.0059 and 

power decreases to 0.839. 

 To improve the statistical features of ED, the statistical constraints are introduced into the model to have ESD (or RESD 

with Γ=0 based on Eq. (9)). In the second experiment, for instance, α and p are improved respectively to 0.0032 and 

0.98 for ESD in comparison with those for ED. However, the EHC of ESD gets higher than that of ED. In fact, despite 

marginally larger values of EHC in ESD, it is preferred to ED since the statistical features are satisfactory by applying 

the constraints. 

 It is confirmed that EHCED < EHCESD ≤ EHCSD for the whole experiments in the table. 

 It is observed that the results of RESD are costlier than those of ESD. Indeed, this extra cost is the amount paid for 

applying uncertainty to parameters. 

 

VII. CONCLUSION AND FUTURE RESEARCH 

In designing a control chart, some parameters of some processes are uncertain due to measurement errors or other 

technical obstacles. To get the best design in such circumstances, the concept of budgets of uncertainty was considered 

in the robust framework to take into account the uncertainty of parameters in a systematic routine. Thus, the robust design 

of the acceptance control chart was presented in this paper. The provided model included an economic cost function 

subject to some statistical constraints. For this reason, a solution procedure utilizing a genetic algorithm (GA) was 

proposed.   

A numerical example was presented to explain the proposed model under different shift scenarios and different 

budgets of uncertainty. Such results could help the practitioners to select the best design based on excellence in cost 

regarding statistical performance while providing the highest protection against uncertainties in parameters. Moreover, 

the features of statistical, economic, economic-statistical, and robust economic-statistical designs were compared for more 

investigations. 

As indicated in Section II, the control limits of ACC can statistically be computed in three different ways. As in the 

study by Mohammadian and Amiri (2012), the control limits were calculated using the first method. Therefore, it is 

recommended as a future research direction to use the other methods for obtaining UCL and LCL and compare the results 

with deep discussion. Another potential subject is related to ACC for attributes. For example, by referring to Chou et al. 

(2005) and Tsai and Chiang (2008), the designs based on any proposed mathematical modeling can be investigated. 

Finally, other types of ACC can be developed similar to the study of Holmes and Mergen (2000), in which EWMA ACC 

was presented. 
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