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Abstract –This study explores optimizing sustainable supply chains by integrating vendor-managed inventory 

(VMI) and internet of things (IoT). The research focuses on business-to-business (B2B) and business-to-

customer (B2C) models. While VMI is widely studied in B2B, its B2C application remains limited. This study 

examines the tire manufacturing sector, addressing significant environmental and safety concerns. A multi-

level optimization framework is introduced to minimize costs, reduce carbon emissions and waste, and 

enhance customer safety. Customer safety is introduced as a novel social factor. The density-based spatial 

clustering of applications with noise (DBSCAN) algorithm clusters retailers, improving efficiency and 

reducing computational time. The framework serves very important customers under the VMI strategy, while 

normal customers are excluded. Empirical data from a tire manufacturer validates the framework using the 

Gurobi optimization package. The results demonstrate that applying VMI to all customers significantly 

increases service levels and the objective function value. Conversely, restricting VMI to B2B customers alone 

leads to a decline in both service levels and the objective function. Results confirm the scalability and 

efficiency of the model, with sensitivity analysis showing strong performance under varying parameters. This 

paper explores VMI in B2B and B2C models, offering insights into sustainable supply chain management. 
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I. INTRODUCTION 

A supply chain (SC) encompasses the flow of materials, information, and products from raw material procurement 

to final product delivery (Simchi-Levi et al., 1999). Optimizing SC processes is crucial for improving efficiency, 

reducing costs, and enhancing competitiveness in dynamic markets. However, challenges such as decentralized 

decision-making, conflicting objectives, and limited information sharing persist. Since SCs are interconnected, poor 

coordination often leads to inefficiencies, increased costs, and resource wastage (Kanda & Deshmukh, 2008). 

Vendor-managed inventory (VMI) has emerged as a widely recognized solution to mitigate coordination issues in 

SCs. Under this strategy, the supplier manages the buyer’s inventory (Waller et al., 1999). This strategy creates better 

alignment within the SC by leveraging real-time data sharing. Effective VMI implementation requires advanced 

https://jqepo.shahed.ac.ir/article_4782.html
https://jqepo.shahed.ac.ir/article_4782.html


86 Seifbarghy, M. et al./ Sustainable Distribution and Inventory Planning in Supply Chains under VMI … 

 

 

information technology systems to facilitate real-time communication among SC members. Technologies such as the 

Internet of Things (IoT) have emerged as crucial enablers of VMI. They offer the ability to collect and share data 

seamlessly, further enhancing decision-making and SC coordination. 

The IoT revolution is reshaping SC management by providing the necessary infrastructure for real-time data 

collection and monitoring. IoT devices such as Radio Frequency Identification (RFID) tags and sensors enable 

continuous tracking of inventory levels and product conditions. This capability enhances continuous monitoring, 

allowing for tailored SC processes and cost reductions (Sallam et al., 2023). Moreover, IoT plays a vital role in 

supporting sustainable SCs by minimizing waste, lowering energy consumption, and optimizing resource allocation. As 

the world faces growing environmental challenges, SCs are under pressure to adopt sustainable practices. This is 

especially critical for industries like tire manufacturing, which have significant environmental footprints. 

The growing awareness of environmental and social issues has led to a greater emphasis on sustainable SCs, 

particularly in tire manufacturing where end-of-life (EoL) tires pose significant environmental hazards, including: fires, 

soil contamination, and disease transmission. IoT technology enhances sustainability through improved product 

lifecycle tracking and automated regulatory compliance via RFID tagging. Beyond environmental benefits, IoT 

contributes to social sustainability via real-time tire monitoring, reducing accident rates, and enhancing passenger 

safety. Despite the significance of IoT and VMI, their B2C applications, especially for sustainability and coordination, 

is underexplored. 

Although the VMI strategy has been extensively studied in Business-to-Business (B2B) contexts, its application to 

B2C contexts has not been fully explored. The use of IoT in B2C models provides unique opportunities for real-time 

inventory management at the consumer level. Most sustainability studies in SCs focus on the strategic level, with few 

addressing tactical or operational aspects (Barbosa-Póvoa et al., 2018). Job creation, closely linked to strategic decisions 

and readily quantifiable, is the most studied social criterion, as seen in the study of Hashemzahi et al. (2024). However, 

critical criteria like safety remain largely unexplored despite their significant importance. This study develops a 

comprehensive optimization framework that addresses existing gaps by integrating VMI strategies with IoT 

technologies to support sustainable SCs in the tire industry. The density-based spatial clustering of applications with 

noise (DBSCAN) algorithm is employed to enhance computational efficiency and scalability. By clustering retailers, 

DBSCAN reduces the number of entities in the optimization problem, streamlining the solution process. This approach 

minimizes computational complexity, making it particularly effective for large-scale SCs. The framework is solved with 

the Gurobi optimization solver, validated using real-world data, and its robustness is analyzed under varying operational 

conditions. The major contributions of this study include: 1) A proposed framework that optimizes production and 

distribution in a multi-level SC by incorporating VMI strategies across both B2B and B2C contexts. 2) The 

incorporation of omnichannel delivery to enhance customer service and flexibility. 3) The application of the DBSCAN 

clustering algorithm to improve computational efficiency and scalability in the optimization process. 4) A framework 

that integrates environmental, economic, and social sustainability objectives, emphasizing tire safety as a key social 

factor. 5) The introduction of VIP and normal customer categories to enable differentiated stockout management 

strategies and service levels. 

The remainder of this paper is organized as follows: Section 2 reviews the relevant literature. Section 3 describes the 

problem and presents the mathematical modeling framework. Section 4 outlines the data and discusses the solution 

approach. Section 5 analyzes the results, and Section 6 concludes the study. 

II. LITERATURE REVIEW 

This section critically reviews the literature on four key areas: (A) supply chain management (SCM) with VMI 

strategy, (B) sustainable SCM with VMI, (C) IoT in SCs with VMI integration, and (D) Summary of the literature. 

 



Journal of Quality Engineering and Production Optimization  / Volume 9, Issue 2, Summer & Autumn 2024, PP. 85-106 87 
 

 

A. SCM under VMI strategy 

VMI emerged in the 1980s as a strategy to improve SC coordination and has since been adopted by major 

corporations such as Walmart and Procter & Gamble (Waller et al., 1999). In VMI systems, suppliers manage retailer 

inventory using real-time data, which reduces overall inventory levels, lowers holding costs, and improves production 

planning (Waller et al., 1999; Yao et al., 2010). Additionally, VMI shortens delivery times and enhances customer 

service levels (Claassen et al., 2008). Building on these benefits, researchers have developed various SC models under 

the VMI strategy to optimize inventory, production, and distribution decisions.Various SC models under the VMI 

strategy have been explored, focusing on inventory, production, and distribution decisions. These models are classified 

into three categories: nonlinear programming (NLP), mixed-integer linear programming (MILP), and mixed-integer 

nonlinear programming (MINLP). Cetinkaya and Lee (2000) proposed an NLP model for coordinating inventory and 

transportation decisions in a single-supplier, multi-retailer VMI system. Gharaei et al. (2019) developed a MINLP 

model for a multi-product, three-level SC with VMI and consignment stock (VMI-CS), which integrated green policies, 

penalties, and quality control. Chaudhary et al. (2023) developed the MILP model to compare the VMI strategy with the 

information-sharing approach for inventory management, considering stochastic, non-stationary demand and service-

level constraints. Solution methods for these problems include exact, heuristic, and metaheuristic algorithms. Gharaei et 

al. (2019) used outer-approximation, equality relaxation, and augmented penalty (OA/ER/AP) algorithm, an effective 

exact method for solving the problem. Sadeghi et al. (2015) reformulated an MILP model by incorporating 

replenishment frequency. They employed genetic algorithm (GA) and particle swarm optimization (PSO) algorithm to 

solve the model. Similarly, Kaasgari et al. (2017) developed an NLP model for managing the inventory of perishable 

products in a two-level SC comprising a supplier and multiple retailers, utilizing GA and PSO to solve the model. Lotfi 

et al. (2024) considered VMI-CS in their Viable SC model for healthcare inventory optimization, applying robust 

stochastic optimization and conditional value-at-risk (CVaR) analysis. 

B. Sustainable SCM under VMI strategy  

Sustainability considerations such as greenhouse gas (GHG) emissions, energy consumption, material usage, and 

hazardous waste management have been extensively examined in the context of VMI coordination mechanisms. Bazan 

et al. (2015) analyzed a two-level SC, evaluating GHG emissions from production and transportation by comparing 

classical coordination with VMI-CS for environmental and operational impacts. Expanding this work, Bazan et al. 

(2017) developed a closed-loop SC incorporating product remanufacturing and carbon emission constraints, while 

optimizing lot sizes and replenishment frequencies for cost minimization. Similarly, Marchi et al. (2019) analyzed 

carbon emissions and tax costs, identifying cost-minimizing strategies through a comparison of classical mechanisms 

and VMI-CS. 

C. IoT in SCs and integrating of VMI and IoT 

As SCs increasingly adopt digital technologies, the role of IoT in inventory management and product delivery has 

garnered attention, though studies remain limited. Szmerekovsky and Zhang (2008) pioneered the study of VMI with 

RFID technology, demonstrating its potential to enhance inventory management and SC efficiency by enabling real-

time visibility of product movement and inventory levels.  Their findings revealed that RFID optimizes inventory 

policies more effectively than traditional systems while maintaining cost efficiency. Fan et al. (2014) examined RFID in 

both centralized and decentralized SCs, focusing on a single retailer and supplier. They found that RFID improves SC 

transparency, inventory accuracy, and process efficiency while reducing stockout costs. Weißhuhn and Hoberg (2021) 

proposed an IoT-enabled smart system for VMI-based inventory and delivery planning. They used a simulation-based 

analytical model to optimize decisions in a two-level SC. Their findings highlighted IoT's potential to improve SC 

coordination and efficiency. 

Bafandegan Emroozi et al. (2023) introduced a VMI model for perishable products in multi-supplier, multi-retailer 

SCs, leveraging IoT for quality monitoring and metaheuristics for optimization. Their approach reduced waste, 

improved quality, and enhanced sustainability while exploring IoT's potential in blockchain-enabled SC research. 
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Cammarano et al. (2023) analyzed the integration of blockchain with RFID, IoT, and VMI in the Parmigiano Reggiano 

SC, demonstrating that combining blockchain with VMI improved SC performance by reducing order preparation 

times, minimizing incomplete orders, and enhancing transparency. 

Furthermore, in the realm of reverse logistics, Liu et al. (2018) proposed an IoT-based reverse logistics model that 

reduced costs and carbon emissions. Similarly, Paksoy et al. (2016) developed a mathematical model for closed-loop 

SCs using IoT data to optimize collection, transportation, and recycling. These studies highlight IoT's role in both 

forward and reverse logistics. 

D. Summary of the literature 

This study builds upon and distinguishes itself from prior works, as outlined in Table 1. The table compares SC 

structure, VMI type (B2B or B2C), SC levels, reverse flow inclusion, product type (single or multi-type), demand 

model, and uncertainty parameters. Additional comparisons include shortage management policy, fleet constraints, 

optimization model, solution method, sustainability metrics, and IoT implementation. 

Weißhuhn and Hoberg (2021) developed an IoT-enabled VMI system for two-level B2C SCs using simulation-

based models. This study extends their framework by integrating both B2B and B2C models into a multi-echelon SC 

framework with forward and reverse flows. It incorporates IoT applications for tire safety monitoring and employs 

DBSCAN clustering to group retailers effectively.  

Additionally, the model uses MILP optimization via Gurobi to address three sustainability objectives. A key 

advancement is the introduction of customer segmentation (VIP and normal), enabling differentiated service levels and 

tailored stockout policies. The DBSCAN clustering further enhances scalability and computational efficiency. This 

research integrates B2B and B2C models with reverse logistics flows and IoT-driven data analytics while considering 

comprehensive sustainability factors, including economic, environmental, and social aspects. Customer safety is 

included as a critical social objective in the model. The study provides a hybrid MILP solution to address modern SC 

challenges effectively. 

Table I. Summary of recent studies 
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Szmerekovsky & Zhang (2008)  B2B SV-SB - S S  LS - - NL Max-P - EX -  

Darwish & Odah (2010)  B2B SV-MB - S D - - - - NL Mn -C - Heu - - 

Sacone & Siri (2010)  B2B SS-SC - S F - -   MILP Mn -C - Heu - - 

Braglia et al. (2014)  B2B SV-SB - S S  - - - NL Mn-C - Exc - - 

Fan et al. (2014)   B2B SV-SB - S S  B - - NL Max-P - EX -  

Bazan et al. (2015)  B2B SV-SB - S D - -   MINLP Mn -C - Exc  - 

Sadeghi et al. (2015)  B2B SV-MR - S F  B - - NL Mn -C - Meta - - 

Escuín et al., (2017)  B2B SS-MB - S S  LS - - NL Mn -C - Heu - - 

Bazan et al. (2017)  B2B SM-SR  S D - -   NL Mn -C - Exc  - 

Kaasgari et al. (2017)  B2B SV-MR - S S  N - - NL Mn -C - Meta - - 
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Continue Table I. Summary of recent studies 
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Cai et al. (2017)  B2B MS-SR - S S  LS - - NL Mx-P - Exc - - 

Chen (2019)  B2B SM-MR - S F - N   MINLP Mx- P - Meta - - 

Gharaei et al. (2019)  B2B SV-MB - M F  - - - MINLP Mn -C - Exc - - 

Weißhuhn & Hoberg (2021)  B2C SV-MB - S S  LS - - MILP Max-P - Heu -  

Bafandegan Emroozi et al. (2023)  B2B SV-MB - S S  B   MILP Mn -C,Mn- waste - Meta   

This Paper  B2B, B2C SS-MR-MB  M D - B,LS   MILP Mn -C  Exc   
   

SC level: SV (Single Vendor), SB (Single Buyer), MB (Multiple Buyer), SS (Single Supplier), MS (Multiple Supplier), MC 

(Multiple Customer), Product type: Single Product (S), Multiple Product (M), Demand (Deterministic (D), Stochastic (S), Fuzzy (F), 

Shortage (Backordered (B), Lost Sale (LS), Not allowed (N)), Model (Nonlinear (NL), Mixed Integer Linear Programing (MILP), 

Mixed Integer Non Linear Programing (MINLP)), Objective (Min Cost (Mn-C), Max Profit (Max-P)),Solving Method (Exact (Ex), 

Heuristic (Heu), Meta (Metaheuristic)) 
  

III. MODELING AND ANALYSIS  

A. Problem statement 

A multi-level SC encompasses a manufacturer, multiple retailers, final consumers, and collection centers. The given 

product is a tire with IoT sensors, which provides point-of-consumption (POC) data, including temperature, pressure, 

and mileage. The manufacturer produces and distributes different kinds of products weekly through retailers' diverse 

fleets of vehicles. Retailers deliver new products to customers and collect EoL products, which are then transferred to 

collection centers. An EoL product has completed its lifecycle after consumption. 

Final customers are categorized into two groups: very important (VIP) and normal customers. The manufacturer 

manages VIP customer orders in a B2C context through a VMI strategy. VIP customers' product status is monitored 

using IoT sensors that track temperature, pressure, and distance data. The manufacturer places orders based on IoT POC 

data when products reach their replacement threshold. Normal customers place their orders themselves. The role of IoT 

technology for this customer category is limited to issuing alerts for product replacement, leaving the responsibility for 

ordering and product procurement to the customer. 

Selling and delivering products from retailers to customers has been examined through an omnichannel approach, 

encompassing the following three modes: 1) Traditional purchase and in-store pickup at the retailer, 2) Online ordering 

and in-store pickup at the retailer, 3) Online ordering and delivery to the customer's address All three modes are 

available for normal customers, while VIP customers can only select from the second and third modes. Each customer 

can select from their available options. 

Customers can only order and receive deliveries from a specific set of retailers, determined for each customer based 

on a predetermined maximum distance to retailers. To ensure every customer has at least one assigned retailer, the 

system implements a rule: if the retailer set is empty, the nearest retailer will be added. Stockouts occur when retailers 

are unable to fulfill customer orders, with different handling strategies applied to each customer category. Normal 

customers face stockouts if orders are not fulfilled within the designated lead time, primarily resulting in lost sales. The 

lead time varies by delivery method: zero periods for traditional purchases with in-store pickup and one period for 
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online purchase with delivery. VIP customers must be supplied even during stockouts, with a penalty fee applied for 

each stockout day. However, a waiting period of up to one day is exempt from the penalty. 

The model incorporates both environmental and social aspects. From an environmental perspective, it addresses 

carbon emissions from production and distribution, as well as EOL product recycling. A penalty is imposed if EOL 

products are not returned to recycling centers. Additionally, a carbon cap policy limits emissions across the SC, 

allowing for trading or purchasing additional capacity if the cap is exceeded. 

The social aspect relates to customer safety, as every product has a safety level throughout its lifecycle. Failing to 

replace a product after its critical lifespan significantly decreases its safety, leading to lower customer satisfaction and 

delayed deliveries. So, safety cost is considered a social aspect of sustainability, and the manufacturer should pay a 

penalty for safety if VIP customers face stockout. 

B. Model assumptions 

This study assumes that real-time retailer inventory data is accessible through VMI systems and IoT technology. 

Products are shipped instantaneously from the manufacturer to retailers. Each customer, whether normal or VIP, places 

only one order within the planning horizon. The model also assumes an omnichannel distribution strategy, including in-

store purchases, online orders with in-store pickup, and home delivery. 

C. Indices and sets 

The indices and sets used in modeling the problem are presented below. 

Sets: 

Normal Customers:                  

VIP Customers:               

Total Customer:          

Retailers:             

Customers Assignable to Retailer        

Retailers Assignable to Customer       

Collection Centers:                 

Time Periods:                

Sales Channels:           

Product Types:                

Product Type for Customer   (single member):       

Geographical Areas of Retailers:               

Retailers Located in Geographical Area  :      

Vehicles from Manufacturer:                 

Vehicles for Collection Centers:               

Vehicles for Collection Center   (no overlap between subsets):         

Channels Selected by Customer  :         

 

Indices: 

Customer Index:     Retailer Index:      

Collection Center Index:       

Time Period Index:       

Sales Channel Index for Customer:      

Product Type Index:       

Geographical Area Index for Retailers:       
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Manufacturer's Vehicle Index:       

Collection Center's Vehicle Index:       

D. Variables and parameters 

The parameters and variables employed in this model are outlined in Tables II and III. 

Table II. Parameters 

Holding Costs 

    Fixed holding cost per unit of product   for the manufacturer in each period. 

     Fixed holding cost per unit of product   for retailer   in each period. 

Fixed Replenishment Costs 

    Fixed cost for online inventory monitoring of retailer   in each period for the manufacturer. 

Emissions 

   Carbon emissions per unit of product type   produced by the manufacturer. 

   Excess carbon emission cost per unit for the manufacturer. 

     Carbon emissions per unit distance by vehicle  . 

      Carbon emissions per unit distance by vehicle   . 

Customer-Related Parameters 

    Order placed by customer   in period   (binary: 0 or 1). 

   Fixed safety cost per unit of shortage for VIP customers in each period. 

Collection Costs 

    Penalty for uncollected units of consumed product. 

Shortage Costs 

   Shortage penalty cost per unit of product   for VIP customers in each period. 

  
  Shortage penalty cost per unit of product   for normal customers in each period. 

Product-Related Parameters 

    Price per unit of product type  . 

Production Costs 

   Production cost per unit of product type   by the manufacturer. 

Capacities 

   Fixed carbon emission capacity across all periods for the manufacturer. 

    Fixed production capacity for the manufacturer in each period. 

    Fixed storage capacity for the manufacturer in each period. 

     Fixed storage capacity for retailer   in each period. 
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Continue Table II. Parameters 

Capacities 

     Capacity of vehicle   for the manufacturer. 

      Capacity of vehicle    at the collection center. 

     Fixed storage capacity for consumed products at retailer   in each period. 

Transportation Costs and Distances 

    Distance between retailer   and customer  . 

     Distance between retailer   and collection center  . 

    Distance between the manufacturer and geographical area g. 

     Transportation cost per unit distance by vehicle   for the manufacturer. 

      Transportation cost per unit distance by vehicle     

   
Fixed transportation cost per product per unit distance from any retailer to any customer for 

the manufacturer. 

      Transportation cost per unit of product   for the manufacturer by vehicle  . 

      Fixed transportation cost per unit of product for the collection center by vehicle   . 

Random Parameter 

𝛼 Normally distributed random parameter (μ = mean, σ = variance) 

Auxiliary Parameters 

  A sufficiently large positive constant used to enforce logical constraints. 

Table III. Variables 

Collection Variables 

    
  

 Amount of product transported from retailer   to collection center   in period t by vehicle   . 

    
  

 
Binary variable, 1 if transportation occurs from retailer   to collection center   in period   by 

vehicle   : 0 otherwise. 

Inventory Variables 

     Inventory of product   at the manufacturer at the end of period  . 

      Inventory of product   at retailer   at the end of period  . 

     Inventory of consumed products at retailer   in period  . 

Shortage Variables 

    Binary variable, 1 if VIP customer   experiences a shortage in period  ; 0 otherwise. 

     Binary variable, 1 if normal customer   experiences a shortage in period  ; 0 otherwise. 

Production Variables 

     Amount of product   produced in period   by the manufacturer. 
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Continue Table III. Variables 

Distribution Variables 

    
  

Binary variable, 1 if delivery of product from the manufacturer to at least one retailer in region   in period   

by vehicle   occurs; 0 otherwise. 

    
  Amount of product   transported from the manufacturer to retailer   in period   by vehicle  . 

   
  

Binary variable, 1 if delivery of product from the manufacturer to retailer   in period   by vehicle   occurs; 0 

otherwise. 

     
  

Binary variable, 1 if delivery of product   to customer i by retailer   in period   via channel   occurs; 0 

otherwise. 

     Binary variable, 1 if retailer   receives consumed product from customer    in period  ; 0 otherwise. 

     Binary variable, 1 if transportation of product from retailer   to customer   in period   occurs; 0 otherwise. 

    Auxiliary binary variable,1 if a shortage condition is active for VIP customer   in period  ; 0 otherwise. 

     Auxiliary binary variable, 1 if a shortage condition is active for normal customer   in period  ; 0 otherwise. 

E. Mathematical modeling of the problem 

The problem objective includes three components: economic, environmental, and social objectives. The economic 

objective (Equation (1)) comprises 11 terms. The first two terms calculate manufactur’s production and inventory 

holding costs. The third and fourth terms calculate transportation costs from manufacturers to retailers, including both 

fixed transportation expenses per distance and variable costs per product. The fifth term covers the fixed costs of 

inventory screening and monitoring at each retailer, which add to the manufacturer's overall expenses. The sixth term 

addresses retailers' inventory holding costs. The seventh term calculates the manufacturer's delivery cost in the 

omnichannel approach, including online ordering and home delivery. The economic objective also incorporates 

collection center costs. The eighth and ninth terms address transportation expenses for moving EoL products from 

retailers to collection centers, covering fixed and variable costs. The final terms concern shortage costs, which depend 

on customer type. For the VIP customers, product unavailability leads to backorders, reflected in the tenth term as a 

delay penalty. For normal customers, shortage costs represent lost sales, as shown in the eleventh component. 

The environmental objective addresses costs from carbon emissions to be limited during production and 

transportation and penalties for uncollected EOL products: The first term of Equation (2) calculates excess carbon 

emission costs based on emissions exceeding the established cap. The second term quantifies penalties for uncollected 

EOL products, determined by the shortfall between delivered products and scheduled EOL collections. Safety costs 

represent the social objective function, including penalties for late deliveries to VIP customers, which underscore the 

manufacturer's responsibility for customer safety. This cost is reflected in Equation (3). 
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Constraint (5) ensures total production does not exceed the manufacturer's capacity. Constraint (6) limits total 

inventory to the available storage at the end of each period. Under the VMI strategy, Constraint (7) ensures that the 

manufacturer's inventory at retailer locations does not exceed the retailer's storage capacity. Transportation constraints 

are essential to the model. Constraints (8) and (9) limit the quantity of products transported from the manufacturer to 

regions and from retailers to collection centers based on vehicle capacity. Constraint (10) ensures that each vehicle 

visits only one geographical region per period. 

The inventory balance constraint ensures that goods entering a warehouse equal those leaving plus inventory 

changes. Constraint (11) balances the manufacturer's inventory with production and dispatches to retailers. Constraint 

(12) balances retailer inventory with incoming products, prior stock, and customer deliveries. Constraint (13) maintains 

balance between the arrival EoL products and previous stock levels for each retailer. Constraint (14) ensures the 

manufacturer's production quantity and inventory meet demand in each period. 

Several constraints govern the interaction between binary and continuous variables in the model. Constraint (15) 

ensures that dispatched quantities from the manufacturer to each retailer are positive only if transportation occurs. 

Constraint (16) ensures that quantities of EoL products dispatched from the retailer to the collection center are positive 

only if transportation is activated. Constraints (17) and (18) require each vehicle in a region deliver to at least one 

retailer. Constraint (19) ensures a retailer delivers to a customer within a specific period only if the delivery decision 

variable is active. Finally, Constraints (20) and (21) ensure that shortage and delivery variables cannot take positive 

values simultaneously for any customer. The following constraints regulate product delivery and demand fulfillment. 

Constraint (22) ensures VIP clients receive a product only if they placed an order in the current or previous period. 

Constraint (23) allows normal customers to receive a product if ordered within the last two periods, with a maximum 

one-period wait time. Constraint (24) ensures that each customer receives delivery through the designated channel only 

once per period. 

EOL product collection constraints include: Constraint (25), which links collected EOL quantities to customer 

deliveries, approximated deterministically using a normal distribution for α, and Constraint (26), which enforces storage 

capacity limits for EOL products at retailers. 

Customer shortage constraints (27–41) define and manage shortages for VIP and normal customers: Equation (27) 

calculates VIP shortages as the difference between ordered and delivered quantities within the lead time, penalizing 

delays beyond this threshold. Linearization is achieved through Equations (28–32) using binary variable    . Constraint 

(33) quantifies shortages for normal customers, linearized through Constraints (34–37) using binary variable     . 

Constraint (38) activates          . Constraints (39) and (40) restrict           to at most one activation across 
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periods. Constraints (41) and (42) define the model's specific properties of decision variables. 

IV. RESULTS  

A. Case study and input data 

The input data for this study were obtained from a tire manufacturer in Iran, with the following specifications: 

Information regarding vehicle types, transportation costs, and loading and transportation expenses is provided in 

Appendix A (Tables 1 and 2). The product types considered in this study, along with their parameters such as price, 

production cost, and holding cost for each product, are detailed in Table 3 of Appendix A. Furthermore, parameters 

related to production and storage capacities for both the manufacturer and retailers are summarized in Tables 4 and 5 of 

Appendix A. A portion of the factory's total capacity is allocated to the production and storage of these specific product 

categories, while a proportion of the retailers' capacity is dedicated to handling these products. Emission parameters 

related to production and transportation are detailed in Table 6 of Appendix A. The company supplies a total of 290 

retailers, whose geographical locations and coordinates are listed in Table 7 of Appendix A. Since collection centers for 

the products do not currently exist, hypothetical locations were determined based on the criterion that at least one 

collection center must be located within a a 100-kilometer radius of each retailer. Appendix A (Table 8) provides the 

details of these hypothetical collection centers. Furthermore, parameters such as penalties for delivery delays and 

customer safety costs, which are not currently available, were assumed to facilitate the analysis conducted in this study. 

B. Model optimization and solution methods 

The proposed optimization model was implemented in Python and solved using the Gurobi solver. Implementation 

details, including the associated code, are provided in Appendix B. The computational experiments were conducted on a 

system with a 7-core processor, 11th-generation CPU, and 16 GB of RAM. 

C. Input Data Preparation 

Retailers were clustered geographically, using the DBSCAN algorithm. This algorithm identifies clusters by 

analyzing the density of points within a defined area and can also detect noise points. Two key parameters for the 

DBSCAN algorithm are epsilon and min_samples. The epsilon parameter in the DBSCAN algorithm was set to 100 km 

to achieve a balance between clustering accuracy and retailer spatial distribution. Smaller values could result in 

fragmented clusters, while larger values might group geographically distant retailers, reducing analytical precision. This 

selection ensures meaningful and logically consistent cluster formation for the study. The minimum number of points 

required to form a cluster was set to 1. The Haversine formula was used to calculate the distance between two 

geographic locations, accounting for the Earth's curvature to provide accurate measurements. The clustering results, 

which group retailers into various geographic regions, are visualized in Figs. 1 and 2. 

D. Solution method 

The proposed model was solved using Gurobi, a powerful MILP solver that employs advanced algorithms like 

Branch-and-Bound, Cutting Planes, and Parallel Computing for efficient problem-solving (Bixby, 2012). The model 

was solved under different scenarios with baseline parameters detailed in Table IV. 

To evaluate the performance of the proposed model, two key scenarios were tested: one excluding customer 

segmentation and the other without applying the clustering method. These scenarios were designed to quantify their 

respective impacts on: service levels, computational efficiency, and overall objective value. 

The base scenario yields a total objective value of 79,616. When prioritizing only VIP customers (excluding normal 

customers), the service level improves by 6%, and the objective value rises to 98,737. Conversely, when all customers 

are treated as normal under a B2B VMI strategy, the objective value drops significantly alongside a 20% decline in 
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service level. These results emphasize how customer prioritization enhances both profitability and service 

efficiency.The no-clustering scenario results in a slight increase in the objective value to 80,823. However, the solution 

time rises significantly to 639.2 seconds, nearly 200% longer than the base scenario. This increase occurs due to greater 

computational complexity, despite the decrease in simplex iterations to 134,314. 

These findings highlight trade-offs between model complexity, efficiency, and service levels, underscoring the need 

for balanced segmentation and clustering to optimize SC performanc. 

Table IV.  Parameters and Results of Solving the Baseline Problem 

Baseline Problem Parameters 

Initial inventory of retailers (per product) 0 Number of normal customers and VIPs 250,250 

Carbon emission limit for production per period 

(kg) 
22000 Number of each type of manufacturer vehicles  5 

Carbon emission limit for transportation (kg) 20000 Number of each type of collection center vehicles 2 

Penalty for each uncollected product 30 Initial inventory of the manufacturer (per product) 10 

Safety penalty per product  

(percent of product's price) 
20% Number of periods considered T=5 

Emission cost 0.05 
Shortage cost for normal customers  

(percent of product's price) 
1% 

Fixed screening cost 1 
Shortage cost for VIP customers (percent of 

product's price) 
10% 

Results of Solving 

Number of Variables 
Initial Heuristic 

Simplex 

Iterations 
Solution Time (s) Objective Value MIPGAP 

Continious Binary 

476050 293650 95410.40 1189090 250 79827 4.00% 

 
            

 

 

 

 

 

 

 

 

 

 

Fig. 1. Group retailers into various geographic regions 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Group retailers in Iran Map 
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E. Sensitive analysis of model parameters 

Optimization models play a pivotal role in addressing SC complexities, yet their performance depends significantly 

on key parameter variations. This section examines the impact of these variations on computational efficiency and 

solution quality, providing insights for achieving an optimal balance between accuracy and computational feasibility. 

 MIP GAP Variation: As shown in Fig. 3, reducing the MIP gap improves objective value. However, Fig. 4 

shows that it significantly increases solution time (correlation: 0.99). For example, reducing MIP gap from 

10% to 2.5% enhances the objective value from 82,430 to 79,299 but leads to an exponential rise in solution 

time (126 to 26,021 seconds). Moderate MIP gap values (3%–5%) offer a balanced trade-off between solution 

quality and computational efficiency. 

 Variation in Number of Customers: Table VI illustrates the impact of customer count on model 

performance. As shown in Fig. 5 and Fig. 6, increasing the number of customers raises model complexity, 

which is reflected in higher variable counts and greater computational effort. For instance, with 5,000 

customers, the solution time rises to 15,674 seconds, and the objective value reaches 840,395. These results 

demonstrate the framework’s ability to scale efficiently while maintaining a balance between computational 

time and solution quality. 

Table V. Results of Solving the Problem with Different MIP Gaps 

MIP GAP% Simplex Iterations Solution Time (s) Objective Value 

9.23 136023 126 82430 

7.88 230101 285 82258 

5.99 288673 415 81046 

4.99 381704 695 80579 

3.89 443873 928 79819 

3.50 641856 1275 79773 

3.00 1189090 4242 79616 

2.50 4128336 26021 79299 

2.40 7895510 41977 79252 

Table VI. Results of Solving the Problem with Different Numbers of Customers 

Number of 

Customers 

Numver of Continous 

Variable 

Number of Binary 

Variable 

Initial 

Heuristic 

Simplex 

Iterations 

Solution Time 

(s) 

Objective 

Value 

100 454320 245790 10774 1619435 22897 10743 

200 460255 258760 39726 989921 2207 28487 

500 476050 293650 95410 3552756 10858 79611 
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Continue Table VI. Results of Solving the Problem with Different Numbers of Customers 

Number of 

Customers 

Numver of Continous 

Variable 

Number of Binary 

Variable 

Initial 

Heuristic 

Simplex 

Iterations 

Solution Time 

(s) 

Objective 

Value 

700 483900 311550 111760 1801580 7032 96259 

1000 498320 343690 155760 2458834 3360 137181 

1600 527260 408170 249303 798728 6986 205633 

3000 597375 563800 549549 2048637 6278 476868 

4000 647330 674710 819052 4301632 12650 648928 

5000 698800 788650 1118280 1971828 15674 840395 

 

 

 

 

 

 

 

 

 

                             
Fig. 3. Variation in solution time with respect to  

MIP gap 

 

 

 

 

 

 

 

 

                           
Fig. 4. Variation in objective value with respect to  

MIP gap 

     

 

 

 

 

 

 

 

 

 

Fig. 5. Variation of binary and continuous variable  

with respect to Number of Customers 

 

 

 

 

 

 

 

 

 

     
Fig .6. Variation of solution time with respect to  

Number of Customers 

 



102 Seifbarghy, M. et al./ Sustainable Distribution and Inventory Planning in Supply Chains under VMI … 

 

 

 Safety Cost Variation: As shown in Table VII increasing in safety cost for VIP customers increases both 

solution time (Fig. 7) and objective value (Fig. 8). The shortest solve time (241 seconds) occurs at a penalty of 

10, and the longest (18,767 seconds) occurs at a penalty of 25. Penalties between 10 and 15 balance objective 

value improvement with computational efficiency, while penalties above 20 show diminishing returns. 

 Emission cost variation: Computational analysis shows the model performs effectively at carbon emission 

costs of 0.01–0.05, remaining feasible up to 0.1, though with increased computational effort (see Fig. 9). 

Beyond this threshold, solution divergence occurs. Table VIII and Fig. 10 illustrate an inverse relationship 

between emission costs and objective values, with 0.05 being the optimal balance for efficiency and feasibility. 

Table VII. Sensitivity Analysis of Safety Cost Impact on Solution Performance 

Safety cost Initial Heuristic Simplex Iterations Solution Time (s) Objective Value 

5 66934 169271 388 52769 

10 75034 133461 241 63941 

15 84513 242386 506 73953 

20 96940 418956 679 79773 

25 83512 5408578 18767 83501 

30 87790 1083255 2539 85279 

35 87656 1372483 4354 85778 

Table VIII. Sensitivity Analysis of Emission Cost Impact on Solution Performance 

Emission cost Initial Heuristic Simplex Iterations Solution Time (s) Objective Value 

0.01 99876 445808 674 85342 

0.02 98329 464012 798 84551 

0.05 95410 819109 1033 79919 

0.1 91933.2 431025 1714 77041 

0.5 66003 * * * 

1 37410 * * * 

5 -188754 536375 2800 -452535 

10 -439712 221486 558 -991928 

20 -1050130 66969 179 -2039839 

50 -2886890 65788 53 -5320635 

*Not Found in limited time to algorithm 

 Fleet Size variation: Table IX illustrates the impact of fleet size variations on model performance. Fig. 11 

demonstrates an exponential growth in computational time with increasing fleet sizes, while Fig. 12 shows the 

associated improvement in objective value. Additionally, the analysis reveals that mixed fleet configurations 

(e.g., [5, 5, 5, 10, 10]) offer a better balance, while larger homogeneous fleets show diminishing returns in 

objective value with increased computation time. 
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Fig. 7. Variation of Solution Time with respect to  

Penalty of Delay 

 

 

 

 

 

 

 

 

     
Fig. 8. Variation of Object Value with respect to  

Penalty of Delay 

 

 

  

 

 

 

 

 

 

 

 

Fig. 9. Variation of Solution Time with respect to  

Emission Cost 

 

 

 

 

 

 

 

 

 

Fig. 10. Variation of Object Value with respect to  

Emission Cost 

Table IX. Results of Fleet Size Variation Analysis 

Number of each type of Vehicle 
Fleet 

size 
Binary Continous Initial Heuristic Simplex Iterations 

Solution 

Time (S) 

Objective 

Value 

[2,2,2,2,2] 10 230350 258550 89459 317088 432 80223 

[3,3,3,3,3] 12 240900 294800 90317 272566 355 79576 

[5,5,5,5,0] 20 251450 331050 92481 394519 602 80180 

[5,5,5,5,5] 25 262000 367300 92635 325085 458 79272 

[5,5,5,5,10] 30 272550 403550 92648 363076 624 78410 

[5,5,5,10,10] 35 283100 439800 91628 352859 748 79148 

[5,5,10,10,10] 40 293650 476050 92669 386797 745 78530 

[5,10,10,10,10] 45 304200 512300 91369 417872 1109 78665 

[10,10,10,10,10] 50 548550 314750 95725 843195 4721 79282 

[10,10,10,10,20] 60 621050 335850 95249 836052 6528 79140 
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Fig. 11. Variation of Solution Time with respect to  

Fleet size 

 

 

 

 

 

 

 

 

 

          
Fig. 12. Variation of Objective Value with respect to  

Fleet size 

V. CONCLUSION  

This study presents an integrated framework for optimizing sustainable SCs by combining VMI strategy with IoT 

technologies. The framework addresses both B2B and B2C models, extending the application of VMI to B2C SCs, a 

critical yet underexplored area in the literature. Sustainability studies in SCs often focus on the strategic level and social 

criteria like safety remain overlooked despite their importance. By considering customer safety as a key factor in social 

sustainability, the study fills these critical gaps. The multi-objective optimization model balances economic, 

environmental, and social objectives. It aims to reduce operational costs, minimize carbon emissions, and enhance 

customer safety. By leveraging IoT for real-time monitoring, the framework ensures timely product delivery to maintain 

customer safety, particularly for VIP customers under the VMI strategy. Safety is treated as a social objective and 

calculated based on delivery delays. Furthermore, the framework incorporates a penalty system for EoL product 

collection. The novel categorization of customers into VMI and normal segments allows for customized stockout 

strategies, while integrating safety parameters reflects a comprehensive approach to sustainability. 

The framework has been validated using real-world data from the tire manufacturing sector, demonstrating its 

scalability and relevance for industries with significant environmental impacts. Empirical results from Gurobi confirm 

its effectiveness in reducing costs, minimizing emissions, and enhancing safety. Additionally, the use of clustering 

algorithms, such as DBSCAN, improves computational efficiency, while sensitivity analysis underscores the 

framework's robustness under different conditions. 

Despite the promising results, this study acknowledges certain limitations. First, the model assumes static customer 

demand, which may limit its ability to adapt to unforeseen disruptions, such as changes in SC shifting customer 

preferences. Future research should focus on enhancing the framework's adaptability by incorporating additional real-

time data streams, including SC disruptions and customer behavior patterns. Additionally, while validated in the tire 

industry, further studies are needed to generalize the framework to other sectors and geographical regions. 

This study bridges a critical gap in sustainable SC management by presenting a unified framework integrating VMI 

and IoT technologies for both B2B and B2C models. The framework delivers actionable insights for high-

environmental-impact industries, providing a clear a pathway to align economic, environmental, and social objectives. 

By prioritizing customer safety, timely delivery, and EoL product collection, the framework advances sustainability and 

operational efficiency. 
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