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Abstract — Selecting appropriate suppliers in organ transplant affiliation networks is of critical importance
due to its direct impact on service quality and increased life expectancy. This process is recognized as a
complex group-multiple criteria decision-making (G-MCDM) problem, involving the evaluation of multiple
supplier alternatives based on key criteria for organ transplantation. In this study, a new integrated model is
proposed by combining the Borda and CoCoSo methods using Interval-Valued Fuzzy Sets (IVFSs) within a
group decision-making environment. Leveraging the enhanced capabilities of fuzzy theory, the proposed
method effectively addresses the inherent uncertainties present in real-world applications. The weights of the
criteria are determined using an interval-valued fuzzy Shannon entropy (IVF-Shannon entropy) method,
incorporating expert judgments. Subsequently, the hybrid Borda-CoCoSo approach is employed to rank
supplier alternatives for organ transplant equipment within affiliation networks. An application example is
presented to assess the performance of the proposed model, and both comparative and sensitivity analyses
are conducted to investigate the influence of key parameters on the results. In addition, a comparative
evaluation is performed with three existing methods from the literature. The results highlight the accuracy
and efficiency of the proposed model in supplier selection and in improving decision-making within the organ

transplant supply chain.

Keywords— Healthcare Supply Chain, Organ Transplantation, Group-Multiple Criteria Decision-Making (G-
MCDM), Borda-CoCoSo Method, Interval-Valued Fuzzy Sets.

I. INTRODUCTION

Healthcare systems, as the backbone of modern societies, play an indispensable role in the supply chain cycle, with
objectives, such as promoting public health, increasing life expectancy, and improving quality of life. These systems
integrate medical services, human resource management, and supply chain coordination to deliver effective and
sustainable care (Liu et al., 2019). With the growing global demand for advanced medical services, particularly during
critical situations, e.g., pandemics, healthcare systems have faced numerous challenges, including resource shortages,
inadequate infrastructure, and the need for rapid and precise decision-making (Alsalem et al., 2022). These challenges
necessitate novel managerial and decision-making approaches capable of effectively managing existing complexities.
Among these, organ transplant networks represent one of the most sensitive components of healthcare systems,
requiring special attention to supply chain management and the selection of appropriate resources (Jalilvand et al.,
2023).
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Organ transplant networks serve as vital systems for treating organ failure, saving the lives of thousands of patients
around the world and significantly improving their quality of life (Sabripour et al., 2024). This process involves
complex coordination between donor hospitals, transplant centers, transportation systems, and recipient regions. The
success of a transplant operation depends on several factors, including the quality of hospital resources, precise timing,
and effective risk management within the supply chain (Salimian et al., 2023). With the increasing number of transplant
procedures in recent decades, the need for advanced and reliable hospital resources has become more evident than ever.
These resources must comply with international standards to minimize the risks associated with malfunction or delivery
delays (Lo et al., 2022). However, the transplant process still faces challenges, such as uncertainty in resource quality,
global supply chain fluctuations, and stringent safety requirements (Abdullah et al., 2025).

The selection of appropriate suppliers for hospital resources in organ transplant networks holds strategic importance
due to its direct impact on surgical success, patient safety, and supply chain efficiency (Stevi¢ et al., 2020). This task is
recognized as a multiple criteria decision-making (MCDM) problem that requires the simultaneous evaluation of both
quantitative criteria (e.g., cost and delivery time) and qualitative factors (e.g., resource quality and reliability) (Salehi et
al., 2021). The complexity of this decision-making arises from the diversity of criteria, the presence of vague and
imprecise data, and the need to aggregate expert opinions. Traditional supplier selection methods, which are often
limited to criteria, e.g., cost, prove inefficient in handling such complexities and uncertainties (Zolfani et al., 2020).
Therefore, the use of advanced MCDM methods that can model uncertain data and integrate multiple criteria is
essential.

MCDM approaches have been widely applied in various fields, including supply chain and healthcare management,
due to their ability to break down complex problems into smaller components and evaluate alternatives based on diverse
criteria (Yilmaz et al., 2020). Fuzzy set theory, particularly interval-valued fuzzy sets (IVFSs), has increasingly been
utilized in complex decision-making problems because of its ability to handle imprecise and incomplete data
(Chakraborty et al., 2023). IVFSs provide enhanced fuzzy modeling capabilities that allow for a more accurate
representation of uncertainty compared to traditional fuzzy sets. This feature is especially valuable in vital
environments, like organ transplant networks (Pamucar et al., 2023).

This research aims to develop a group-multiple criteria decision-making (G-MCDM) method based on a new
integration of the Borda and CoCoSo approaches within interval-valued fuzzy (IVF) environments for the supplier
selection problem in organ transplant networks. The study further involves calculating the criteria weights using
interval-valued fuzzy Shannon entropy and evaluating the efficiency of the model through sensitivity analysis and
comparative assessment with existing methods.

According to the existing literature, Jalilvand et al. (2023) proposed a bi-objective MINLP model for designing
organ transplant networks, aiming to minimize costs and unmet demands while considering cold chain allocation and
prioritization of high-risk recipients. Lo et al. (2022) employed the Analytic Network Process (ANP) to investigate
psychological factors influencing family decisions regarding organ donation. Their findings revealed that attitude, with
a weight of 31.5%, plays a key role in the donation decision-making process. Salimian et al. (2023) developed a group-
multiple criteria decision-making (G-MCDM) model for selecting transportation modes within organ transplant
networks under interval-valued intuitionistic fuzzy uncertainty. This model used the CRITIC method and integrated
subjective judgments and similarity measures to evaluate three transportation modes, with validation conducted through
sensitivity analysis.

Sabripour et al. (2024) proposed a fuzzy hybrid MCDM model based on F-FFMEA to assess post-transplant risks.
This model achieved expert approval with an accuracy rate of 91.67%. It prioritized 20 key risks, including medication
non-adherence and ischemia time. Abdullah et al. (2025) introduced interval-valued neutrosophic hypersoft Fermatean
sets for medical decision-making. This approach utilizes algebraic operations to prioritize patients for organ transplants
based on criteria such as organ compatibility and urgency, effectively handling uncertainty. Liu et al. (2019) developed
a hybrid model (DDANPMYV) for promoting mobile health services, which examined critical factors such as social
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norms and consumer trust. Yilmaz et al. (2020) explored the application of MCDM methods in military healthcare
systems. Their study highlighted the lack of integrated approaches in this field and emphasized the need to develop and
implement these methods for more effective decision-making in military health systems.

Zolfani et al. (2020) presented a decision support framework using CRITIC and CoCoSo methods for selecting
temporary hospital locations for COVID-19 patients. A case study conducted in Istanbul demonstrated the efficiency
and practical applicability of the proposed approach. Alghawli et al. (2021) evaluated and compared the level of
organizational health literacy in hospitals using the FAHP-FDM method. The multi-stage fuzzy model demonstrated
higher accuracy and discrimination capability compared to the traditional qualitative AHP. The findings indicated that
hospitals with lower scores require greater financial support. Chen and Lin (2022) proposed a fuzzy MCDM approach
based on FGM, which divides the fuzzy judgment matrix into diverse and consistent sub-estimations. The proposed
method enabled the identification of multiple optimal smart technologies in post-COVID-19 healthcare.

Alsalem et al. (2022) proposed an intelligent framework for the emergency transfer of mesenchymal stem cells
(MSCs) during COVID-19 crises. Using MCDM techniques, this study prioritized patients based on the level of
urgency, thereby facilitating effective MSC transfers under critical conditions. The findings highlighted that individual
resilience played a key role in improving immune performance in both genders. Salehi et al. (2023) applied entropy and
MCDM methods to examine the impact of occupational stress, individual resilience, and organizational flexibility on
the safety performance of healthcare staff during the COVID-19 pandemic. Their results showed that organizational
flexibility was more influential for older personnel, while individual flexibility had a greater impact on younger and less
experienced staff.

Bouraima et al. (2024) used the AROMAN method to rank sustainable outsourcing strategies in the Kisumu
healthcare system in Kenya, emphasizing infrastructure development and human resource enhancement. Alabool (2025)
identified nine main criteria and twelve sub-criteria in healthcare through the Delphi method and interviews with 38
experts. These criteria were then weighted and ranked using the FAHP decision-making approach. This method
facilitated the management of uncertainty and the determination of the relative importance of the criteria. Stevi¢ et al.
(2020) introduced the MARCOS method for sustainable supplier selection at Ghetaldus Polyclinic. By evaluating eight
suppliers based on 21 sustainability criteria, their approach demonstrated high decision-making accuracy and robustness
through sensitivity analysis. Chakraborty et al. (2023) presented a comparative analysis of the MABAC model for
healthcare supplier selection across seven fuzzy environments. The study found that the best and worst suppliers
remained consistent across different fuzzy settings, confirming the model's effectiveness in handling uncertainty and
expert judgment. Pamucar et al. (2023) proposed a fuzzy decision-making approach for supplier selection in healthcare
supply chain management during the COVID-19 pandemic. The study utilized MACBETH and CODAS methods under
fuzzy rough numbers (FRNs) to address supplier selection in Turkish hospitals.

Rishabh and Das (2025) developed a hybrid model (AHP-PSO-TOPSIS) for healthcare supplier selection in India.
This method integrated AHP and TOPSIS within a PSO optimization environment to extract precise weights from fuzzy
decision matrices and validated performance through sensitivity analysis and comparisons. Salimian et al. (2022)
introduced a hybrid model based on E-VIKOR and MARCOS under interval-valued intuitionistic fuzzy sets (IVIFSs)
for sustainable supplier selection in organ transplant networks. This approach aimed to manage uncertainty and ranked
medical device suppliers based on economic, social, and environmental sustainability criteria.

According to Table 1, despite significant advancements in the application of MCDM and fuzzy methods in organ
transplantation and supplier selection, specific gaps are observed in the literature. Most studies have focused on pre-
transplantation issues, such as member allocation or network design, and the selection of hospital resource suppliers in
organ transplant networks has received less attention. The IVFSs are of great importance due to their capability to
accurately model complex uncertainties, particularly in critical environments, e.g., organ transplant networks. By
defining ranges for memberships, IVFSs provide greater flexibility than traditional fuzzy sets in handling ambiguous
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Table 1. Comparison of Previous Studies

Ranking Approach/Methods Critel;zlle:’l&:(e)i&ghting Uncertainty
No. Authors (Year) Shannon roms F—
COCOSO | BORDA | Others | Entropy- | Others Set Valued | Others
GDM Fuzzy Set

1 Liu et al. (2019) v v
2 Zolfani et al. (2020) v v v
3 Yilmaz et al. (2020) v v v
4 Stevi¢ et al. (2020) v v v
5 Alsalem et al. (2022) v v
6 Lo et al. (2022) v v v
7 Salimian et al. (2022) v
8 Salehi et al. (2023) v v
9 Jalilvand et al. (2023) v
10 Pamucar et al. (2023) v v v
11 Chakraborty et al. (2023) v v v
12 Salimian et al. (2023) v v v
13 Karami et al. (2023) v v v v
14 Barzegari et al. (2023) 4 v v
15 Sabripour et al. (2024) v v
16 Bouraima et al. (2024) v v
17 Abdullah et al. (2025) v v
18 Rishabh and Das (2025) v v

This study v v v v

data and aggregating expert group judgments. However, many previous studies have not utilized this approach. For
instance, Pamucar et al. (2023) employed Fuzzy Rough Numbers (FRN) in their supplier selection model, which has
limited ability to manage interval uncertainties and cannot fully capture the complexity of multiple judgments.
Similarly, Sabripour et al. (2024), in their F-FMEA study for assessing post-transplant risks, relied on traditional fuzzy
sets and overlooked the potential of IVFSs for more precise modeling of uncertainties. Such limitations reduce decision-
making accuracy in strategic contexts, as IVFSs enable more effective management of interval uncertainties. Moreover,
the application of hybrid methods, like Borda-CoCoSo for supplier ranking in organ transplant networks, has been
rarely explored. An integration of the Borda method, which effectively aggregates different rankings with the CoCoSo
method. It provides stable and accurate multi-criteria rankings that can significantly enhance the flexibility and
precision of decision-making. Nevertheless, prior studies have often relied on single methods, which are insufficient for
simultaneously managing multiple criteria and group judgments in such critical environments, thereby restricting the
stability of results against parameter variations. In addition, criteria weighting methods have often relied on precise data
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and have less frequently employed expert opinion-based approaches in the IVF environment. These gaps indicate a need
for novel and integrated methods to improve group decision-making in the supplier selection problem within organ
transplant networks.

This study proposes a new G-MCDM method based on the combination of Borda and CoCoSo methods in the
environments of IVFSs to rank hospital resource suppliers in organ transplant networks. The innovations of this
research include: 1) the use of interval-valued fuzzy Shannon entropy (IVF-Shannon entropy) based on experts opinions
to calculate the weight of criteria, 2) a new development of the hybrid Borda-CoCoSo method for more accurate
ranking in group decision-making environments, and 3) the presentation of an integrated I[VF-framework for managing
uncertain data in the organ transplant supply chain. Further, this method demonstrates its accuracy and efficiency
through a sensitivity analysis in a practical example.

The structure of the article is as follows: Section 2 introduces the concepts of IVFSs. Section 3 describes the
proposed method. Section 4 presents the practical example and analyses, and Section 5 states the conclusion and future
suggestions.

II. CONCEPTUAL AND MATHEMATICAL FOUNDATIONS OF INTERVAL-VALUED FUZZY
SETS

In dealing with complex decision-making problems characterized by uncertainty and imprecise information,
linguistic values represent a fundamental advantage. These values, as introduced by pioneers, such as Zadeh (1975) and
Zimmermann (1986), allow decision-makers to express subjective and qualitative uncertainties in an intuitive and
effective manner. However, traditional fuzzy sets, due to the assignment of a single precise membership degree to each
element, sometimes face limitations in fully capturing the subtleties of linguistic expressions.

To address this challenge, the concept of Interval-Valued Fuzzy Sets (IVFSs) was developed by researchers, such as
Grattan-Guinness (1976) and Karnik & Mendel (2001). These sets assign an interval to the membership degree of each
element, thereby providing significant flexibility for modeling vague and uncertain information. This feature is
particularly valuable in contexts like supplier selection within the organ transplant supply chain, where decision-making
often involves incomplete, subjective, and qualitative data. For example, Karami et al. (2023) demonstrated that IVFSs
enhanced the accuracy of supplier selection in complex environments by more precisely handling interval uncertainties.
When combined with hybrid methods, e.g., Borda-CoCoSo, they enabled the effective aggregation of group judgments
and provided stable rankings, thereby delivering superior performance compared to traditional approaches. As noted by
Ashtiani et al. (2009) and Barzegari et al. (2023), this approach has turned IVFSs into a powerful tool for complex
decision-making domains.

According to the classical definition by Gorzatczany (1987), an interval-valued fuzzy set A over the domain of real
numbers is defined as follows:

A ={X, [pz(x), pzu ()]}, xe(—o0, +0) o

In this definition, p4(x) and pzu (x) are the lower and upper bounds of the membership function for element x,
respectively, and the condition p 5. (x) < pizu (x) must always hold.

One of the most widely used forms of IVFS is the Interval-Valued Triangular Fuzzy Number (IVTFN). Due to their
simple yet powerful structure, these numbers are highly popular in MCDM modeling. An interval-valued triangular
fuzzy number A, as described by Yao and Lin (2002) and shown in Figure 1, is generally represented as follows:

A =A%, AY] = [(at, ab, ak; w}), (a¥,a¥, a¥; wy)] 2
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In this structure, (Aﬁ) represents the interval for the lower bound, and (Aﬁ(’) represents the interval for the upper
bound of the fuzzy number. These relationships indicate when A% = AY, the triangular fuzzy number becomes a crisp
number. pz(X) = Wz and p X)) = V’D}{ are the lower and upper membership functions, respectively.

According to the following relationships illustrated in Figure 1, triangular fuzzy numbers have specific
characteristics:

e If A% = AY, the interval-valued triangular fuzzy number becomes a regular triangular fuzzy number.

e If the relationships A% = a5 = a5 = a¥ = a¥ = a¥ hold, the interval-valued triangular fuzzy number becomes a
crisp number.

o If Wﬁ = Wg , the interval-valued triangular fuzzy number is specifically defined.

puiu(X) = Wg

,LLAL(X) = Wé’

A\

L L _ U
0af aji a; = a, as al

Figure 1. Interval-Valued Triangular Fuzzy Numbers

To analyze and aggregate these numbers, a set of mathematical operations has been defined. Suppose we have two
interval-valued triangular fuzzy numbers as follows:

A =[(a¥ a));ay; (ds, ad)] 3)
B = [(b}, b); by; (b3, bY)] 4)

The main mathematical operations between these two numbers, based on the works of Chen and Chen (2008) and
Barzegari et al. (2023), are as follows:

* Addition (P):

A® B = [(af,al)saz: (ab, a2)] & (b1, bL)s by (b, 3)]

5
= [(al + bt a¥ + b¥), (a + by), (ab + bk, a¥ + b¥)] ©)
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* Subtraction (©):
A© B =[(at,a}); az; (a4, a¥)] © [(bY, by); by; (b3, b))

6
= [(a} — b}, af = b¥), (az — by), (a — b}, a¥ — b)) ©
* Multiplication (®):
AQ B = [(af,a}); az; (a3, a¥)] @ [(bY, b1); by; (bs, b3)] ™
= [(ai x bi, af x b}"), (az X by), (a5 x b, a¥ x b})]
* Generalized Division (@):
A B u 1 I u u pl I pu aiazll a; al3a§‘
AQ B = (@t ab)iaz (@b, a)] @ [0t b bos (b5, 691 = (55 ). (32) (575 ®
3 3 2 1 1
* Multiplication by a Scalar (m):
mA = [(mal, ma}); may; (mal, ma¥)] ©)

* Inverse of a Fuzzy Number:
1 (/1 1\ 1 /1 1
i~ \a@d) e \da 10

This precise computational framework not only enables the mathematical processing of vague information but also
significantly enhances the ability to analyze, compare, and rank alternatives within an interval-valued fuzzy decision-
making environment. These characteristics have made the IVF a key and essential tool in group-multiple criteria
decision analysis under uncertainty.

II1I. PROPOSED METHODOLOGY

This study presents an integrated and novel group-multiple criteria decision-making (G-MCDM) framework for
evaluating and selecting resource suppliers within member-linked networks. The proposed model is based on the
integration of Shannon Entropy, CoCoSo (Combined Compromise Solution), and Borda methods, inspired by the work
of Su et al. (2025). This approach is developed within the context of IVFSs to effectively handle the uncertainties and
ambiguities inherent in human judgments and real-world data. In this framework, the decision alternative A;; is
evaluated by the decision-maker (DM) with respect to the criterion C;. To achieve this, a linguistic term set (Table 4) is
employed to transform qualitative judgments into quantitative values. For instance, if the decision-maker uses the term
(High), it is represented by the value [(0.55,0.75),0.9,(0.95,1)]. This procedure enables a more precise and structured
expression of the decision-makers opinions, thereby enhancing the quality and reliability of the decision-making
process.

The process of the model is implemented in two main phases:

e Phase 1: Criteria Weight Calculation: In this phase, the objective weights of the supplier evaluation criteria are
determined using the Interval-Valued Fuzzy Shannon Entropy (IVF-Shannon Entropy) method. This approach
extracts the significance of each criterion based on the amount of information embedded in the experts’ judgments.

e Phase 2: Ranking of Alternatives: In this phase, the final ranking of suppliers is performed using a new hybrid
method called IVF-Borda-CoCoSo. This method first employs the CoCoSo logic to calculate three separate
evaluation scores for each alternative. Subsequently, these scores are aggregated into a final and robust ranking
through the Borda technique.



140 Mousavi, S.M. et al./ A Hybrid Group-MCDM Framework for Supplier Selection Problem in Organ ...

The detailed implementation steps of this framework are explained in the following sections:
Phase 1: Criteria Weighting Using the IVF-Shannon Entropy Method
To determine the objective weights of the criteria (Cj), the IVF-Shannon Entropy method is employed. This method

derives the weights based on the degree of dispersion and uncertainty present in the decision matrix. The steps are
outlined as follows:

Step 1: Construct the group fuzzy decision matrix based on the opinions of K experts (Matrix 12).

Step 2: Aggregate the decision matrix using the Interval-Valued Fuzzy Weighted Averaging (IVFWA) operator.

Step 3: The aggregated decision matrix is normalized, and each normalized element is denoted as p,;. Normalization is
performed by dividing each element of a column by the sum of that column.

Step 4: Calculate the entropy value (E;) for each criterion (the constant K keeps the value of FJ between 0 and 1).

m
E = _RZﬁ;.Lnﬁ; i=12,..,m (In
i=1

Step 5: Determine the degree of divergence (&; =1- E;).

Step 6: Compute the final objective weight of each criterion using the formula
~ _ ‘—i; _ 77
@ = 0 (5) + 0= (7))

. . L . d
This step represents a linear combination of the weights from the Shannon entropy method (Z" 1 a,) and experts
j=1%)

opinions (VI7’) This value, combined with a coefficient ¢, which ranges between 0 and 1, calculates the final weight.
This approach reflects the aggregated opinions of experts and the weight of the entropy weighting method, providing a
more precise criterion weight for rankings in the proposed approach compared to the base method.

Phase 2: Ranking of Alternatives Using the IVF-Borda-CoCoSo Method
After determining the criteria weights, the ranking of suppliers (alternatives) is conducted using the proposed hybrid
approach.

Step 1: Construction of the Initial Decision Matrix
First, the decision matrix is constructed based on the evaluation of m alternatives (suppliers) against n criteria by the
experts. The experts’ linguistic assessments are modeled using Interval-Valued Triangular Fuzzy Numbers (IVTFNG).

[Allk Ay .. Alnkl
A=Ak Az Aol =12 m L j=1,2, . nk=1,2, .. K (12)
Amlk Amzk Amnk

To implement the experts’ opinions, their assessments are aggregated. The initial decision matrix X is constructed as
follows:

X¥11 Xz o Xan
Aijr X X . Xy . .
X=-F= 21 t22 L LiEL2, ., m =12, 0,0 (13)
Xm1  Xm2 imn

~ u l l u . .
where each element %;; = [(x{ X ]-) ) Xij, (x{]’ )X )] represents an interval-valued triangular fuzzy number.

Step 2: Normalization of the Decision Matrix

To eliminate the effect of different scales and make the criteria comparable, the decision matrix is normalized using
the following equation:
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(14)
maxxu — Xy

— minx/;

(cost)

X mmx ij
— — (Benefit)
|

J

The normalized matrix R and its elements (; ;) are also interval-valued triangular fuzzy numbers.

Step 3: Calculation of the Weighted Sum S; and Weighted Product P;

In this step, the normalized decision matrix is combined with the weights obtained from Phase 1 to calculate two
aggregate measures, S; and P;, for each alternative. These calculations are performed separately for the upper and lower
bounds of the fuzzy numbers:

n n n
Lot bl
Sil = 1/3 W] rij +ZW]T'U+ZW] rij (15)

n /o n n mnt
=13\ Yy + )t ) (16)
i ij ij ij
j=1 j=1 j=1
n n n
Slu = 1/3 ij,u Ti’;l +ZWJ7"LJ +ij”u T'i’j,u (17)
j=1 j=1 j=1

W=U32ﬁ”+§:1+2”“ (18)

j=1

Step 4: Calculation of Relative Assessment Scores (K;,, Kip,, Kic)
Three aggregation strategies are employed to calculate the assessment scores for each alternative. These scores are
also computed for the upper and lower bounds of the IVF numbers (with A = 0.5 considered):

1, pl U, pu
KL = _Sithi CKY = Si +P; (19)
= — =
R (si+P) e RE(si+r)

l l u u

s} P! s P!
K —t 4+t K} =——4 L 20
mmSl minPl-l 7 b minsSy*  minP} (20)

l AS; Liaa- A)P Cu AS{'+(1-2)P
ic = /lmaxS +(1- A)maxPl 7 e T AmaxsP+(1-)maxp}

,0<1<1 @1

Step 5: Normalization and Aggregation of Assessment Scores
To establish a common and balanced basis for the Borda stage, the assessment scores obtained in the previous step
are normalized using vector normalization. Subsequently, the upper and lower bound values are aggregated:
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K'l — Kila Klb — Kilb . K’l — Kilc
a Lot } ’ c
JEm () JE (k) SR (Y (22)
K* KX KX
Kia = L 2 ib = > 2 Kie = L 2 (23)
I (k) TP (k) I (ko)

Then, the final score for each strategy is obtained by averaging the normalized upper and lower bounds values.

Kio = 1/2(Kjg + K%) 5 Ky = 1/2(K}, + Kjy) 5 Kie = 1/2(Ki- + K& 24

Phase 1: Calculating Criteria Weights
] 1
|
! i I'| Constructing th : |
| IVFShamnon || ||, e Calculating Calculating ||
I o N L Fuzzy Group Decision] Entropv Value Divergence }
! aEE L Matrix Based on oPy Deoree !
| | Experts Opinions (E;) . |
1 [
[ Lhi |
; 5 y t ' i
| [ !
| [ !
i Fuzzy Group |} || Calculating the Calculating the Final | |
! Decision Making : i Agpregated —»  Normalizing and Objective Weight| !
! (FGDM) 1| Decision Matrix of Each Criterion (w;) |
| x |
I [ !
e S I

Phase 2: Ranking the Options Using the IVF-Borda-CoCoSo Method

R B A !
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Figure 2. Flowchart of the proposed method
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Step 6: Rank Aggregation Using the Borda Count

In the final step, the Borda count method is used to aggregate the rankings obtained from the three strategies, K;,,
K;p and K;.. This method assigns a score to each alternative based on its position in each of the three lists. The final
score for each alternative BR; is calculated by summing its scores across the three lists:

m—rank(K;;) +1 m —rank(Ky) + 1 4 m—rank(K;) +1
m(m+1)/2 P m(m +1)/2 e mim+1)/2

BR(i) = K;, (25)

The alternatives are ranked in descending order based on their BR; values. The alternative with the highest
BR; score is selected as the best and most suitable supplier. This hybrid approach, by aggregating three different
evaluation perspectives, achieves a robust and reliable compromise solution.

IV. PRACTICAL EXAMPLE: SUPPLIER SELECTION FOR SURGICAL EQUIPMENT

In this section, to evaluate the performance and validate the proposed model, a practical example is presented. A
leading university hospital specializing in organ transplantation intends to select a primary supplier for critical operating
room equipment to update its surgical technologies. Due to its direct impact on patient safety and the success of
transplant surgeries, the selection process is highly sensitive. The hospital’s decision-making committee consists of
three key decision makers (DMs): the Head of the Transplant Surgery Department (DM;), the Supply Chain and
Procurement Manager (DM,), and the Senior Medical Equipment Engineer (DM5).

After preliminary evaluations, four supplier companies (4) were shortlisted as final candidates: an internationally
reputable company with a broad product portfolio (4,), a domestic manufacturer specializing in advanced surgical
equipment (4,), an experienced distributor with a strong logistics network in the country (43), and a startup knowledge-
based company offering innovative technologies (4,). Based on prior studies and the hospital’s strategic requirements,
the decision-making committee finalized a set of ten key criteria categorized into three main dimensions: economic,
technical, and final service quality, which are presented in Table 2.

Table 2. Supplier Evaluation Criteria

Main Dimension Symbol Criteria
Cy Competitive Price
Economic C, Flexible Payment Terms
Cs Product Life Cycle Costs
Cy Quality and Technical Standards
Technical Cs Innovation and Technology Level
Ce Compatibility with Existing Equipment
(o Delivery Time and Reliability
Cg After-Sales Service and Technical Support
Service Quality
Cy Personnel Training
Cio Supplier’s Credibility and Track Record
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The proposed IVF-Borda-CoCoSo model was applied to calculate the criteria weights and rank the suppliers.
Initially, the criteria weights were computed using the IVF-Shannon Entropy method, followed by ranking the suppliers

using the IVF-Borda-CoCoSo approach. The results of this process are presented below.

Phase 0: Design of the Decision Matrix

A decision matrix was designed based on the linguistic evaluations of the three key decision-makers (DM;, DM,,
DM,) for four suppliers (4, A,, A3, A,) with respect to 10 main criteria. These assessments were converted into
IVTFNs using a linguistic scale to accurately model the inherent uncertainty in human judgments. The linguistic scale

used is presented in Table 3, and the aggregated decision matrix is shown in Table 4.

Table 3. Linguistic Scale and Interval-Valued Triangular Fuzzy Numbers

Linguistic variables

Triangular interval-valued fuzzy numbers

Very low (VL) [(0,0),0, (0.1,0.15)]
Low (L) [(0,0.05),0.1, (0.25,0.35)]
Medium low (ML) [(0,0.15),0.3, (0.45,0.55)]
Equal (E) [(0.25,0.35),0.5, (0.65,0.75)]
Medium high (MH) [(0.45,0.55),0.7, (0.8,0.95)]
High (H) [(0.55,0.75),0.9, (0.95,1)]
Very high (VH) [(0.85,0.95).1, (1,1)]
Table 4. Aggregated Decision Matrix
Syml.)ol DMs Criteria
Suppliers c, c, Cs Cs Cs Co c, Co Co C10
DM, E MH ML E MH MH MH E MH VH
Aq DM, VH VH MH VH VH E VH VH MH VH
DM, MH MH MH VH VH ML MH VH MH VH
DM, MH MH E MH VH ML MH MH MH MH
A, DM, E VH VH MH VH VH MH VH VH ML
DM, ML MH VH MH VH ML MH MH MH H
DM, VH ML MH MH MH MH MH VH VH ML
A DM, VH VH MH VH VH ML E VH VH VH
DM, VH ML MH MH MH H MH VH VH ML
DM, VH MH E MH VH ML VH MH MH MH
A, DM, MH H H MH VH E VH VH MH VH
DM, E ML MH H MH ML VH MH MH MH
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Phase 1: Criteria Weight Calculation

The objective weights of the criteria were calculated using the IVF-Shannon Entropy method. After computing the
entropy weights, these were aggregated with the experts' subjective weights (Table 5) to derive the final criteria
weights. The entropy weights, experts’ subjective weights, and the final aggregated weights are presented in Table 6.

Table 5. Experts’ Subjective Weights for the Criteria

Criteria Symb ol Cl CZ C3 C4 CS CG C7 Cs Cg Cl 0

Expert Opinion Weight | ML H VH E E H ML E MH ML

Table 6. Entropy and Aggregated Weights of the Criteria

Criteria Symbol Aggregated Weight Entropy Weight
Ci1 0.010746 0.021493
Ciz 0.098958 0.047916
Cy Ci3 0.199491 0.098982
Ciq 0.335965 0.221929
Cis 0.532301 0.514603
Cyq 0.276612 0.003225
Cy, 0.384593 0.019187
C, Cys 0.48425 0.0685
Cyy 0.565009 0.180019
Cys 0.741106 0.482212
C3q 0.425997 0.001994
Cs, 0.484492 0.018983
Cs Cs3 0.534963 0.069927
Csy 0.595507 0.191015
Css 0.761682 0.523365
Cyq 0.128854 0.007709
(P 0.19316 0.03632
Cy Cus3 0.300984 0.101967
Cuy 0.446075 0.24215
Cys 0.687749 0.625498
Csq 0.146673 0.043346
Cs, 0.222837 0.095675
Cs Css3 0.336159 0.172318
Csy 0.489152 0.328303
Css 0.72138 0.692759
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Continue Table 6. Entropy and Aggregated Weights of the Criteria

Criteria Symbol Aggregated Weight Entropy Weight
Co1 0.280517 0.011033
Ce2 0.373161 -0.00368
Ce Ce3 0.454003 0.008006
Ce4 0.509627 0.069254
Ces 0.623502 0.247003
Csq 0.009826 0.019653
Cy, 0.100448 0.050895
c, Cys 0.206599 0.113198
Cyy 0.350703 0.251407
Cys 0.588524 0.627047
Cgq 0.141119 0.032238
Cy, 0.213536 0.077072
Cy Cgs 0.324244 0.148487
Cgy 0.473973 0.297945
Cgs 0.700531 0.651063
Cyq 0.235217 0.020435
Coy 0.301896 0.053791
Co Coz 0.409951 0.119902
Coy 0.531098 0.262195
Cos 0.804486 0.658971
Cio1 0.009986 0.019972
Cio2 0.098143 0.046286
Cig Cio3 0.199357 0.098713
Cio4 0.33297 0.21594
Cios 0.524702 0.499405

Phase 2: Supplier Ranking Using the IVF-Borda-CoCoSo Method

In this phase, the hybrid IVF-Borda-CoCoSo method was applied to the normalized decision matrix to rank the
suppliers. First, the decision matrix was normalized using Equation (14) to eliminate the effects of differing scales
among criteria. Then, the weighted sum (S;) and weighted product (P;) values for the upper and lower bounds of the
IVF numbers were calculated using Equations (15) to (18). Subsequently, three relative assessment scores (Kj,, K;p,, Kic)
for each supplier were obtained based on Equations (19) to (21). These scores were normalized and aggregated using
Equations (22) to (24) to establish a common basis for the final aggregation. Finally, by applying the Borda count
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method and Equation (25), the final score BR; for each supplier was performed, resulting in a consistent and integrated
final ranking. The results of this process are presented in Table 7.

Table 7. Final Ranking of Suppliers

Alternative Final Score Final Ranking
Ay 0.304162 3
A, 0.447745 2
Az 0.468783 1
Ay 0.294925 4

The results indicate that supplier A5 (the distributor with a strong logistics network) was selected as the best supplier
with the highest BR; score. This outcome aligns perfectly with the hospital’s strategic priorities, particularly
emphasizing the technical quality criterion (C,) and after-sales service (Cg), and confirms the effectiveness of the hybrid
IVF-Borda-CoCoSo method in providing robust compromise solutions.

V. RESULTS ANALYSIS AND VALIDATION
A. Results Analysis

The evaluation and ranking of suppliers using the proposed IVF-Borda-CoCoSo method, as presented in Table 7,
provide a comprehensive insight into the performance of each supplier within the organ transplant networks. Supplier
A; was selected as the best option with the highest score (BR; = 0.468783). This superiority stems from its strong
performance in key and effective evaluation components. Supplier A, ranked second with a score of 0.447745,
demonstrating relatively balanced performance across various aspects. Supplier A;, with a score of 0.304162, ranked
third and exhibited weaker performance in some specialized areas. Supplier A, ranked last with a score of 0.294925,
showing limitations in effectively meeting the demands of the organ transplant supply chain.

To validate the results of the proposed method, supplier rankings were performed using three existing MCDM
approaches from the literature: TOPSIS (Mokhtarian et al., 2014), COPRAS (Ashouri et al., 2023), and CoCoSo
(Karami et al., 2023), with the results presented in Table 8. Supplier A; was consistently ranked as the top option across
all methods, demonstrating the robustness and reliability of the proposed IVF-Borda-CoCoSo approach. Furthermore,
the consistent identification of A5 as the best supplier and A4, as the weakest supplier confirm the high accuracy of the
proposed method in managing uncertainties and the complexities of the decision-making environment.

Table 8. Comparison of Supplier Rankings Across Different MCDM Methods

S IVF-Borda-CoCoSo method IVF-TOPSIS method IVF-COPRAS method IVF-CoCoSo method

Symbol rank Score rank Score rank Score rank Score
Ay 3 0.304162 3 0.683638 3 0.959939 3 0.49735
A, 2 0.447745 2 0.700564 2 0.976207 2 0.497494
As 1 0.468783 1 0.721911 1 1 1 0.513348
A, 4 0.294925 4 0.606201 4 0.927742 4 0.491542

The IVF-Borda-CoCoSo method, due to its use of IVFSs and the combination of three evaluation strategies
(Kia, Kip, Kic), demonstrates a significant capability in providing balanced and stable rankings. By leveraging the Borda
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count, this method integrates diverse evaluation perspectives into a unified framework and prevents biases caused by
overemphasis on any single criterion. Comparison with the CoCoSo method reveals a notable similarity in outputs,
attributed to their shared use of compromise logic. However, the methods, e.g., TOPSIS and COPRAS, which
emphasize more on quantitative criteria, e.g., competitive price (C;), highlight the superiority of the proposed approach
in managing qualitative and subjective judgments within complex environments, like organ transplant networks.

The analysis of the confidence intervals of the calculated scores reveals that supplier A; has a narrower confidence
interval compared to the other options, indicating high accuracy and low variability in the evaluation of this supplier.
This feature assures decision-makers that the selection of A; remains stable and reliable under different conditions. In
contrast, supplier 4, exhibits a wider confidence interval, which likely results from fluctuations in expert judgments or
structural weaknesses in technical and service criteria.

From an external factors perspective, elements such as supplier resource limitations, market conditions, or delivery
scheduling may influence the results. To enhance the comprehensiveness of the model, it is recommended to consider
additional criteria, such as environmental sustainability or supply chain flexibility. Furthermore, examining input data
for anomalies and preventing result distortion is advised.

Overall, the IVF-Borda-CoCoSo method, by providing accurate and stable rankings, demonstrates a strong
capability in managing uncertainties and complexities in decision-making within organ transplant networks. This
method not only aids in identifying the best supplier but also, by offering clear insights into the strengths and
weaknesses of each option, supports decision-makers in optimal resource allocation and improving supply chain
performance.

B. Sensitivity Analysis

Sensitivity analysis is an essential tool for evaluating the robustness and reliability of decision-making models. In
this study, to examine the impact of changes in criteria weights on the supplier ranking results, a random weight
substitution approach was employed. In this method, the weights of the criteria were randomly reassigned in each run
based on a continuous uniform distribution within a specified range. The analysis process was designed and executed
over 100 independent trials to assess the stability and sensitivity of the model against potential fluctuations in
weighting. These tests have aimed to identify the degree of rank deviation and validate the results of the proposed
method. The outcomes are presented in Table 9, and the distribution of rankings is visually illustrated in Figure 3.

Table 9. Supplier Rankings in 100 Sensitivity Analysis Trials

Rank
Test
Supplier 1 Supplier 2 Supplier 3 Supplier 4
Test 1 3 2 1 4
Test 2 4 3 2 1
Test 3 3 4 1 2
Test 4 3 4 1 2
Test 5 4 3 2 1
Test 6 4 3 2 1
Test 7 4 3 1 2
Test 8 4 3 1 2
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Rank
Test
Supplier 1 Supplier 2 Supplier 3 Supplier 4
Test 9 4 2 1 3
Test 10 4 1 2 3
Test 11 3 2 1 4
Test 12 3 4 1 2
Test 13 3 4 1 2
Test 14 3 4 1 2
Test 15 3 4 1 2
Test 16 3 2 1 4
Test 17 4 3 2 1
Test 18 4 1 2 3
Test 19 4 2 1 3
Test 20 3 2 1 4
Test 21 4 1 2 3
Test 22 3 2 1 4
Test 23 3 4 1 2
Test 24 4 2 1 3
Test 25 3 2 1 4
Test 26 3 2 1 4
Test 27 3 4 1 2
Test 28 4 2 1 3
Test 29 3 4 2 1
Test 30 4 2 1 3
Test 31 3 2 1 4
Test 32 4 3 2 1
Test 33 4 1 2 3
Test 34 4 3 2 1
Test 35 3 4 1 2
Test 36 3 4 2 1
Test 37 3 4 1 2
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Continue Table 9. Supplier Rankings in 100 Sensitivity Analysis Trials

Rank
Test
Supplier 1 Supplier 2 Supplier 3 Supplier 4
Test 38 4 1 2 3
Test 39 2 4 1 3
Test 40 3 4 1 2
Test 41 3 2 1 4
Test 42 4 3 1 2
Test 43 3 4 1 2
Test 44 3 2 1 4
Test 45 4 3 1 2
Test 46 2 3 1 4
Test 47 3 2 1 4
Test 48 3 2 1 4
Test 49 4 2 1 3
Test 50 4 2 1 3
Test 51 4 3 2 1
Test 52 4 3 2 1
Test 53 3 4 1 2
Test 54 3 4 1 2
Test 55 4 1 2 3
Test 56 4 3 2 1
Test 57 3 2 1 4
Test 58 4 2 1 3
Test 59 3 4 1 2
Test 60 3 1 2 4
Test 61 4 1 2 3
Test 62 4 3 2 1
Test 63 4 1 2 3
Test 64 3 2 1 4
Test 65 4 2 1 3
Test 66 4 3 2 1
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Rank
Test
Supplier 1 Supplier 2 Supplier 3 Supplier 4
Test 67 4 2 1 3
Test 68 4 3 2 1
Test 69 4 1 3 2
Test 70 3 4 1 2
Test 71 4 2 1 3
Test 72 4 1 2 3
Test 73 4 1 2 3
Test 74 4 3 1 2
Test 75 4 3 2 1
Test 76 3 4 2 1
Test 77 3 4 1 2
Test 78 2 3 1 4
Test 79 3 1 2 4
Test 80 4 2 1 3
Test 81 4 2 1 3
Test 82 4 1 2 3
Test 83 4 2 1 3
Test 84 4 2 1 3
Test 85 3 4 1 2
Test 86 4 2 1 3
Test 87 4 2 1 3
Test 88 3 4 1 2
Test 89 4 2 1 3
Test 90 3 4 1 2
Test 91 3 4 1 2
Test 92 4 3 1 2
Test 93 4 3 1 2
Test 94 3 1 4 2
Test 95 4 2 3 1
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Continue Table 9. Supplier Rankings in 100 Sensitivity Analysis Trials

Rank
Test
Supplier 1 Supplier 2 Supplier 3 Supplier 4
Test 96 2 3 1 4
Test 97 3 4 1 2
Test 98 3 2 4 1
Test 99 4 1 2 3
Test 100 3 2 1 4

The results of the sensitivity analysis indicate that supplier A; secured the first rank in 66 out of 100 trials,
demonstrating its high stability against changes in criteria weights. Even in scenarios where the weights of key criteria,
such as Technical Quality (C,) or After-Sales Service (Cg), were reduced, A; mostly remained in the first or second
positions. In contrast, supplier A; ranked last (fourth place) in 52 trials and never ranked better than third in any test,
reflecting a consistently poor performance across the evaluated criteria. Suppliers 4, and A, fluctuated in the middle
ranks (second and third). For instance, 4, achieved the second rank in 35 trials but dropped to third or fourth place in
some scenarios, such as trials 2, 5, 6, and 17. Similarly, A, ranked second in 31 trials and third in another 31 trials.
These fluctuations indicate the sensitivity of these suppliers to changes in criteria weights, particularly economic

criteria, such as Competitive Price (C;) and Life Cycle Costs (C3).

Figure 3 clearly illustrates the distribution of supplier rankings. In this chart, A5 is prominently positioned at the top,

demonstrating its consistent stability in the higher ranks. Conversely, A, consistently appears at the bottom of the chart,

exhibiting a pattern of weak and low-variance performance. Suppliers A, and A, show greater dispersion in the middle

ranks, indicating a relative instability of their rankings across different scenarios.
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Figure 3. Distribution of Supplier Rankings in 100 Sensitivity Tests



Journal of Quality Engineering and Production Optimization /Volume 9, Issue 2, Summer & Autumn 2024, PP. 133-156 153

A more detailed analysis reveals that in 60 out of the 66 scenarios where A; ranked first, the technical quality
criterion (C,) was among the two criteria with the highest weight. This confirms that A;’s strong performance in this
criterion played a decisive role in its success. In scenarios where the weights of criteria C, or Cg significantly decreased,
A, occasionally achieved a better ranking, indicating its relative strength in economic criteria.

A notable point in this analysis is that A; never ranked last in any of the 100 tests. This consistent performance
demonstrates the high reliability of supplier A; under varying decision-making conditions. Conversely, the persistently
low ranking of A, stems from weaknesses in technical and service-related criteria, which were clearly reflected across
all scenarios.

To gain a better understanding of the model’s performance, the effect of the parameter A in the CoCoSo method’s
formulas was also examined. This parameter, which plays a crucial role in adjusting the emphasis placed on different
criteria, was varied within the range of 0.1 to 0.9. The results indicated that, in most cases, the supplier rankings
remained stable, and changes in A had no significant impact on the positions of the alternatives. However, at lower
values of A, such as 0.1, greater weight was assigned to the power-sum criteria, which led to a relative improvement in
the ranking of supplier 4, in certain scenarios. This finding suggests that tuning this parameter can influence the
model’s output, and selecting an appropriate value is essential for achieving accurate and balanced results.

Overall, sensitivity analysis and comparisons with established methods indicate that the IVF-Borda-CoCoSo
approach delivers accurate and reliable performance under uncertainty conditions. The method exhibits robustness
against changes in criteria weights, as Supplier A5 consistently ranked first while Supplier A; remained steady in the
last position. This stability provides decision-makers with confidence in the reliability of the model’s outputs across
different scenarios. However, fluctuations in the rankings of intermediate suppliers (A, and A,) underscore the
importance of precise criteria selection and appropriate weighting in the decision-making process.

Moreover, the comparisons with TOPSIS, COPRAS, and CoCoSo indicate that the IVF-Borda-CoCoSo method
excels in managing uncertainties and providing balanced rankings, due to its use of interval-valued fuzzy logic and
integrated scoring approach. Its key features under uncertain conditions ensure the reliability of the model in complex
environments, including advanced uncertainty modeling using IVFSs for precise handling of subjective judgments and
ambiguous data, multi-faceted integration through the combination of evaluation strategies and Borda count to
aggregate diverse perspectives and reduce bias, and stability of results against changes in criteria weights. Ultimately,
this analysis not only confirms the accuracy and efficiency of the proposed method but also assists decision-makers in
precisely identifying suppliers’ strengths and weaknesses, allocating resources more effectively, and making informed
decisions to enhance supply chain performance in the complex domain of organ transplantation.

VI. CONCLUSION

This study introduces an innovative IVF-Borda-CoCoSo method for evaluating and selecting suppliers in organ
transplant networks. By integrating Interval-Valued Fuzzy Sets (IVFSs), objective weighting based on fuzzy Shannon
entropy, and the Borda-CoCoSo aggregation approach, the method provides a precise and flexible framework for
decision-making in complex and ambiguous environments. This method demonstrated a strong capability in handling
uncertainties by integrating multiple perspectives and reducing biases in the evaluation process. Additionally, by
delivering stable and reliable rankings, the approach aids decision-makers in optimal resource allocation and enhances
supply chain performance in the important domain of organ transplantation. The results obtained from this model
indicate that supplier A; demonstrated the best performance among the evaluated alternatives. This superiority was
primarily attributed to its strong performance in key criteria, such as technical quality (C,) and after-sales service (Cg).
In contrast, supplier A, received the lowest score, reflecting its weaker ability to meet the supply chain's requirements.
The other two suppliers, A, and A,, achieved moderate rankings with some fluctuations in performance. To ensure the
model’s reliability, its results were validated using three alternative methods: TOPSIS, COPRAS, and CoCoSo.
Notably, in all these methods, A; was consistently ranked as the top-performing option, demonstrating the proposed
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model’s robustness and high level of reliability. To assess the model’s sensitivity to changes in criteria weights, 100
different analyses were conducted. These analyses revealed that the top ranking of A3 was maintained even with
variations in weight assignments, particularly due to the pivotal role of criterion C4 in preserving this position.
Leveraging interval-valued fuzzy logic, the IVF-Borda-CoCoSo method has proven effective in handling the
uncertainties and complexities inherent in supplier evaluation processes, especially in the highly complex context of
organ transplantation. This approach not only delivers accurate supplier rankings but also provides decision-makers
with a clear understanding of each supplier’s strengths and weaknesses, enabling more targeted resource allocation and
more precise selection.

From a practical perspective, the application of this method can contribute to improving supply chain performance,
enhancing patient safety, and increasing the reliability of organ transplant networks. However, it should be noted that
the approach is partially dependent on expert judgments and external conditions, such as market dynamics or resource
availability. Therefore, future studies are recommended to incorporate additional criteria, such as environmental
sustainability or supply chain flexibility, and to test the model on a larger scale with real-world data. Moreover, the
development of software tools to automate the evaluation process could simplify and accelerate the practical
implementation of this method. Additionally, it is suggested that the model be tested with dynamic data and under
critical conditions to assess its adaptability in unexpected scenarios and evaluate its generalizability to other supply
chain contexts. Overall, the [IVF-Borda-CoCoSo method can be considered a powerful tool for decision-making under
uncertain conditions. It has the potential to play a significant role in improving supply chain management in critical
domains, including organ transplantation.
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