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Abstract – While the evaluation of warehouses' efficiency through various methods has been increasingly 

prominent in recent times, this study stands out as the pioneering attempt to evaluate the efficiency of cross-

docking systems. To this end, this study delves into a detailed analysis of a cross-docking system's structure, 

taking into account a wide array of factors that impact its operational performance, such as inbound and 

outbound doors, different modes of transportation, inspection processes, kitting activities, storage 

procedures, retrieval tasks, and staging operations. A comprehensive range of key performance indicators 

(KPIs) is recommended for every aspect related to digitization, automation, sustainability, resiliency, and 

lean principles. A new slack-based measure network data envelopment analysis (SBM-NDEA) model is 

developed to assess the efficiency of cross-docking systems with regard to undesirable factors. What is more, 

a novel hybrid uncertainty method is presented, which incorporates fuzzy reasoning techniques and 

Neutrosophic fuzzy programming to address uncertainties in the recommended KPIs and quantify qualitative 

assessments. Ultimately, a case study is analyzed to highlight the efficacy and validity of the developed model 

and uncertainty methodology. The findings reveal that the simultaneous and effective application of pre-

distribution and post-distribution policies can boost the efficiency of the analyzed system by 33%. 

Furthermore, modifying the layout to remove unnecessary transportation activities can result in a 21% 

improvement in efficiency. 
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I. INTRODUCTION 

Cross-docking is a logistics concept that connects intermediate points in transportation systems. Upon the arrival of 

supplies via inbound trucks, they are consolidated, sorted based on their ultimate destination, and subsequently moved 

through a cross-dock for direct loading onto outbound vehicles (Vahdani and Zandieh, 2010; Stephan and Boysen, 

2011; Vahdani and Shahramfard, 2019; Kargari Esfand Abad et al., 2019; Kiani Mavi et al., 2020; Torbali and Alpan, 

2023). The outbound trucks travel directly to the next destination along the distribution route. This method differs from 

conventional warehouses as it reduces the quantity of stored items, enabling all deliveries to leave the cross-dock within 

a day on average (Mousavi et al., 2014; Abad et al., 2018; Acevedo-Chedid et al., 2023). A cross-docking system is  
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primarily designed to consolidate numerous smaller shipments from different shippers and receivers, which enables the 

movement of full truckloads (Vahdani et al., 2010; Reddy et al., 2017; Pan et al., 2021; Liu and Li, 2023). As a result, 

hub-and-spoke distribution networks supersede conventional point-to-point delivery systems, leading to cost savings in 

transportation (Javanmard et al., 2014; Mousavi and Vahdani, 2016, 2017; Liu and Li, 2023; Jabbouri et al., 2023). 

Indeed, the concept of cross-docking is increasingly being adopted across industries for its ability to consolidate cargo 

during transportation. Shippers benefit from reduced freight costs when transferring full trucks, while receiving 

departments also gain from fewer truck deliveries (Kuo, 2013; Ghomi et al., 2023). While it is beneficial for the 

environment to minimize truck deliveries and traffic in urban settings, the complexity of organizing the transport fleet 

increases when vehicles are routed through cross-docking (Vahdani, 2019; Mousavi et al., 2019; Benrqya and Jabbouri, 

2023; Monaco and Sammarra, 2023). 

Undeniably, it is essential to have methods in place to assess the accuracy and alignment of processes with the 

system's objectives. Key performance indicators (KPIs) serve as control tools to collect information on planned 

activities and their progress (Krauth et al., 2005; Pajić et al., 2021). Consequently, they can provide insights into the 

quality of the operational planning process. Additionally, the indicators facilitate the development of action plans and 

improve the control mechanisms. To realize this, they assess and amend the differences between actual occurrences and 

projected expectations. In conclusion, this contributes to an improvement in the overall performance of the system 

(Cosma et al., 2024). 

Particularly, in the realm of warehousing systems and distribution center management, the primary KPIs are 

categorized into six general groups: general, cost, time, communication and information technology, social 

responsibility, and environment (Faveto et al., 2024). Nevertheless, given the numerous and diverse KPIs in use, it is 

essential to have a method that can consolidate them to create a streamlined measure for evaluating warehouse 

performance. As a result, data envelopment analysis (DEA) has emerged as a prominent and effective approach for this 

task (Cooper et al., 2011), utilizing KPIs as inputs and outputs (Faber et al., 2018; Dixit et al., 2020; Alidrisi, 2021; 

Nong, 2022). 

The subsequent literature review reveals that issues related to cross-docking systems have not been adequately 

addressed in the existing studies, which predominantly concentrate on evaluating the efficiency of standard warehouses 

and distribution centers (Rodrigues et al., 2018). Furthermore, conventional DEA models have been utilized in these 

studies, treating warehouses and distribution centers as black boxes, despite their interconnected activities resembling a 

network, and the effectiveness of any individual component can influence the overall system efficiency (Kao, 2020; 

Jiang et al., 2021). Also, the presence of a greater number of internal processes and components in cross-docking 

systems compared to traditional warehouses exacerbates this issue. Neglecting to factor in internal operations during the 

efficiency assessment of these facilities may produce misleading results (Liang et al., 2022). Therefore, it is essential to 

employ network DEA (NDEA) models for assessing the efficiency of cross-docking systems, as traditional DEA 

models are not the right approach in this case. 

Additionally, the consideration of undesirable factors has been lacking in the related studies using traditional DEA 

models to measure warehouse efficiency. This raises concerns about the validity of their findings, given that many have 

incorporated undesirable factors like pollution and waste. Within this framework, uncertainty constitutes a further 

challenge that has not been extensively addressed (Ardakani and Fei, 2020; Tavassoli et al., 2020; Singh et al., 2022; 

Gerami et al., 2023). In this regard, the precise values of several metrics used to derive KPIs, such as costs, energy 

consumption, and travel times, are inherently uncertain. This uncertainty affects the input and output parameters of 

DEA models. Furthermore, it is crucial to implement effective qualitative evaluation methods, as many factors cannot 

be quantitatively assessed. 

As per the description provided, the primary goal of this study is to evaluate the efficiency of a cross-docking 

system using NDEA models. This involves considering various structural and procedural factors such as different types 

and quantities of inbound and outbound doors, diverse transportation equipment, various modes of product processing, 
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and workforces with specialized skills. On this matter, a broad range of KPIs is introduced to evaluate both the inputs 

and outputs of every sector within the cross-docking system. Some KPIs are sourced from existing literature, while 

others are established from the beginning. Noteworthy is the fact that these KPIs encompass a wide range of issues, 

including digitization, automation, sustainability, resilience, and lean principles. In what follows, a novel SBM-NDEA 

model is developed to assess the efficiency of cross-docking systems with respect to undesirable factors, where a 

suitable approach is implemented to tackle these factors in specific KPIs. Additionally, a hybrid uncertainty method is 

offered that combines fuzzy reasoning techniques and Neutrosophic fuzzy programming to tackle uncertainty in specific 

data and measure qualitative judgments. To sum up, our contributions in comparison to the relevant literature are 

detailed as follows: 

 Offering an inclusive configuration of a cross-docking system to evaluate its efficiency, encompassing 

unloading and loading divisions, the inspection process, intra-warehouse transportation, sorting, value-added 

operations, and temporary storage.  

 Tailoring and introducing the needed KPIs for assessing the efficiency of each division within the cross-

docking system in terms of automation, digitization, resilience, sustainability, and lean aspects. 

 Presenting a novel SBM-NDEA model to assess the efficiency of cross-docking systems with respect to 

undesirable factors. 

 Offering a hybrid uncertainty method, encompassing a fuzzy reasoning technique and Neutrosophic fuzzy 

programming to cope with KPIs’ uncertainty and quantify qualitative judgments. 

 

The rest of this paper is prepared as follows: A comprehensive literature review is rendered in Section 2. The 

problem definition and formulation are presented in Section 3. The hybrid uncertainty method is explained in Section 4. 

Computational results are provided in Section 5. Finally, Section 6 provides conclusions and future directions. 

II. LITERATURE REVIEW 

The literature review in this section is organized into two distinct parts. The first part delves into KPIs that are 

essential for evaluating the performance of warehouses and distribution centers. The subsequent part addresses DEA 

models proposed for evaluating the efficiency of these facilities. It is noteworthy that the efficiency evaluation of cross-

docking systems has not been addressed in the existing literature. 

A. KPIs in warehouse performance assessment 

Dotoli et al. (2015) proposed a systematic three-phase methodology aimed at enhancing warehouse efficiency. The 

initial phase involved the preparation of a detailed account of the logistics capabilities of the warehouse. The 

subsequent phase focused on identifying all activities that contribute to value addition. In the final phase, the 

discrepancies within the system were prioritized, and their effects on warehouse performance were analyzed. Chen et al. 

(2017) introduced a model for evaluating process performance that incorporates eight KPIs. These KPIs address various 

aspects such as quality, accuracy, cost, security, and the timeliness of operations. The authors highlighted the 

importance of integrating warehouse management performance indicators with the proposed KPIs to achieve a more 

comprehensive assessment of warehouse performance. Buonamico et al. (2017) proposed a set of seven KPIs to assess 

warehouse performance through the lens of leanness. These KPIs encompass just-in-time delivery, elimination of waste, 

striving for perfection and zero defects, implementation of lean tools, teamwork and collaboration, continuous 

enhancement, and management of suppliers. In addition, to evaluate the various indicators, a collection of sub-indices 

was introduced to allow for their quantitative assessment. When it became difficult to quantify some of these sub-

indices due to reasons such as uncertainty or divergent viewpoints, the fuzzy logic method was applied to enable their 

quantification (AlAlawin et al., 2022). 

Laosirihongthong et al. (2018) proposed four primary criteria for assessing the performance of warehouses: 

accuracy, resource utilization, financial outcomes, and flexibility and responsiveness. They identified several indicators 
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for each criterion to facilitate a quantitative evaluation. Ultimately, they employed the fuzzy analytic hierarchy process 

(AHP) method to assign weights to these indicators. Ghaouta et al. (2018) provided a compilation of KPIs sourced from 

the literature, aimed at measuring the performance of warehouses in third-party logistics organizations. The selection 

process and the assignment of weights to these KPIs were based on expert evaluations. Kusrini et al. (2018) emphasized 

that the selection of KPIs for performance evaluation is contingent upon the specific industry being examined. They 

proposed a set of twenty-five KPIs tailored for assessing warehouse performance within the construction sector and 

utilized the AHP to determine the most critical indicators. Importantly, they applied Frazelle's framework as a 

foundation for the development of these KPIs. The Frazelle model identifies five primary processes within warehouses: 

receiving, putting away, storing, picking, and transportation. These processes serve as a framework for assessing 

warehouse performance through five key characteristics: financial metrics, productivity levels, utilization, quality 

standards, and cycle time efficiency. Kusrini et al. (2018) utilized the Frazelle model to analyze the operational 

performance of a retail warehouse. The AHP method was employed to assign weights to the KPIs, and a normalization 

process was subsequently applied to compute the warehouse's final performance evaluation. 

Kusrini et al. (2019) introduced a set of KPIs focused on the sustainability of warehouses. They organized these 

evaluation metrics into three distinct categories: economic, environmental, and social. Importantly, the proposed KPIs 

were analyzed within the context of a leather warehouse. Liviu et al. (2009) identified five essential elements in the 

realm of warehouse management: optimal utilization of warehouse space, customer communication, quality standards, 

equipment efficiency, and cost management. They also delineated three categories of metrics to assess warehouse 

performance, which encompass inventory management, operational efficiency, and order fulfillment. Importantly, they 

offered a range of quantitative and measurable criteria for each of the aforementioned categories. Torabizadeh et al. 

(2020) presented a comprehensive set of thirty-three KPIs aimed at enhancing warehouse management through a 

sustainability lens. Their evaluation encompassed various dimensions, including sustainability, economic viability, 

environmental impact, social responsibility, operational efficiency, resource management, waste reduction, and overall 

environmental considerations. Additionally, structural equation modeling was utilized to ascertain the relative 

importance of these criteria. 

Margareta et al. (2020) conducted an assessment of warehouse performance with a focus on sustainability. To 

achieve this, they analyzed 30 KPIs that influence warehouse efficiency as perceived by a third-party logistics provider. 

Furthermore, they employed the AHP to rank these KPIs. Bajec et al. (2020) utilized the fuzzy Delphi method alongside 

the best-worst approach to establish new KPIs aimed at assessing the performance of warehouses, with a particular 

emphasis on human and environmental considerations. Karim et al. (2021) gathered and refined a collection of KPIs 

found in existing literature concerning warehouse performance assessment. They organized these indicators according 

to four primary criteria: manpower, equipment, space, and information systems. However, to enable a quantitative 

assessment of many of these indicators, it is crucial to define appropriate KPIs. Islam et al. (2021) employed Frazelle's 

model to assess the operational efficiency of a clothing warehouse. They identified thirteen out of the twenty-five 

indicators proposed by Frazelle as the most significant, utilizing the AHP method. Additionally, they implemented a 

hybrid methodology to evaluate these KPIs through the particle swarm optimization meta-heuristic algorithm. Faveto et 

al. (2021) introduced a three-step framework for evaluating warehouse performance. The first step consisted of 

identifying KPIs documented in the literature. The second step involved ranking these KPIs according to their 

frequency of application in scholarly articles. The third and final step was to categorize the KPIs based on their areas of 

impact, which include economic, social, and environmental dimensions. 

Demirkiran and Ozturkoglu (2022) introduced a collection of 30 KPIs aimed at assessing the performance of 

warehouses, with a significant emphasis on mobile and digital technologies. In a related study, Bernabei et al. (2022) 

identified 32 KPIs to evaluate warehouse performance, particularly in terms of resilience during the COVID-19 

pandemic, incorporating 17 KPIs derived from earlier research. Falegnami et al. (2022) introduced a classification of 

KPIs found in the literature for assessing warehouse performance, which included various categories based on the 

industry under investigation. Iskandar and Sudiar (2022) conducted a classification of the existing KPIs pertinent to the 

assessment of warehouse performance, focusing specifically on environmental sustainability. They applied the AHP to 
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ascertain the relative importance of these KPIs. Additionally, to analyze the efficiency of warehouses and to classify the 

results, they implemented an objective matrix alongside a traffic light system. 

Minashkina and Happonen (2023) analyzed KPIs outlined in prior research to measure warehouse performance. The 

indicators included employee safety, sustainability practices, technological integration, and environmental impacts. 

Baglio et al. (2023) presented the essential criteria from the perspective of a third-party logistics provider, which are 

required for a warehouse to achieve optimal performance. These criteria include a convenient location, loading dock 

facilities, standardized layout, suitable height to enhance the movement of goods, well-designed interior spaces, 

mezzanine levels, and additional value-added services. Faveto et al. (2024) conducted a comprehensive analysis of 

seventy KPIs derived from 203 studies to assess warehouse performance. These indicators were systematically 

organized into six distinct categories: general, time, cost, information and communication technology, environment, 

social responsibility, and human resources. Subsequently, the indicators were prioritized according to their perceived 

significance, utilizing metrics such as questionnaire responses, relative frequency, citation-weighted frequency, 

singularity index, and annual weighted frequency. 

B. DEA models in the assessment of warehouse performance  

Johnson and McGinnis (2010) offered a two-phase methodology for assessing the performance of warehouses. The 

initial phase employed a traditional DEA model to evaluate the efficiency of warehouses, taking into account inputs 

such as labor, space, capital investment in equipment, and inventory levels. The outputs of the DEA model included 

value-added services, storage capacity, accumulation, pallets, returns, and components. Subsequently, a regression 

analysis was conducted to identify the key factors that significantly impact warehouse performance. Faber et al. (2018) 

introduced a two-phase methodology for assessing the performance of warehouses. Initially, they employed a linear 

regression model to analyze the relationship between the structure of warehouse management and the prevailing 

conditions within the warehouses. This analysis took into account five primary factors: the complexity of operations, 

demand forecasting capabilities, comprehensive planning, decision-making rules, and the intricacy of control 

mechanisms. In the subsequent phase, a traditional DEA model was utilized to measure the efficiency of the 

warehouses, considering inputs such as workforce, warehouse size, automation levels, and the number of stored items, 

while outputs included flexibility, operational processes, and the number of orders fulfilled. Dixit et al. (2020) utilized a 

traditional DEA model to assess the operational efficiency of a pharmaceutical warehouse. The inputs for the DEA 

included factors such as the storage capacity of the warehouse, temperature control capabilities, the number of qualified 

personnel, and the associated operating costs. In contrast, the outputs measured by the DEA comprised the filling rate, 

variety of medicines, volume of medicines, inventory turnover ratio, time efficiency, and energy consumption. 

Alidrisi (2021) proposed a dual-stage strategy that integrates the conventional DEA model with the PROMETHEE 

II approach for the evaluation of distribution center efficiency. This strategy utilized the PROMETHEE II method to 

assess effectiveness, while the DEA model was tasked with measuring efficiency. Specifically, the PROMETHEE II 

method facilitated the ranking of distribution centers, whereas the DEA model was responsible for ranking Decision-

Making Units (DMUs). To combine the findings from both methods, the results from the PROMETHEE II method were 

normalized and then multiplied by the DEA model's results. Gafner et al. (2021) utilized a traditional DEA model to 

assess the operational efficiency of a grocery store. In this evaluation, inputs included warehouse space, labor expenses, 

and both fixed and variable material costs. The outputs measured in the DEA framework comprised the number of 

orders processed, average loading, delayed orders, the count of stores serviced by the warehouse, inventory levels, and 

the quantity of incorrectly processed items. Balk et al. (2021) applied the cross-efficiency technique as an enhancement 

of the conventional DEA model to evaluate warehouse efficiency. The inputs analyzed were the number of full-time 

staff, the storage area of the warehouse, the total number of products stored, and the level of automation utilized. The 

outputs measured comprised the number of orders processed, the count of specialized processes, the flexibility in order 

management, and the error rate in order processing. 
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Kusrini et al. (2022) employed a conventional DEA model to evaluate warehouse efficiency. Their evaluation was 

based on five performance indicators: cost, productivity, utilization, quality, and cycle time. The researchers classified 

three KPIs—receiving, putting away, and storage—as inputs, while order pickup and shipping were treated as outputs in 

the DEA model. It is important to highlight that these inputs and outputs were selected based on the highest weights 

derived from the AHP applied to twenty-five KPIs identified in the existing literature. Nong (2022) offered a two-phase 

methodology for assessing the efficiency of retail warehouses within the fashion sector. Initially, the Delphi method 

was employed to identify the key inputs and outputs relevant to the DEA model. Subsequently, a traditional DEA model 

was utilized to measure the warehouse's efficiency, taking into account workforce, operating costs, and warehouse size 

as inputs, while sales revenue and customer count were regarded as outputs. 

C. Research gaps     

A review of the literature reveals that two principal strategies have been adopted for evaluating the efficiency and 

performance of warehouses and distribution centers. The initial strategy focuses on the creation and implementation of 

diverse KPIs in numerous studies, which include factors related to environmental considerations, sustainability, 

automation, intelligence, digital technologies, energy usage, renewable energy sources, lean methodologies, and the 

principles of Industry 4.0. What is more, a limited subset of these studies has classified warehouses as DMUs, 

employing specific KPIs identified in the literature as the inputs and outputs associated with these DMUs. Following 

this classification, conventional DEA models have been utilized to evaluate the efficiency of warehouses. Nonetheless, 

these studies have regarded warehouses merely as black-box systems, failing to take into account their internal 

processes when determining efficiency. In addition, the literature reveals a lack of research focused on assessing the 

efficiency of cross-docking systems utilizing KPIs, and there has been no effort to apply DEA models. This concern is 

amplified by the fact that cross-docking systems involve more intricate internal processes and components compared to 

standard warehouses. Consequently, evaluating the efficiency of these facilities solely based on external metrics, 

without taking into account the internal processes, may lead to a flawed assessment. Thus, relying on traditional DEA 

models is inadequate for addressing this issue, making it imperative to employ NDEA models for a comprehensive 

evaluation of the efficiency of cross-docking systems. Furthermore, across all studies that have applied standard DEA 

models to assess warehouse efficiency, the notion of undesirable factors has been overlooked. Nevertheless, many of 

these studies have indicated the presence of undesirable elements such as pollution and waste, raising potential concerns 

about the validity of their findings. Additionally, another issue that has received insufficient focus in this context is the 

aspect of uncertainty. In practical terms, several parameters such as costs, energy consumption, and travel times, which 

are integral to the computation of KPIs, are characterized by uncertainty. Consequently, both the input and output 

parameters of DEA models are subject to this uncertainty. Additionally, many factors cannot be quantitatively assessed 

which makes it essential to adopt effective qualitative evaluation strategies.  

III. PROBLEM DEFINITION AND FORMULATION 

In contemporary warehouses and distribution centers, the predominant forms of cross-docking systems are pre-

distribution and post-distribution (Torbali and Alpan, 2023). Pre-distribution cross-docking refers to the process of 

assigning products to customers prior to their departure from suppliers. So, upon arrival, products are unloaded, 

unpacked, sorted into kits, and repackaged following predetermined distribution standards prior to their distribution. In 

contrast, post-distribution cross-docking postpones the sorting process until the most suitable destination and customers 

are determined. Consequently, this may result in products lingering in the cross-docking system for a longer duration 

(Liu and Li, 2023). However, by allowing additional time to analyze market trends, sales forecasts, and inventory data, 

suppliers and retailers are better equipped to make informed decisions regarding shipping. It is important to highlight 

that certain cross-docking systems integrate these strategies to enhance efficiency and profitability. Nevertheless, they 

usually assign a substantial share of their activities to one of the parties involved. As a result, a generalized design of a 

cross-docking system, based on our case study, is suggested to integrate both strategies. 
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Regarding operational strategy, warehouses today implement three distinct cross-docking techniques: continuous, 

consolidation arrangements, and de-consolidation arrangements (Vis and Roodbergen, 2011; Liu and Li, 2023). It is 

crucial to highlight that the selection of these techniques may depend on the types of shipments received, allowing for 

the possibility of using one or more techniques concurrently. It is essential to recognize that the simultaneous 

application of various techniques necessitates the use of efficient material handling equipment, a thoughtfully designed 

layout, and exceptional coordination among the different operational components of the system. On this matter, the 

continuous operation of cross-docking facilitates the seamless transfer of products from incoming shipments directly 

onto outbound trucks. Consequently, each product is processed a single time, starting from its entry into the cross-

docking facility and finishing with its shipment. Perishable items and fresh vegetables serve as prevalent examples of 

shipments that necessitate prompt processing. Conversely, consolidation entails the accumulation of incoming 

shipments prior to their sorting and loading onto outgoing trucks. This method is often utilized when items from 

multiple suppliers, arriving from different locations and at varying times, reach the cross-docking facility. Hence, for 

cross-docking operators, the operations of sorting and loading products are considerably more straightforward. In 

contrast to consolidation, de-consolidation involves the division of incoming products into smaller units prior to their 

loading onto outbound vehicles. This method is commonly utilized when products need to be dispatched to various 

destinations or at different times, allowing warehouse operators to more efficiently sort and load items onto outbound 

vehicles by breaking down inbound shipments. 

In light of the aforementioned description, it is essential to take into account various factors when assessing the 

efficiency of cross-docking systems, ensuring that the impact of each factor is incorporated into the efficiency 

calculations. To facilitate this analysis, Fig. 1 presents the cross-docking layout under examination. The configuration is 

characterized by a U-shape, and the arrangement of the inbound and outbound doors does not follow a straight line. 

This design is a result of spatial limitations and is intended to optimize the use of the road infrastructure. The system 

employs a range of transportation equipment, including conveyors, jack pallets, and forklifts, to facilitate the movement 

of products within this system. Unlike standard warehouses, the efficiency of cross-docking systems is significantly 

influenced by the design and functionality of their inbound and outbound doors. In addition, three other sectors, 

specifically storage/retrieval, kitting, and staging, have a significant influence on the operational efficiency of cross-

docking systems. Staging areas are specifically designed for the short-term storage of products within these systems and 

are located in proximity to inbound or outbound doors to accommodate a range of purposes. Furthermore, the kitting 

area serves as the location where new stock-keeping units (SKUs) are generated by combining various SKUs obtained 

from different inbound shipments. Another critical aspect of cross-docking systems, which offers a more vibrant 

function than traditional warehouses, is the inspection area. Here, operators assess various factors, including the visual 

condition of incoming products, as well as their quantity, volume, and type in accordance with the accompanying 

remittance. 

It is evident that the various components of the cross-docking system undertake interrelated tasks, working in 

concert with one another. The performance of each individual component has a significant impact on the overall 

efficiency of the system. To assess the efficiency of the system in question, the network configuration of the cross-dock 

is shown in Fig. 2. The depiction reveals five inbound doors (IDs), three outbound doors (ODs), two conveyors (Cs), 

three jack pallets (JPs), four forklifts (Fs), a storage and retrieval (S/R) area, two unpacked and inspection (U&I) 

sections, two kitting (K) areas, and two staging (S) areas. Every component is viewed as a part of a cross-docking 

system referred to as a decision-making unit (DMU), which consists of a range of inputs and outputs. These inputs and 

outputs can be described as the values of KPIs or criteria that characterize the mentioned divisions. It is evident that the 

inputs and outputs associated with divisions can exhibit both quantitative and qualitative traits. Thus, it is necessary to 

convert qualitative characteristics into quantitative forms to facilitate a proper evaluation of performance. 
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Fig. 1. The U-shape layout of the investigated U-shape cross-docking system   

 
 

 

 

 

 

 

 

 

           
Fig. 2. The network structure of the investigated U-shape cross-docking system   

A. Sets and indices 

   Number of DMUs (         ) 

   Number of divisions (         )                              

    Number of conveyors   

    Number of jack pallets  

    Number of forklifts   

    Number of unpacking and inspection sections   

1-ID1

2-ID2

3-ID3

4-ID4

5-ID5

6-C1

7-C2

8-JP1

9-F1

10-U&I 1

11-U&I 2

12-K1 14-F3

15-S/R

16-S1 18-JP2 22-OD1

23-OD2

24-OD3

19-F4

20-JP3 21-S2

13-F2 17-K2
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    Number of storage/retrieval area   

    Number of kitting area   

    Number of staging area   

    Number of outbound doors   

    Number of exogenous inputs utilized by division   (          ) 

    Number of final outputs made by division   (          ) 

    Number of intermediate outputs made by division   (          ) 

B. Parameters  

   
    th fuzzy input provided from outside to  th division of  th DMU 

   
   

  th fuzzy desirable input provided from outside to  th division of  th DMU 

   
        th fuzzy undesirable input provided from outside to  th division of  th DMU 

   
    th fuzzy final output made from  th division of  th DMU 

   
   

   th fuzzy final desirable output made from  th division of  th DMU 

   
    

   th fuzzy final undesirable output made from  th division of  th DMU 

   
(   )

   th intermediate output made by division   for division   in  th DMU 

C. Decision variables  

  
    

    Surplus values 

  
    

   Slack values  

  
   Auxiliary variable to guarantee convexity 

In alignment with the specified parameters, Table I presents the inputs, final outputs, and intermediate outputs 

pertinent to each segment of the cross-docking component. These inputs and outputs have been meticulously offered by 

analyzing a comprehensive selection of KPIs from existing literature, alongside the perspectives of cross-docking 

specialists. As can be seen, the inputs and final outputs are rendered by fuzzy numbers (Allaei et al. 2024). In this 

regard, an effective fuzzy logic approach is used to quantify the parameters with the nature of risk. Also, a Neutrosophic 

optimization approach is used for the other parameters to handle their uncertainty. In addition, certain inputs and final 

outputs are identified as undesirable factors, including waiting times and CO2 emissions. In this context, on the input 

side, a reduced quantity of consumed input may be viewed as less favorable, while on the output side, an increased 

volume of generated output may also be deemed undesirable. In this regard, several strategies have been suggested in 

the literature to manage these situations, including input-output exchange, data transformation, weak disposability, and 

the slacks-based approach. However, it remains unproven which of these strategies is the most effective, as their 

implementation is influenced by the particular application and the perspectives of the users (Kao, 2020). The present 
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study employs an input-output exchange methodology to address undesirable factors. This involves treating an 

undesirable input as an output and the opposite as well. Additionally, the sustainability dimensions of the cross-docking 

system are incorporated into the analysis of the examined problem. In pursuit of this aim, the defined KPIs encompass 

three key pillars of sustainability: environmental, economic, and social factors. Illustratively, aspects such as CO2 

emissions, the number of personnel, and costs associated with packaging materials reflect these important 

considerations. 

Table I. The KPIs employed in cross-docking efficiency assessment 

Divisions Notations  The definition of KPIs 

Inbound Door (ID) 

 

   
      

 Number of inbound products 

   
     

 Number of employees  

   
      

 Proper assignment of inbound doors 

   
      

 On-time arrival of inbound trucks 

   
      

 Flexibility in inbound trucks’ scheduling 

   
      

 Information sharing with suppliers and their fleet 

   
      

 Readiness of inbound doors’ equipment 

   
     

 Risk of information system shutdown 

   
     

 Risk of damage to products 

   
     

 Timely and fast unloading capability 

Conveyor (C) 

   
     

 Maintenance cost 

   
     

 Number of employees  

   
     

 Energy cost 

   
     

 Risk of conveyor breakdown 

   
     

 Risk of damage to products 

   
     

 Timely transfer 

Jack Pallet (JP) 

   
         

 Maintenance cost 

   
         

 Number of employees  

   
         

 Risk of jack pallet breakdown 

   
         

 Risk of damage to products 

   
         

 Risk of manual handling injuries 

   
         

 Timely transfer 

Forklift (F) 

   
            

 Maintenance cost 

   
            

 Number of employees  

   
            

 Energy cost 
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Continue Table I. The KPIs employed in cross-docking efficiency assessment 

Divisions Notations  The definition of KPIs 

Forklift (F) 

   
            

 Training cost 

   
             

 Neatness and cleanliness of cross-docking floor 

   
            

 Risk of forklift breakdown 

   
            

 Risk of damage to products 

   
            

 Risk of injuries during transferring 

   
             

 Safe and quick maneuvering power 

   
            

 Timely transfer 

   
             

 CO2 emission 

Unpacking & Inspection 

(U&I) 

   
       

 Number of employees  

   
       

 Training cost 

   
       

 Maintenance cost of inspection tools 

   
        

 Information sharing level 

   
        

 Technology level 

   
        

 Barcode reliability 

   
       

 Risk of damage to products 

   
       

 Risk of manual handling injuries 

   
       

 Speed and accuracy of unpacking process 

   
       

 Speed and accuracy of inspection 

Kitting (K) 

   
       

 Number of employees  

   
       

 Training cost 

   
       

 Packaging material cost 

   
        

 Information sharing level 

   
        

 Technology level 

   
        

 Barcode reliability 

   
       

 Risk of damage to products 

   
       

 Risk of manual handling injuries 

   
       

 Speed and accuracy of packing 

Storage/Retrieval (S/R) 

area 

   
    

 Number of employees  

   
    

 Training cost 

   
    

 Energy cost 
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Continue Table I. The KPIs employed in cross-docking efficiency assessment 

Divisions Notations  The definition of KPIs 

Storage/Retrieval (S/R) 

area 

   
    

 Maintenance cost 

   
     

 Information sharing level 

   
     

 Proper assignment of products to storage locations 

   
     

 Flexibility in storage 

   
    

 Risk of damage to products 

   
    

 Risk of machinery and equipment breakdown 

    
    

 Risk of information system shutdown 

    
    

 Risk of information security 

   
    

 Inventory turnover rate 

   
    

 Real-time visibility into inventory level 

   
     

 Timely storage 

   
    

 Timely retrieval and transfer 

Staging (S) 

   
       

 Number of employees  

   
        

 Availability of temporary storage space 

   
        

 Neatness and cleanliness of cross-docking floor 

   
       

 Risk of unexpected order change 

   
       

 Risk of damage to products 

   
        

 Information sharing level 

   
       

 Non-interference and disturbance with other activities 

   
        

 Waiting time 

Outbound Door (OD) 

   
       

 Number of employees  

   
        

 Proper assignment of outbound doors 

   
        

 Flexibility in outbound trucks’ scheduling 

   
        

 Information sharing with customers and their fleet 

   
        

 Readiness of outbound doors’ equipment 

   
       

 Risk of unexpected order change 

   
       

 Risk of damage to products 

   
       

 Risk of information system shutdown 

   
       

 Customer satisfaction 

   
       

 On-time departure of outbound trucks 

   
       

 Timely and fast loading capability 

   
       

 
Number of intact products delivered from inbound doors to outbound 

trucks 
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Continue Table I. The KPIs employed in cross-docking efficiency assessment 

Divisions Notations  The definition of KPIs 

Intermediate outputs 

   
(   )

 

   
(   )

 
Number of intact, unloaded products moved from IDs on Cs 

   
(   )

 Number of intact, unloaded products moved from IDs on JPs 

   
(   )

 

   
(   )

 
Number of intact, unloaded products moved IDs on Fs 

   
(    )

 

   
(    )

 
Number of intact products moved from Cs to U&I workstations 

   
(    )

 Number of intact products moved from JPs to U&I workstations 

   
(    )

 Number of intact products moved from Fs to U&I workstations 

   
(     )

 Number of intact products moved from U&I workstations to Ks 

   
(     )

 Number of intact products moved from U&I workstations on Fs 

   
(     )

 

   
(     )

 
Number of intact products moved from Ks on Fs 

   
(     )

 Number of intact products moved from Fs to the S/R 

   
(     )

 Number of intact products moved from the S/R to Ks 

   
(     )

 Number of intact products moved from Ks on JPs 

   
(     )

 Number of intact products moved by Fs to the staging area 

   
(     )

 Number of intact products moved from the staging area on JPs 

   
(     )

 Number of intact products moved by JPs to the staging area 

   
(     )

 Number of intact products moved by JPs to ODs 

   
(     )

 Number of intact products moved by Fs to ODs 

   
(     )

 
Number of intact products moved from the staging area to ODs by 

workforces  

D. The proposed model   

In light of the aforementioned description, the SBM-NDEA model is developed to evaluate the efficiency of the 

cross-docking system under examination. It is essential to note that this model applies to cases where all KPIs are 

viewed as desirable. To account for undesirable KPIs, as outlined, undesirable inputs are regarded as outputs, and the 

reverse is also true.  

      ∑   
( )

  

   
 (1) 
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IV. PROPOSED HYBRID UNCERTAINTY APPROACH 

The developed SBM-NDEA model incorporates uncertain parameters, and a hybrid methodology that combines 

fuzzy reasoning with Neutrosophic fuzzy programming is offered to manage these uncertainties. In this framework, the 

uncertain parameters are categorized into two groups; the initial group concerns risk parameters, which are tackled 

through a proficient fuzzy reasoning approach. The other parameters may be expressed through Neutrosophic fuzzy 

numbers, and a robust Neutrosophic programming method is utilized to manage these parameters (Mohammadi et al. 

2020). Notably, several linguistic variables are employed to assess certain qualitative KPIs, which can subsequently be 

transformed into Neutrosophic fuzzy numbers. It is noteworthy that all elements of a Neutrosophic fuzzy number 

associated with KPIs that exhibit no uncertainty are regarded as identical. 

A. Risk evaluation stage    

This section presents several fundamental definitions of trapezoidal fuzzy numbers (TFNs), which are utilized 

within the fuzzy reasoning framework. 

Definition 1: The notation for a trapezoidal fuzzy number (TFN) is  ̃  (       ), and its membership function 

(MF)   ̃ is established as follows, as described by Hwang and Masud (2012). 
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 (48) 

 

Definition 2: If     and        and   are not identical,  ̃ is a positive TFN. 

Definition 3: Consider  ̃  (           ) and  ̃  (           ) two positive TFNs and   will be a positive 

scalar, the following arithmetic operators can be established as described by Hwang and Masud (2012): 

 ̃   ̃  (                       ) (49) 

  ̃  (               ) (50) 

 

To quantify risk through a metric termed risk magnitude (RM), three primary risk parameters are analyzed: the 

frequency of failure (FOF), the severity of consequence (SOC), and the probability of consequence (POC).  FOF 

indicates how often an event occurs within a specified timeframe. FOF can be assessed using linguistic variables such 

as ―Very unlikely,‖ ―Unlikely,‖ ―Fairly unlikely,‖ ―Likely,‖ and ―Very likely,‖ as illustrated in Table II. SOC denotes 

the extent of the damaging impact that a phenomenon may have on the system. The assessment of SOC can be 

categorized as ―Negligible,‖ ―Minor,‖ ―Moderate,‖ ―Major,‖ and ―Catastrophic,‖ as illustrated in Table II. Additionally, 

POC pertains to the probability of a phenomenon occurring within the system. POC can be classified as ―Highly 

unlikely,‖ ―Unlikely,‖ ―Reasonably unlikely,‖ ―Likely,‖ ―Reasonably likely,‖ and ―Highly likely,‖ as shown in Table 

III. Additionally, RM is characterized as linguistic variables that encompass five distinct levels: ―Low,‖ ―Acceptable,‖ 

―Average,‖ ―High,‖ and ―Unacceptable,‖ as illustrated in Table II. The TFNs associated with these linguistic variables, 

which are utilized to quantify the risk parameters, are detailed in Tables II and III. 

Table II. Qualitative descriptors of FOF, SOC and RM and corresponding TFNs 

linguistic variables for FOF linguistic variables for SOC linguistic variables for RM TFNs 

Very Unlikely (VU) Negligible (NL) Low (L) (0,0,0.5,1) 

Unlikely (U) Minor (MN) Acceptable (AC) (0.5,1,1.5,2) 

Fairly Unlikely (FU) Moderate (MD) Average (AV) (1.5.2,3,3.5) 

Likely (L) Major (MJ) High (H) (3,3.5,4,4.5) 

Very Likely (VL) Catastrophic (CT) Unacceptable (UAC) (4,4.5,5,5) 
    

Table III. Qualitative descriptors of POC and corresponding fuzzy numbers 

linguistic variables for POC TFNs  

Highly Unlikely (HU) (0,0,0.5,1) 

Unlikely (U) (0.5,1,1.5,2) 

Reasonably Unlikely (RU) (1.5.2,2.5,3) 

Likely (L) (2.5,3,4,4.5) 

Reasonably Likely (RL) (4,4.5,5,5.5) 

Highly Likely (HL) (5,5.5,6,6) 
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A.1. Aggregated of TFNs 

Given that the risk assessment team is composed of multiple experts whose views on PO and SC may vary, it is 

essential to aggregate these perspectives in order to derive a singular score. Therefore, Eq. (51) is employed for this 

aggregation. 

                                         (51) 

 

where the importance of expert   is denoted by    and       is the score of risk parameter   assessed by expert  , 

wherein ∑       
   .  

A.2. Compute fuzzy values of total score 

 Assume that     
 ,     

 , and     
  denote total scores for FOF, SOC, and POC related to  th risk phenomenon, 

respectively. Their corresponding fuzzy sets, denoted by  ̃   
 ,  ̃   

 , and  ̃   
  are defined in the following manner (An 

et al. 2011):  
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where trapezoidal MFs of      
 ,     

 , and     
  are denoted by  

     
 ,  

    
 , and  

    
 , and    , and   are input 

variables within the universe of  discourse (UD)    , and   of FOF, SOC, and POC, respectively.  

A.3. Fuzzy reasoning approach  

A fuzzy reasoning methodology based on the Mamdani technique is utilized to identify the appropriate rules for a 

specific situation in order to compute fuzzy output. This involves considering a set of if-then rules that connect the input 

risk parameters, including FOF, SOC, and POC, to the resulting output, as described by An et al. (2011). 

  : if   is  ̃   
  and   is  ̃   

  and   is  ̃   
  then   is  ̃  

 ,           

where the qualitative descriptors (QDs) of FOF, SOC, POC and fuzzy output are denoted by  ̃   
 ,  ̃   

 ,  ̃   
 , and 

 ̃  
 , respectively. In what follows, the following fuzzy intersection operator is used to calculate the fire strength of    of 

 th rule (An et al. 2011). 
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where MFs of fuzzy sets  ̃   
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  of QDs in rule    are denoted by   
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 ( )  Next, the truncated MF  
   
 

 of the inferred outcome fuzzy set of rule    is computed as follows (An et al. 

2011): 
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where  
   
 is the MF of the QDs  ̃  

  and   is an input variable in the UD  . Also,     
 of outcome fuzzy set is 

calculated as follows (An et al. 2011): 
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where   is the total number of rules in the rule base. 

A.4. Defuzzification 

The final result of the fuzzy reasoning approach is derived through the application of a defuzzification method 

referred to as the centroid of area method. For this analysis, we define the outcome fuzzy set from the fuzzy reasoning 

approach as     
  2.       

 ( )/          
 ( )  ,   -3, the aggregated outcome MF     is computed as follows 

(An et al. 2011): 

    
∑      

 (  )    
 
   

∑      
 (  )
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where      and    indicates the center of     
  in the outcome expression, and   is the number of quantization 

level of  .  

B. Neutrosophic fuzzy programming 

In order to overcome the challenges posed by ambiguity and uncertainty, Zadeh proposed fuzzy set theory in 1965. 

Since then, numerous extensions of fuzzy sets have been introduced in the academic literature, including type 2, multi-

sets, hesitant, intuitionistic, Neutrosophic, and Pythagorean fuzzy sets (Vahdani and Zandieh, 2010; Vahdani et al., 

2012; Mousavi et al., 2013; Mousavi et al., 2014; Mohagheghi et al., 2015; Otay, Oztaysi, Mohagheghi et al., 2016; 

Mohagheghi et al., 2017; Moradi et al., 2017; Gitinavard et al., 2017; Davoudabadi et al., 2019). These advancements 

aim to enhance the interpretation of imprecise and ambiguous information. The intuitionistic fuzzy set (IFS) is widely 

recognized for its incorporation of membership, non-membership, and hesitancy functions, which effectively address 

issues of vagueness and imprecision. Nevertheless, it falls short of accurately representing the human decision-making 

process. To address the limitations of IFS and to manage inconsistent, imprecise, and vague information, the 

Neutrosophic set (NS) was introduced by Broumi et al. (2016). Consequently, NS theory is capable of modeling the 

human decision-making process by encompassing all aspects of this complex procedure. In fact, NS serves as an 

advancement of fuzzy logic and IFS, wherein each component of the set possesses membership functions for truth, 

indeterminacy, and falsity. This allows NS to adeptly and efficiently handle ambiguous, imprecise, and conflicting 

information (Deli and Şubaş, 2017).  

Hence, so as to address the uncertainty associated with the other parameters, a commonly adopted Neutrosophic 

fuzzy programming method is utilized (Abdelfattah, 2021). This involves using linguistic variables, presented in Table 

IV, to represent the relevant parameters, which can subsequently be transformed into Neutrosophic fuzzy numbers. 

Subsequently, a defuzzification process is applied to transform the model into an equivalent deterministic 

representation. In this regard, this section presents several preliminary concepts, including NS, the single-valued NS 

(SVNS), the single-valued triangular Neutrosophic number (SVTNN), and the various operations performed on 

SVTNNs. 
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Table IV. Linguistics variables and corresponding Neutrosophic fuzzy numbers 

linguistic variables  SVTNNs 

Very Low (VL)  ,         - ,           -   

Low (L)  ,     - ,           -   

Fairy Low (FL)  ,       - ,           -   

Medium (M)  ,     - ,           -   

Fairly High (FH)  ,       - ,           -   

High (H)  ,     - ,           -   

Very High (VH)  ,          - ,           -   

B.1. Theoretical preliminaries 

Definition 4: Assume that   be a UD, a NS   over   can be defined by   *   (  ( )    ( )    ( ))      +, 

wherein   ( )    ( ) and    ( ) are truth-MF, indeterminacy-MF, and falsity-MF, respectively. In this regard, a SVNS 

over   is a NS, where   ( )   ,   -,    ( )   ,   -, and    ( )   ,   - and     ( )     ( )     ( )    

(Deli and Şubaş, 2017).  

Definition 5: A SVTNN  ̃   ,        - (  ̃   ̃   ̃)   is a special NS on the real number set  , where the MFs 

of truth (  ̃), indeterminacy (  ̃), and falsity (   ̃) can be defined as follows (Deli and Şubaş, 2017):  
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Definition 6: Let  ̃   ,        - (  ̃    ̃    ̃)   and  ̃   ,        - (  ̃    ̃    ̃)   be two SVTNNs and 

    be any real number (Deli and Şubaş, 2017). So, 

  ̃   ̃   ,                 - (  ̃    ̃    ̃    ̃    ̃    ̃)   

 

   ̃  {
 ̃   ,           - (  ̃   ̃   ̃)           

 ̃   ,           - (  ̃    ̃    ̃)            
 

 

Definition 7: Let  ̃   ,        - (  ̃   ̃   ̃)   be a SVTNN, the  ,   and   cuts of SVTNN  ̃ for truth, 

indeterminacy, and falsity MFs are defined as follows (Deli and Şubaş, 2017): 
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Definition 8: The aggregate coefficient  ̃(     ) which is based on the ordered normalized sum of lower bounds 

of  ̃( ),  ̃( )  and  ̃( ) can be calculated as follows (Abdelfattah, 2021): 
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where   ̃(     ) is a variation degree of SVTNN  ̃ and can be calculated as follows: 
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As can be seen, the obtained aggregate coefficient is an interval. 

B.2. Neutrosophic programming model 

Consider the following mathematical programming model, wherein parameters are SVNNs (Abdelfattah, 2021):  
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/   and 
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   ̃ 
)   are SVNNs. By exploiting the aggregate coefficient  ̃(     ), the 

equivalent model of the model (62) is provided as follows (Abdelfattah, 2021): 
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It is essential to note that model (63) is classified as an interval programming model, thereby necessitating the 

application of the interval planning technique for its solution. 

V. CASE STUDY AND NUMERICAL RESULTS 

The developed mathematical model is based on the cross-docking configuration utilized by an Iranian retail 

company. Furthermore, an analysis of five additional cross-docking systems with analogous operations is conducted to 

measure the effectiveness of different DMUs, each corresponding to a unique cross-docking system. It is important to 

highlight that disparities exist among these cross-docking systems in terms of their structures and procedures, resulting 

in certain parameters being recorded as zero. On this matter, in the case of cross-docking No. 2 (DMU2), products are 

required to be temporarily stored before they can be unloaded and subsequently loaded. Additionally, the risk 

assessment team is composed of three specialists, with their respective importance values being 0.25, 0.4, and 0.35. 

Notably, as indicated by the assessed levels for the three risk parameters—FOF, SOC, and POC—in Tables II and III, 

this research can formulate 105 rules, which are outlined as follows: 

Rule #1: IF FOF is Very Unlikely, SOC is Negligible, and POC is Highly Unlikely THEN RM is Low   

Rule #2: IF FOF is Very Unlikely, SOC is Negligible, and POC is Unlikely THEN RM is Low 

   

Rule #150: IF FOF is Very likely, SOC is Catastrophic, and POC is Highly Likely THEN RM is Unacceptable 

Tables V to VII present various input and output data associated with cross-docking 1. It is evident that certain 

parameters, which decision-makers qualitatively express using linguistic variables, are transformed into corresponding 

fuzzy numbers. Notably, as seen in Table VII, the values of the parameters that have certainty are presented in the form 

of an SVTNN, wherein all of its components are equal to each other, and the MF truth is equal to one, and the rest are 

equal to zero. The developed model is executed using GAMS software on a laptop equipped with Core i5 CPUs 

operating at 1.6 GHz and 8 GB of RAM to determine the efficiencies of DMUs and their respective rankings. 
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Table V. A number of risk parameters related to the case study 

Parameters 

Expert 1 Expert 2 Expert 3 

FOF SOC POC FOF SOC POC FOF SOC POC 

    
   

 FU MJ L L MD RU L MD RL 

    
   

 VL CT RL L MJ RL L CT HL 

    
   

 VU CT U U MJ RU VU MJ U 

    
   

 L MJ RL VL MJ L VL MJ HL 

    
    

 FU MN RU L MD L FU MN RU 

    
    

 VL MJ L L MJ L L MJ L 

     
    

 U MJ L FU MJ U U MD L 

 

The outcome fuzzy set for    
   

 can be determined by adhering to the steps outlined in the fuzzy reasoning approach 

previously described. 

Step 1: Aggregate experts’ opinions in the following manner:   

           
 ̃      
         (           )      (           )       (           )  (                     ) 
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Step 2: The aggregated fuzzy numbers of FOF, SOC, and POC are transformed into their respective fuzzy sets for 

the purpose of fuzzy inference in the following manner. 

     *(                     ) (        ) (                )+ 
 
     *(           ) (          ) (          )+ 
 
     *(                         ) (        ) (                      )+ 
 

The results obtained for FOF, SOC, and POC indicate that a total of 27 rules can be utilized from a possible 105 

rules. Some of these rules are as follows: 

Rule #1: IF FOF is Fairly Unlikely, SOC is Minor, and POC is Reasonably Unlikely THEN RM is Low      

        

Rule #27: IF FOF is Very Likely, SOC is Major, and POC is Reasonably Likely THEN RM is High 

Step 3: Compute the fire strength  th rule in the following manner:   

    (                 )              

           

       (              )       
Step 4: Calculate the truncated MF of the inferred outcome fuzzy set of rule    in the following manner: 
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Step 5: Calculate the defuzzified aggregated outcome MF as follows: 

 

    
                            

                  
        

Table VI. A number of SVTNNs related to the case study 

Parameters Linguistic variables SVTNNs Parameters Linguistic variables SVTNNs 

   
     H  ,     - ,           -      

    FH  ,       - ,           -   

   
     FH  ,       - ,           -      

    H  ,     - ,           -   

   
     M  ,     - ,           -      

     H  ,     - ,           -   

   
     FH  ,       - ,           -      

     VH 
 ,          - ,           -

  

   
     VH 

 ,          - ,           -
  

   
     H  ,     - ,           -   

   
      M  ,     - ,           -      

     FL  ,       - ,           -   

Table VII. A number of certain parameters related to the case study 

Parameters Nominal values  Parameters Nominal values  

   
    

  ,              - ,     -      
    

  ,        - ,     -   

   
   

  ,        - ,     -      
    

  ,              - ,     -   

   
   

  ,           - ,     -      
    

  ,     - ,     -   

   
   

  ,        - ,     -      
     

  ,        - ,     -   

   
   

  ,           - ,     -      
    

  ,        - ,     -   

   
    

  ,           - ,     -      
     

  ,        - ,     -   

 

In light of the parameter values and after applying the proposed hybrid uncertainty approach, the interval 

programming is established and subsequently solved using GAMS software, where   ,     -   ,     -   ,     - 

and to be set in                     . The efficiency metrics for the five assessed cross-docking systems, along 

with their rankings, are illustrated in Table IX. The results indicate that only cross-docking system 2 is efficient, 

whereas the other systems are deemed inefficient. It should be noted that the average of the upper and lower bounds of 

the obtained efficiency range is used to determine the ranking of the systems.  

Table VIII. Efficiency scores and ranking of the cross-docking systems (DMUs) 

DMUs Lower Efficiency  Upper Efficiency Rank 

Cross-docking 1 0.681 0.863 3 

Cross-docking 2 1.000 1.000 1 

Cross-docking 3 0.405 0.571 5 

Cross-docking 4 0.589 0.704 4 

Cross-docking 5 0.774 0.824 2 
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A. Sensitivity analysis 

To evaluate the proposed model's accuracy and validity, a range of sensitivity analyses is performed, targeting the 

upper bounds of system efficiency. This evaluation encompasses four defined scenarios. In the first scenario, there is a 

10% increase in the values of intermediate outputs, which correspond to the number of intact products that are 

transferred between various divisions of cross-docking systems. Fig. 3 indicates that this increase has the potential to 

enhance the efficiency scores of inefficient DMUs, with a significant portion of the improvement attributed to cross-

docking 3. In the subsequent scenario, a 10% increase in the risk of product damage is observed. As illustrated in Fig. 3, 

this alteration may lead to a reduction in the efficiency scores of inefficient DMUs, with the most pronounced decline 

associated with cross-docking 5. The third scenario indicates a 10% enhancement in the accuracy and timeliness of 

operations. This improvement is evident in the efficiency scores of the inefficient DMUs, particularly for cross-docking 

3, which experiences the most substantial increase. In the fourth scenario, a similar 10% rise in the level of information 

sharing is implemented. This modification is expected to further boost the efficiency scores of the inefficient DMUs, 

with cross-docking 3 again showing the highest level of improvement. The findings depicted in Fig. 3 reveal that the 

proposed model is more responsive to scenario 2 than to the other scenarios. Consequently, it is imperative to consider 

corrective actions aimed at mitigating the risks associated with product damage. Furthermore, it can be inferred that 

even minor adjustments can have a substantial effect on inefficient DMUs, especially in cases where inefficiency is 

considerable. 

 

 

 

 

 

 

 

 

 

 

 

 

     
Fig. 3. Sensitivity analyses on the upper bound of systems’ efficiency regarding 4 scenarios  

B. Managerial insights  

To offer managerial insights derived from the maximum potential of system efficiency, an in-depth examination is 

conducted on cross-docking systems 3 and 4, which are identified as the most inefficient. In order to gain insight into 

the structure of these systems, it is essential to highlight that cross-docking 3 first stores the received products. After an 

order is placed, it conducts the kitting process on these products and subsequently sends them to customers. So, in this 

cross-docking system, products are not able to be kitted immediately upon receipt and they are not transferred directly 

to outbound trucks for delivery to customers. Conversely, in cross-docking 4, there is no storage phase involved, as 

products are sorted right after they are received and then dispatched to outbound trucks. 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

Scenario 1

Scenario 2

Scenario 3

Scenario 4



Journal of Quality Engineering and Production Optimization  / Volume 9, Issue 2, Summer & Autumn 2024, PP. 47-84 79 
 

 

Insight 1: The investigations into the parameters of cross-docking 3 reveal that a substantial proportion of products 

experience damage throughout the storage and recovery stages. Additionally, the inventory turnover rate in this system 

is alarmingly low, which casts doubt on the fundamental principles of a cross-docking system and, to some extent, 

reverts it to the characteristics of a traditional warehouse. To enhance this system, a direct transmission line that 

connects the inbound doors to the outbound doors is incorporated, as represented in the upper part of Fig. 2. The 

reassessment reveals that this adjustment yields a 33% improvement in the overall efficiency of the system. 

Consequently, enhancing operational capabilities within such a system has had a profound impact on its overall 

efficiency. It is important to clarify that while this enhancement can be readily attained from a mathematical 

perspective, managers must engage in meticulous decision-making and strategic planning to realize this improvement. 

Among the most significant measures are the augmentation of information sharing, the alteration of order types, the 

refinement of vehicle scheduling accuracy, and the preparation of relevant equipment. 

Insight 2: A thorough examination of the parameters related to cross-docking 4 has indicated that the 

implementation of two distinct groups of parameters, along with a modification in layout, can significantly enhance the 

efficiency of such a system. Concerning the modification in layout, it is essential to highlight that the system includes a 

kitting division, where 14 operators work simultaneously. The configuration of this kitting division is straightforward 

and located at a significant distance from the outbound doors. Therefore, products that have been kitted must be 

transported to the front of the outbound doors with the assistance of a forklift or pallet jack. In an effort to boost the 

efficiency of this system, modifications have been made to the layout of the process to eliminate unnecessary 

movements. The final workstation in this process is now positioned close to the outbound doors. Consequently, this 

adjustment has led to a 21% improvement in system efficiency. Moreover, advancements in two factors associated with 

the flexibility of truck scheduling and the risk of unexpected changes in orders can further elevate system efficiency by 

7% and 11%, respectively. 

VI. CONCLUSION 

This study presented an extensive framework for cross-docking systems aimed at assessing their efficiency, 

highlighting various operational elements that impacted their performance. These elements encompassed inbound and 

outbound doors, diverse transportation methods, inspection processes, kitting, storage, retrieval, and staging activities. 

A novel data envelopment analysis model was developed to assess such a system, incorporating a wide array of 

practical key performance indicators as both inputs and outputs within the model. The key performance indicators 

addressed a diverse set of issues, including automation, digitization, resilience, sustainability, and lean methodologies, 

to establish a comprehensive evaluation framework. Recognizing that many key performance indicators were linked to 

uncertainty and necessitated qualitative evaluations, a hybrid uncertainty approach was suggested, which integrated 

fuzzy reasoning techniques with Neutrosophic fuzzy programming. The findings indicated that enhancing operational 

capabilities could have a substantial impact on the efficiency of cross-docking systems. Additionally, a modest positive 

adjustment in such systems that are currently inefficient could result in a significant enhancement of their performance. 

The current study can be extended in various ways, with one primary option being the application of machine learning 

methods to estimate risk factors instead of relying on the fuzzy reasoning approach. Furthermore, investigating different 

types of data envelopment analysis models offers another promising avenue for research. 
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