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Abstract –Distributed factories represent a type of manufacturing system in which production is spread out 

across multiple geographically dispersed locations. This approach offers several advantages, including 

reduced transportation costs, improved responsiveness to customer demand, increased flexibility and 

enhanced supply chain resilience. The production-assembly flow shop problem with three stages is a 

scheduling problem focused on optimizing the sequence of jobs to be processed on a set of machines. In this 

problem, the first and third stages involve dedicated parallel machines, meaning that each job is assigned to 

a specific machine and cannot be processed on any other. The second stage consists of identical parallel 

machines, where all machines are functionally equivalent and capable of processing any job. A model is 

presented for minimizing total tardiness times. Since the problem under investigation is NP-hard, solving it 

exactly is either impossible or highly time-consuming (depending on the processor's capability) for large 

instances. Consequently, the Hybrid Biogeography-Based Optimization Dominance Rules (HBBO) algorithm 

is proposed to address the problem in larger instances. This algorithm is an enhanced version of the 

Biogeography-Based Optimization (BBO) algorithm, incorporating dominance rules. The Taguchi method 

has been employed to determine appropriate parameter values. The results obtained from the model and 

algorithm demonstrate the algorithm’s acceptable efficiency and the inclusion of dominance rules has further 

improved the outcomes. 

 

Keywords– Biogeography-Based Optimization, Production and assembly, Scheduling, dominance rules, Total 

tardiness times. 
                    

I. INTRODUCTION 

The ability to provide products according to the delivery time, variety, and volume of customer requests is a key 

competitive advantage for businesses. Satisfied customers are the foundation of any successful business. When a 

company consistently demonstrates the ability to meet customer needs in flexible and efficient ways, a sense of trust is 

fostered, reinforcing the positive qualities of the brand. This reliability, in turn, enhances customer loyalty, making them 

more likely to return for future purchases. Supply chain agility plays a significant role in reducing costs associated with 

inventory management and warehousing. A detailed investigation into product production can serve as a valuable tool 

for businesses striving to meet customer demand while reducing costs. Identifying and addressing inefficiencies in 

production processes is crucial for achieving and maintaining supply chain agility. This enables improvements in 

efficiency, reduction of waste, and ultimately, enhancement of the company's bottom line. 

https://jqepo.shahed.ac.ir/article_4437.html
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Planning and scheduling are critical operations in both service and manufacturing industries. These processes help 

organizations allocate resources efficiently, optimize workflows, and manage time effectively, leading to increased 

overall productivity (Zhao et al., 2019). Effective planning offers significant benefits for both service providers and 

recipients. By ensuring efficient resource allocation, streamlined processes, and effective time management, planning 

creates a positive ripple effect that benefits both parties involved in the service experience: 

 Service providers: Experience cost reduction, increased productivity, and improved customer satisfaction. 

 Service recipients: Benefit from shorter wait times, enhanced service quality, better predictability, and 

potentially lower costs. 

 

In many production environments, a common method for organizing production is serial production, also referred to 

as flow shop (Rostami & Shad, (2020); Samarghandi & Firouzi Jahantigh, (2019)). When identical parallel machines 

are used in one of the steps, this system is referred to as a hybrid flow shop (Rastgar et al., 2021). The process of 

manufacturing products or equipment typically involves producing individual components, which are then assembled to 

create the final product. As such, the start of a job depends on the completion of its preceding Jobs, a common feature in 

manufacturing and service industries. To achieve the desired outcome, these jobs are scheduled concurrently using 

different resources. Production-assembly scheduling problems exemplify scenarios where the desired outcome is 

achieved by scheduling various jobs (component assembly) using multiple resources (workers, machines) 

simultaneously. (Framinan & Gonzalez, 2018). 

In this article, a three-step production-assembly problem is considered across parallel factories. As shown in Figure 

1, in the first step of each factory, production operations are performed by dedicated parallel machines, where different 

components of a product are produced separately. Once the components are manufactured, they can be assembled using 

any of the machines in the second step, as this stage employs identical parallel machines. Finally, in the third step, 

dedicated parallel machines are used, and the remaining operations of a product can be completed by one of these 

machines.  

The concept of dedicated parallel machines has numerous real-world applications, one of which is fire engine 

assembly. A fire engine is a complex vehicle composed of various parts working together to assist firefighters in their 

crucial tasks. Key components include the body, chassis, and engine. Each of these components requires specific 

manufacturing processes, and dedicated parallel machines can be employed to perform these processes efficiently and 

effectively. The framework, chassis, and engine are produced in the first step, followed by their assembly in the second 

step (lee et al., 1993). Similary, the process of printing invoice pages can be divided into three main steps: preparation 

of template, printing of pages, and assembly of the invoices. This system ensures that invoices are accurately generated 

and delivered to customers on time. The process of printing invoice pages can be considered as an assembly flow shop, 

where each page represents a component, and the invoice is the final product. The two steps of printing and assembly 

can be viewed as parallel machines, each responsible for processing a specific set of components. Assembly flow shop 

problems can also be found in various real-world environments, including the automobile industry, electrical system 

testing, and airplane maintenance (Wagneur & Sriskandarajah, 1993). 

The mathematical model (According to the sequence of jobs processing) and the branch-and-bound (B&B) method 

are effective techniques for solving assembly flow shop problems, especially in small dimensions. These methods can 

efficiently identify the optimal solution, which minimizes the overall processing time or other relevant objective 

functions. A single machine with minimizing the sum of earliness and tardiness is a strongly NP-hard problem 

(Esmaeili et al., 2021). The production-assembly flow shop scheduling problem with two machines in the first step and 

one machine in the second step is NP-hard (lee et al., 1993). The expanded problem, which includes more steps, more 

machines per step, and more factories, is more complicated than the original problem presented by Lee et al. (1993). 

This additional complexity increases the difficulty of solving the problem, making it more likely to be NP-hard. By 

exploring alternative approaches, organizations can address the scheduling issues of complex production-assembly 

processes even when finding the absolute optimal solution becomes impractical or impossible. The focus shifts from 
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finding the absolute best solution to identifying efficient and feasible solutions that meet production goals and resource 

constraints in a timely manner. When dealing with large-scale NP-hard problems, approximation algorithms become 

crucial tools for navigating the challenges of finding optimal solutions. A new metaheuristic algorithm called the 

Hybrid BBO (HBBO) algorithm has been proposed to address the expanded production-assembly flow shop scheduling 

problem in a large-scale. This algorithm combines the strengths of the BBO algorithm with dominance rules to 

effectively explore the solution space and find near-optimal or even optimal solutions. 
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Fig. 1. Arrangement of machines in a three-step production-assembly problem across parallel factories 

Based on the aforementioned discussion, the existing gaps in the production-assembly flow shop scheduling 

problem can be identified, along with the contributions made by the proposed solution. The contributions of the 

problem will be examined in different parts of the article. The motivation of presenting this article is to cover the 

existing gaps and to present a problem that is applicable in the real world. To achieve this goal, exact and approximate 

solution methods have been used in each dimension of the problem.  

According to the aforementioned, the innovation of the problem includes the following: 
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1. Presenting a new mathematical model based on the sequence of jobs processing 

2. Considering different parallel machines in the third step of multi-factory production-assembly problem 

3. Providing an improved meta-heuristic algorithm to solve the problem in large dimensions 

4. The utilization of parallel machines in all three steps of the three-step production-assembly problem in parallel 

factories 

 

The next sections are presented as follows: the literature review of problem and the mathematical model in the 

second and third sections, respectively, the solution method in the fourth section, the results of calculation in the fifth 

section, and the third stage includes the conclusion.  

II. LITERATURE REVIEW 

The production-assembly problem typically involves two main phases: production and assembly. Various aspects of 

production-assembly scheduling problems have been continuously explored by researchers and practitioners, with 

different configurations of machines, numbers of steps, and the distribution of factories considered to address the 

diverse challenges of real-world manufacturing scenarios. The production-assembly problem was introduced in 1995 by 

Potts et al. (1995). A scheduling problem consisting of two steps was examined by them. In the first step, the production 

of different components is performed by dedicated parallel machines, and in the second step, the assembly of the 

produced components is carried out by a machine. The makespan was considered the objective function. The presented 

articles in this field are divided into two major categories: single-factory and multi-factory mode. In the following, the 

single-factory mode is presented first, then the multi-factory mode. For single-factory, the articles are as follows. 

Wagneur & Sriskandarajah, (1993) considered the scheduling problem with   jobs and   separate machines, such that 

no prerequisite restriction is imposed for different activities of a job, and they are performed simultaneously by all 

machines; however, a job limitation is placed on machines, and one machine cannot run more than one activity at a 

time. They investigated the objective functions, including maximum completion time, total completion time, maximum 

tardiness time, total tardiness time, and the number of tardy jobs. A heuristic algorithm was presented by Leung et al. 

(2005) to minimize the weighted sum of tardiness times and the weighted sum of order completion times in a 

scheduling problem with dedicated parallel machines, where each machine has the ability to process a specific job. An 

order scheduling problem was investigated by Lee (2013). Each order consists of   parts that are produced by   

dedicated parallel workshops. The sum of delay times was minimized as the objective function. Some heuristic methods 

were presented to improve the lower bound of a BBO algorithm.  

Wu et al. (2018) considered the orders scheduling problem, where different orders are processed by multi machines 

and any order contains several components. Each component is processed by a dedicated machine, and order 

completion time is defined as when all components of an order are completed.  

The flow shop scheduling problem in production-assembly mode was presented by Wu et al. (2019), Zou et al. 

(2020), and Wu et al. (2020). The first step includes two independent machines, and the second step includes one 

machine. Two components are produced in the first step and then assembled in the second step. Zou et al., (2020) 

focused on minimizing the maximum completion time of jobs. Dominance properties, lower bounds, SA, and cloud 

theory-based simulated annealing algorithms were developed to improve the BBO algorithm. Wu et al. (2019) 

minimized the total time to complete the jobs. A BBO algorithm and four meta-heuristic algorithms, including cloud 

theory-based simulated annealing, genetic algorithms, iterated greedy (IG) algorithms, and artificial bee colonies, were 

presented to solve the problem. Wu et al. (2020) minimized the makespan of jobs. A BBO algorithm and three meta-

heuristic algorithms, including simulated annealing (SA), dynamic differential evolution (DDE), and cloud theory-based 

simulated annealing (CSA), were employed to solve the problem. 

Al-Anzi and Allahverdi (2009), Torabzadeh and Zandieh (2010), Tian et al. (2013), Yan et al. (2014), Komaki and 

Kayvanfar (2015), Allahverdi et al., (2016), Jung et al., (2017), Sheikh et al. (2018), Chung and Chen (2019) and 

Hosseini et al. (2022) considered two-step production-assembly with independent parallel machines in the first step and 
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one machine in the second step.  

Three heuristic algorithms were considered by Al-Anzi and Allahverdi (2009) to minimize the weighted sum of 

maximum delay and maximum completion time. The CSA algorithm was proposed by Torabzadeh and Zandieh (2010) 

to minimize the weighted sum of the average completion time and the maximum completion time of jobs. Tian et al. 

(2013) applied the discrete particle swarm optimization (PSO) algorithm with the objective function of the average 

completion time and the maximum completion time of the jobs. The hybrid VNS algorithm was employed by Yan et al., 

(2014) to minimize the weighted sum of the average completion times and the maximum completion time. Komaki and 

Kayvanfar (2015) introduced Gray Wolf Optimizer (GWO) algorithm to minimize the makespan. Several algorithms, 

including genetic, simulated annealing, and insertion algorithms, were utilized by Allahverdi et al. (2016) to minimize 

total delay times. Jung et al. (2017) presented the genetic algorithm to minimize maximum time to complete jobs. 

Sheikh et al. (2018) considered total time to complete the jobs, the total delay time and the maximum time to complete 

the jobs as objective function. Non-dominated Sorting Genetic Algorithm (NSGA-III) and Multi-Objective PSO 

(MOPSO) algorithms were provided to solve the problem. Chung and Chen (2019) presented meta-heuristic algorithm 

based on Immunoglobulin-based Artificial Immune System in order to solve the problem in large dimensions. The 

objective function of the problem is minimizing the weighted sum of early and delay job times. Hosseini et al. (2022) 

presented some heuristic algorithms to solve the problem with the makespan. 

Mozdgir et al. (2013), Basir et al. (2018), Mahabadpour et al. (2020), Zhang and Tang (2021) addressed the 

scheduling problem so that   machines produce   separate parts of a product in the first step and the same parallel 

machines perform the assembly of the produced parts in the second step. Mozdgir et al. (2013) minimized the weighted 

sum of the average completion time and the maximum completion time of the jobs using the heuristic VNS algorithm. 

A genetic algorithm was employed by Basir et al. (2018) to minimize the weighted average of job lateness and total 

delivery costs. The maximum time to complete the jobs was minimized by Mahabadpour et al. (2020) through a 

heuristic algorithm. Zhang and Tang (2021) minimized the total completion time of jobs with utilization of heuristic 

algorithm.  

Maleki-darounkolaei et al. (2012), Fattahi et al. (2014), Shoaardebili and Fattahi (2015), and Campos et al. (2017) 

considered the three-step production-assembly scheduling problem including production, transportation and assembly. 

In the first step, dedicated parallel machines are responsible for producing different parts of a product. The produced 

parts are collected by a single machine and transferred to the second step, where they are assembled. In the third step, 

the assembly is completed. 

Maleki-darounkolaei et al. (2012) proposed the weighted average of job completion times. A meta-heuristic 

algorithm based on SA was used to solve the problem. Fattahi et al. (2014) minimized sum of early and tardy times and 

the maximum completion time simultaneously by using the Elitist Non-dominated Sorting Genetic Algorithm (NSGA-

II). Wang et al. (2016) considered the three-step production-assembly scheduling problem including production, 

assembly and transportation. Different parallel machines produce different parts of a product in the first step. The 

produced parts are assembled by a machine in the second step, and different product are transported and delivered to 

customers in the third step. The objective function is the weighted sum of total delivery costs and average delivery time. 

A hybrid meta-heuristic algorithm (GA and VNS) was used to solve the problem. Shoaardebili and Fattahi (2015) 

investigated the weighted sum of completion times as well as the weighted sum of early and late jobs. Meta-heuristic 

algorithms were used to solve the problem. Campos et al. (2017) presented the idea of minimizing the total delay time 

of jobs. A heuristic algorithm using VNS was presented to solve the problem. Deng et al. (2021) considered the 

production-assembly scheduling problem in three steps, so that there are parallel machines in the first and second steps 

and one machine in the third step. Dedicated parallel machines perform the production operation in the first step, and 

identical parallel machines perform the transportation operation of the produced parts in the second step. The assembly 

operation takes place in the third step. The objective function involves minimizing energy consumption, which was 

achieved using the VNS algorithm.  
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The reviewed articles were for single-factory state. Articles for multi-factory state are presented in the following. 

Lei and Liu (2020) considered the scheduling problem including the allocation of jobs to factories. Separate 

identical factories were proposed, each containing different parallel machines that perform production operations. To 

minimize the maximum time to complete a job, the division-based artificial bee colony (DABC) algorithm was used. 

Hatami et al. (2013) and Liao et al. (2015) considered two steps for production-assembly problem. Identical factories 

contain different parallel machines that perform production operations in the first step. A machine assembles the 

produced components in the second step. Heuristic algorithms were applied to minimize the maximum completion time. 

Zhang and Xing (2018), Ochi and Driss (2019), Li et al. (2021), Pourhejazy et al. (2021) and Pourhejazy et al. 

(2023) considered the production-assembly scheduling problem in multi factories such that there are dedicated parallel 

machines in the first step of each factory and one machine that performs assembly operations in the second step. 

Zhang and Xing (2018) used a memetic algorithm (MA) based on developed social spider optimization (SSO) in 

order to minimize the total time to complete the jobs. Ochi and Driss (2019) presented a bounded-search IG algorithm 

to minimize the maximum completion time. Li et al. (2021) proposed an imperialist competitive algorithm to minimize 

the maximum time to complete the jobs. Pourhejazy et al. (2021) presented an IG algorithm to solve the problem with 

minimizing the maximum time to complete of jobs. Pourhejazy et al. (2023) proposed a extension of the Iterated 

Greedy algorithm to solve this understudied distributed two-stage production-assembly scheduling problem.  

Wang et al. (2023) considered distributed two-stage hybrid flow shop and proposed an improved Non-dominated 

Sorting Genetic Algorithm-II (INSGA-II) to solve it. Fernandez-Viagas et al. (2018), Chen et al. (2021), Lei & Su, 

(2023), Zhao et al. (2023), Cui et al. (2023), Li et al. (2023) and Yu et al. (2024) presented the flow shop scheduling for 

identical parallel factories with m machines in series in each factory. Fernandez-Viagas et al. (2018) propose eighteen 

constructive heuristics to obtain high-quality solutions in reasonable CPU times and an iterative improvement algorithm 

to further refine the so-obtained solutions to minimize total flowtime. Chen et al. (2021)  considered an IG algorithm to 

solve the problem and the objective function of the problem is the sum of the times to complete the jobs. Lei & Su, 

(2023) proposed a multi-class teaching–learning-based optimization (MTLBO) to minimize makespan and maximum 

tardiness simultaneously. Zhao et al. (2023) presented brain storm optimization algorithm for minimizing the maximum 

assembly completion time minimizing the total energy consumption (TEC) and achieving resource allocation balanced. 

Cui et al. (2023) presented a greedy job insertion inter-factory neighborhood structure and a new move evaluation 

method to ensure the efficiency of neighborhood movement. Also, an improved multi-population genetic algorithm 

(IMPGA) is proposed to solve the DHHFSP with makespan. Li et al. (2023) suggested that to minimize the maximum 

completion time, a hyper-heuristic three-dimensional estimation of the distribution algorithm (HH3DEDA) was used to 

solve it. To solve this problem with total tardiness, Yu et al. (2024) presented a mixed-integer linear programming 

(MILP) model and a knowledge-based iterated greedy algorithm (KBIG). 

Jia et al. (2023) presented a multi-population memetic algorithm (MPMA) with Q-learning (MPMA-QL) to address 

a distributed assembly hybrid flow shop scheduling problem with flexible preventive maintenance (DAHFSP-FPM). A 

mixed integer linear programming (MILP) model targeted at the minimal makespan. 

Hatami et al. (2013), Li et al. (2015), Lin and Zhang (2016), Ji et al. (2016), Gonzalez-Neira et al. (2017), Yang et 

al. (2017), Pan et al. (2018), Shao et al. (2018), Pan et al. (2019), Ferone et al. (2020), Huang et al. (2021), Shao et al. 

(2020), Zhang et al. (2021), Song and Lin. (2021), Zhao et al. (2021) and Zhao et al. (2021) and Ying and Lin (2023) 

and Huang et al. (2023) considered the two-step production-assembly problem. Separate identical factories contain a 

flow shop, and perform production operations in the first step. A machine assembles the produced components in the 

second step. 

Hatami et al. (2013), Gonzalez-Neira et al. (2017), and Ferone et al. (2020) aimed to minimize the maximum 

completion time by employing meta-heuristic algorithms to solve the problem. Li et al. (2015), Lin and Zhang (2016) 

and Ji et al. (2016) used GA, BBO and (PSO and SA), respectively, to minimize the maximum time to complete the 
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jobs. Yang et al. (2017) used of the scatter search based MA (SS-MA) in order to minimize the total tardiness time of 

the jobs. Pan et al. (2018) attempted to minimize the total completion time for the two-step production-assembly 

problem and used the fruit fly optimization (FFO) algorithm to solve the problem. Shao et al. (2018) proposed three 

constructive heuristics based on a new job assignment rule and suggested two simple meta-heuristics, including iterated 

local search (ILS) and variable neighborhood search (VNS) to minimize makespan. Pan et al. (2019) presented heuristic 

methods in order to minimize the maximum completion time of jobs. Huang et al. (2021) used an improved iterative 

greedy algorithm to solve the two-step assembly problem by minimizing total job completion time. Shao et al. (2020) 

used a heuristic algorithm in order to minimize the makespan for two-step production-assembly problem. Zhang et al. 

(2021) state that the makespan is minimized by the utilization of the matrix-cube-based estimation of the distribution 

algorithm (MCEDA). Song and Lin. (2021) considered an improved genetic algorithm to minimize the makespan for 

the two-step production-assembly problem. Zhao et al. (2021) presented heuristic algorithms in order to minimize the 

maximum time to complete the jobs. Zhao et al. (2021) used the water wave optimization algorithm to minimize the 

maximum time to complete the jobs. Ying and Lin (2023) consider a mixed-integer linear programming (MILP) model 

and a novel metaheuristic algorithm, called the Reinforcement Learning Iterated Greedy (RLIG) algorithm, to minimize 

the makespan of this problem. Huang et al. (2023) proposed an effective memetic algorithm (EMA) to minimize total 

tardiness criterion. 

Zheng and Wang (2021) and Wang et al. (2022) considered a three-step production problem so that parallel 

factories, including flow shop perform production operation in the first step. The produced parts are transported and 

transferred to next step, in the second step. The produced parts are assembled by one machine in the third step. Zheng 

and Wang (2021) minimized the makespan by the bat optimization algorithm. Wang et al. (2022) considered total delay 

time of the jobs as objective function, that is minimized by the Q-learning-based artificial bee colony algorithm 

(QABC). Zhang et al. (2018) considered the production-assembly problem in identical parallel factories. In each 

factory, there is a flow shop production line, and finally, parallel machines perform assembly operations of the 

produced parts in all factories. Heuristic and meta-heuristic methods were applied to minimize makespan. 

Yang and Xu (2021) considered three-step production-assembly problem so that parallel factories, including flow 

shop perform production operations in the first step. The produced parts by first step factories are assembled by parallel 

factories, including one machine in the second step. Products are grouped separately for each customer in the third step. 

The objective function is the sum of delay times and delivery cost, that is minimized by seven algorithms.  

Torkashvand et al. (2022) studied a production-assembly problem in three steps and in identical parallel factories 

with the objective function of makespan, so that there are dedicated parallel machines in the first step, one machine in 

the second step, and identical parallel machines in the third step. An improved GA was developed to solve the problem. 

Torkashvand and Ahmadizar (2024) addressed a similar problem, focusing on minimizing total completion time. 

Parallel machines were used in both the first and second steps, with a single machine handling the third step. An 

improved PSO algorithm was proposed to solve the problem. 

The machine positioning for each problem was provided by Framinan et al. (2019) with the formulation (1). 

     | |      (1) 

 

In the notation above,    represents the environment of the machines in the production step. In this environment, all 

operations are performed before the assembly operation.    demonstrates the environment of the machines in the 

assembly step. Assembly and subsequent operations take place in this part. Different limitations of the problem are 

displayed in segment β and finally different types of used objective function in the problem are presented in segment γ. 

Framinan et al. (2019) discussed the different positions of machines for production and assembly in detail. When 

additional operations are required after production and assembly, the notation is modified by including    in the 

formulation, as shown in formulation (2): 
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(     )    | |    (2) 

 

If the expression within parentheses represents a factory that combines production and assembly, and     , it 

implies that no further operations are performed after the production and assembly stages. This configuration indicates 

that the factories operate in parallel, with each producing a final product independently. Based on the literature, the 

presented articles can be divided into two major categories: one-factory and multi-factory. In the case of one-factory, 

for most articles, there are dedicated parallel machines in the first step and 0, 1 or   machines in the second step 

according to Table I. For the three-step mode, the number of machines in the third step is equal to 1. The most complex 

state was presented by Deng et al (2021) that there are dedicated parallel machines in the first step, identical parallel 

machines in the second step, and one machine in the third step. In the multi-factory state, the problems are divided into 

two categories according to Table II. In the first category, the jobs are not processed in parallel factories at least in one 

step and all of them pass through one machine commonlly, but all the steps exist in one factory and each job is 

processed only in one factory in the second category.  

The most complex state belongs to Yang and Xu (2021) and Torkashvand et al. (2022). The presented article by 

Yang and Xu (2021) pertains to the first category, so there is a flow shop in all parallel factories in the first step. There 

are identical parallel machines in the second step, and there is one machine in the third step. The presented article by 

Torkashvand et al. (2022) pertains to the second category and each factory has three steps: dedicated parallel machines 

in the first step, one machine in the second step, and identical parallel machines in the third step. 

Table I. Summary of literature for single-factory state 

Row Referece Problem Obj Algorithm 

1 
Wagneur and 

Sriskandarajah, (1993) 
DPm--0 

Maximum completion time (    ), total 

completion time (   ), maximum lateness 

(    ), total tardiness time (  ) and 

number of tardiness (  ) 

Heuristic algorithm 

2 Leung et al. (2005) DPm--0 weighted    (   ) and     Heuristic algorithm 

3 Lee (2013) DPm--0 Sum of delay times B&B 

4 Wu et al. (2018) DPm--0    ,      
Hybrid IG algorithm and a 

PSO algorithm 

5 Wu et al. (2019) DP2--1     
B&B, cloud theory-based SA, 

GA, IG algorithms and 

artificial bee colonies 

6 zou et al. (2020) DP2--1      
B&B, SA and cloud theory-

based SA 

7 Wu et al. (2020) DP2--1      B&B, DDE, SA and CSA 

8 Potts et al. (1995) DPm--1      Heuristic algorithm 

9 
Al-Anzi and Allahverdi 

(2009) 
DPm--1 weighted sum of       and      Heuristic algorithm 

10 
Torabzadeh and Zandieh 

(2010) 
DPm--1 

Weighted sum of the average completion 

time (   ) and      
CSA 

11 Tian et al. (2013) DPm--1     and      Discrete PSO 

12 yan et al. (2014) DPm--1 Weighted sum of     and      Hybrid VNS 

13 
komaki and Kayvanfar 

(2015) 
DPm--1      GWO 
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Continue Table I. Summary of literature for single-factory state 

Row Referece Problem Obj Algorithm 

14 Allahverdi et al. (2016) DPm--1    
GA, refrigeration simulation 

and insertion algorithm 

15 Jung et al. (2017) DPm--1      GA 

16 Sheikh et al. (2018) DPm--1    and      NSGA-III and MOPSO 

17 Chung and Chen (2019) DPm--1 Weighted sum of early and delay times 

Meta-heuristic algorithm 

based on Immunoglobulin-

based Artificial Immune 

System 

18 Hosseini et al. (2022) DPm--1      Heuristic algorithm 

19 Basir et al. (2018) DPm--Pm 
Weighted average of latness and total 

delivery costs 
GA 

20 Mahabadpour et al. (2020) DPm--Pm      Heuristic algorithm 

21 Zhang and Tang (2021) DPm--Pm     Heuristic algorithm 

22 
Maleki-darounkolaei et al. 

(2012) 
DPm--F2 Weighted     Meta-heuristic algorithm 

23 Fattahi et al. (2014) DPm--F2 
Sum of early and tardy times and the 

     
NSGA-II 

24 Wang et al. (2016) DPm--F2 
Weighted sum of total delivery costs 

and average delivery time 
Meta-heuristic algorithm 

 (GA and VNS) 

25 
Shoaardebili and Fattahi 

(2015) 
DPm--F2 

Weighted sum of completion times and 

weighted sum of early and late 
Meta-heuristic 

26 Campos et al. (2017) DPm--F2    Heuristic algorithm using VNS 

27 Deng et al. (2021) 
DPm--

HF2(Pm,1) 
Energy consumption VNS 

Table II. Summary of literature for multi-factory state 

Row Referece Problem Obj Algorithm 

1 Lei and Liu (2020) (DPm--0)--0      DABC 

2 Liao et al. (2015) (DPm--0)--1      Heuristic algorithms 

3 Zhang and Xing (2018) (DPm--1)--0     MA 

4 Ochi and Driss (2019) (DPm--1)--0      Bounded-search iterated greedy IG 

5 Li et al. (2021) (DPm--1)--0      Imperialist competitive algorithm 

6 Pourhejazy et al. (2021) (DPm--1)--0      IIG 

7 Pourhejazy et al. (2023) (DPm--1)--0      Iterated Greedy algorith 

8 Wang et al. (2023) (F2--0)--0 
total weighted 

earliness/tardiness 
INSGA-II 

9 
Fernandez-Viagas et al. 

(2018) 
(Fm--0)--0     Constructive heuristics 

10 Chen et al. (2021) (Fm--0)--0     IG algorithm  

11 Zhao et al. (2023) (Fm--0)--0      and     Brain storm optimisation 
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Continue Table II. Summary of literature for multi-factory state 

Row Referece Problem Obj Algorithm 

12 Li et al. (2023) (Fm--0)--0       

13 Cui et al. (2023) (Fm--0)--0      IMPGA 

14 Lei (2023) & Su, (Fm--0)--0      and      MTLBO 

15 Yu et al. (2024) (Fm--0)--0    KBIG 

16 Jia et al. (2023) (F2--0)--1      MPMA-QL 

17 Hatami et al. (2013) (Fm--0)--1      Meta-heuristic algorithm 

18 Li et al. (2015) (Fm--0)--1      Genetic algorithm 

19 Lin and Zhang (2016) (Fm--0)--1      BBO algorithm 

20 Ji et al. (2016) (Fm--0)--1      PSO and SA 

21 
Gonzalez-Neira et al. 

(2017) 
(Fm--0)--1      Meta-heuristic algorithm 

22 Yang et al. (2017) (Fm--0)--1     Scatter search based MA 

23 Pan et al. (2018) (Fm--0)--1     FFO 

24 Shao et al. (2018) (Fm--0)--1      ILS, VNS 

25 Pan et al. (2019) (Fm--0)--1      Heuristic algorithm 

26 Ferone et al. (2020) (Fm--0)--1      Meta-heuristic algorithm 

27 Huang et al. (2021) (Fm--0)--1     Improved iterative greedy algorithm  

28 Shao et al. (2020) (Fm--0)--1      Heuristic algorithm 

29 Zhang et al. (2021) (Fm--0)--1      
Matrix-cube-based estimation of 

distribution algorithm 

30 Song and Lin. (2021) (Fm--0)--1      Improved GA 

31 Zhao et al. (2021) (Fm--0)--1      Heuristic algorithm 

32 Zhao et al. (2021) (Fm--0)--1      Water wave optimization algorithm 

33 Ying and Lin. (2023) (Fm--0)--1      RLIG 

34 Huang et al. (2023) (Fm--0)--1    EMA 

35 Zheng and Wang (2021) (Fm--0)--1--1      Bat optimization 

36 Wang et al. (2022) (Fm--0)--1--1    QABC 

37 Zhang et al. (2018) (Fm--0)--Pm      Heuristic and meta-heuristic 

38 Yang and Xu (2021) (Fm--0)--Pm--1 
Sum of delay times 

and delivery cost 
Heuristic and meta-heuristic 

39 Torkashvand et al. (2022) (DPm--1--Pm)--0      Improved GA 

40 
Torkashvand and 

Ahmadizar (2024) 
(DPm-- Pm --1)--0     Improved PSO 

This paper (DPm--Pm--DPm)--0    HGA, HBBO 

 



Journal of Quality Engineering and Production Optimization  / Volume 9, Issue 1, Winter & Spring 2024, PP. 65-114 75 
 

 

Based on the presented practical examples in the real world as well as the problems reviewed in the literature, there 

are some gaps in the presented problems in this field. This article specifically addresses these gaps, which constitutes 

one of its key contributions. A three-step production-assembly problem in identical parallel factories is presented, 

aligning with the insights from the literature review. There are dedicated parallel machines in the first step, identical 

parallel machines in the second step, and dedicated parallel machines in the third step.  

The use of parallel machines in all three steps of the production-assembly problem has not, to our knowledge, been 

previously examined in either single-factory or multi-factory scenarios. In the most complex case, there is only one 

machine in least one of the steps (Torkashvand et al., 2022 and Torkashvand and Ahmadizar, 2024). Utilization of 

identical parallel machines in the second step of a production-assembly process can help to prevent interruptions in the 

jobs processing and reduce the costs of goods in process (WIP) inventory. By having multiple identical machines 

operating concurrently, jobs no longer have to wait in a queue for a single machine to become available. This parallel 

processing significantly increases the throughput of the second step in the production line, allowing jobs to flow 

through the system more efficiently. This not only reduces the overall processing time for each job but also minimizes 

idle time in the production line, leading to a smoother operation. With identical machines, you can distribute incoming 

jobs evenly among them. This helps to prevent any single machine from becoming overloaded and creating a bottleneck 

that slows down the entire production line. This even distribution also minimizes idle time for machines waiting for new 

jobs, further improving overall efficiency. Utilizing parallel machines in the second step of a production-assembly 

process can indeed expedite the assembly operation, thereby contributing to timely product delivery to customers. By 

enabling multiple components or subassemblies to be assembled simultaneously, parallel machines can significantly 

reduce the overall assembly time. This accelerated assembly process can directly translate into shorter overall 

production lead times, ensuring that products are delivered to customers within the specified timeframe. Moreover, the 

reduced assembly time can also help to minimize inventory levels and associated carrying costs. In the third step, 

dedicated parallel machines facilitate the production of diverse products, accommodate different packing 

configurations, or support various transportation methods for parts. These specialized machines are designed to handle 

specific tasks or product variations, enabling manufacturers to adapt their production processes to meet diverse 

customer requirements. However, the use of such dedicated parallel machines in all three steps within parallel factories 

has not been investigated in the literature, with identical machines proposed only by Torkashvand et al. (2022) and 

Torkashvand and Ahmadizar (2024). Distributing production across multiple factories offers strategic benefits by 

balancing workloads and preventing individual factories from becoming overloaded. This distribution minimizes 

bottlenecks and slowdowns that could otherwise impact product quality. Additionally, access to a broader pool of 

skilled labor and expertise across multiple factories can enhance the overall quality of the final product (Naderi & Ruiz, 

2010). In summary, utilizing parallel factories provides manufacturers with greater flexibility, operational efficiency, 

and a more resilient supply chain. By spreading production across multiple facilities, risks are mitigated, costs are 

lowered, and product quality is improved. Therefore, this study investigates the novel configuration of using parallel 

machines across all three steps of the flow shop problem in parallel factories, a configuration not previously explored in 

the literature. 

III. MATHEMATICAL MODEL 

In this section, one of the key contributions of the research is examined. The use of a mathematical model, GAMS 

software, Cplex solver, and the B&B algorithm can be a valuable approach for accurately solving the problem in small 

dimensions. This combination offers a rigorous and systematic method for identifying optimal or near-optimal 

solutions. 

In this model, there are    machines in the first step,    machines in the second step, and    machines in the third 

step, where each job is processed on only one machine in a continuous manner. In the first step, dedicated machines are 

employed, with each machine producing a portion of a job. In the second step, there are identical parallel machines, and 

the components produced in the first step can be assembled by any of these machines. There are dedicated parallel 
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machines, that perform post-assembly operation in the third step, and each job is processed by only one machine 

continuously in this step. If the jobs have different delivery dates, the production planning and scheduling should be in 

such a way that the jobs are delivered to the customer the deadline and delay is minimized. Therefore, the objective 

function of the problem is to minimize the total tardiness of all jobs. This section presents the mathematical model, 

including the objective function and relevant constraints.  

There are two main modes for determining the sequence of processing jobs in a production-assembly scheduling 

problem: determining the sequence based on the sequence of processing jobs, determining the sequence based on the 

position of processing jobs. The appropriate way for determining best approach is to experiment with both methods and 

see which one produces the best results. In order to provide the appropriate model in terms of achieving the optimal 

solution faster and occupying minimal memory, in this section two models are presented in different modes and the 

results are compared. Two modes have been studied in order to provide a suitable model for solvng the problem. The 

first mode of the model is based on the position of jobs processing and the second mode is based on the sequence of 

jobs processing on machines. Two modes are presented below and their results are compared in order to select the 

suitable model. 

A. Position based model 

In this case, the problem model is presented based on the jobs processing position. The problem model includes the 

objective function and constraints. The parameters, indexes and decision variables are presented initially, then the 

mathematical model. 

Parameters: 

n Total number of jobs 

   The machines number in the first step of every factory  

   The machines number in the second step of every factory 

   The machines number in the third step of every factory 

      The processing time of job   on machine   in the first step 

    The processing time of job   on the assembly machine in the second step 

    The processing time of job   in the third step 

M A large positive number 

Indexes: 

i,j The index of jobs {0, 1, ..., n} 

f Index related to factories {1, 2, ..., q} 

k The index related to the first step machines{1, 2, ...,   } 

s The index related to the second step machines{1, 2, ...,   } 

l The index related to the third step machines{1, 2, ...,   } 
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Decision variables: 

       If job   is processed in position   at the first step of factory  , equal 1, otherwise 0 

         
If job   is processed in position   of machine   in the first step of assembly in factory  , equal 1, 

otherwise 0. 

         
If job   is processed in position   on machine   in the second step of assembly in factory  , equal 1, 

otherwise 0. 

       Time to complete job at position   on machine   in the production step of factory  . 

        Time to complete job at position   on machine   in the first step of assembly at factory  . 

        Time to complete job at position   on machine   in the second step of assembly at factory  . 

 

The mathematical model includes the constraints and the objective function as follows: 

Minimise  ∑   
 
     (3) 

∑ ∑       

 

   

 

   

                (4) 

∑      

 

   

                      (5) 

∑        

 

   

 ∑      

 

   

                    (6) 

∑ ∑ ∑        

  

   

 

   

 

   

                (7) 

∑        

 

   

                                  (8) 

∑          

 

   

 ∑        

 

   

                                (9) 

∑∑        

  

   

 

   

 ∑       

 

   

                     (10) 

∑ ∑ ∑        

  

   

 

   

 

   

                (11) 

∑        

 

   

                                  (12) 



78 Ahmadizar, F. & Torkashvand, M. / Production-assembly problem with parallel machines in three steps and in   

 

 

∑          

 

   

 ∑        

 

   

                                (13) 

∑∑        

  

   

 

   

 ∑       

 

   

                     (14) 

      ∑∑        

 

   

 

   

                          (15) 

  ∑ ∑        

 

   

 

   

                                (16) 

                              (        ) 
                                  

       
(17) 

       ∑           

 

   

                      (18) 

                  ∑           

 

   

  

 (  ∑        

 

   

) 

                              (19) 

                            

 (                 ) 

                           
                        
       

(20) 

                  ∑              

 

   

  

 (  ∑        

 

   

) 

                                (21) 

                                 (          

         ) 

                                   
                        
          

(22) 

       *  (          )+     (          ) 
                                     

       
(23) 

        *   + ,           *   + 
                                  

       
(24) 

                                                          (25) 

 



Journal of Quality Engineering and Production Optimization  / Volume 9, Issue 1, Winter & Spring 2024, PP. 65-114 79 
 

 

Equation 3 defines the value of the objective function, which minimizes the total tardiness of jobs by summing the 

tardiness times of all jobs. Constraint 4 demonstrates that every job in the first step must be assigned to a position. 

Constraint 5 specifies that maximum one job is assigned to each position in the first step of each factory. Constraint 6 

determines that a position is occupied in the first step if its previous position is filled. Constraint 7 shows that each job 

in the second step is assigned to only one position of a machine. Constraint 8 determines that maximum one job is 

assigned to each position in each factory in the second step. Constraint 9 specifies that a position in the second step is 

occupied if its previous position is filled. Constraint 10 shows that if a job is assigned to the first step of a factory, it 

must also be assigned to the second step. Constraint 1 determines that each job in the third step is assigned to only one 

position of a machine. Constraint 12 shows that maximum one job is assigned to each position in the third step of each 

factory. Constraint 13 specifies that a position is occupied in the third step if its previous position is filled. Constraint 14 

determines that if a job is assigned to the first step of a factory, it must also be assigned to the third step. Constraints 15 

and 16 determine that each job in the third step is only assigned to its dedicated machine. Constraints 17 and 18 show 

the completion times of the jobs in the first step. Constraints 19 and 20 determine the completion times of the jobs in the 

second step. Constraints 21 and 22 show the completion times of the jobs in the third step. Constraint 23 determines the 

tardiness of each job. Constraint 24 shows the binary variables. Constraint 25 determines the range of continuous 

variables. 

B. The sequence based model 

In this case, the problem model is presented based on the sequence of jobs processing. The problem model includes 

the objective function and constraints. The parameters of the problem were defined in the previous section. The indexes 

and decision variables are presented initially, then the mathematical model. 

Indexes: 

i,j The index of jobs {0, 1, ..., n} 

f Index related to factories {1, 2, ..., q} 

k The index related to the first step machines{1, 2, ...,   } 

l The index related to the second step machines{1, 2, ...,   } 

e The index related to the third step machines{1, 2, ...,   } 

Decision variables 

       If job   is processed after job   in the first step of factory  , equal 1, otherwise 0. 

         If job   is processed after job   on machine   in the second step of factory  , equal 1, otherwise 0. 

         If job   is processed after job   on machine   in the third step of factory  , equal 1, otherwise 0. 

      Completion time of job   on machine   in the first step 

    The completion time of job   in the second step 

    The completion time of job   in the third step 

 

The mathematical model includes the objective function and constraints as follows: 
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Constraint 26 represents the objective function, which is the sum of the tardiness times for all jobs. Constraint 27 

specifies that each job must have a prerequisite in the first step. Constraint 28 indicates that each job has maximum one 

post-requirement in the first step. Constraint 279 illustrates that zero job must have one post-requirement in every 

factory. Constraint 30 specifies that each job is assigned to only one factory. Constraint 31 determines the precedence 

and delay of two jobs in the first step; therefore, two jobs cannot be prerequisites and post-requirements for each other 

in the first step. Constraint 32 shows that every job must have a prerequisite in the second step. Constraint 33 

determines that each job has at most one post-requirement in the second step. Constraint 34 displays that zero job on 

each machine in each factory has at most one post-requirement in the second step. Constraint 35 specifies that each job 

is assigned to only one factory in the second step. Constraint 36 shows that each job is assigned to only one machine in 

the second step. Constraint 37 determines the precedence and delay of two jobs in the second step, therefore two jobs 

cannot be prerequisites and post-requirement of each other. Constraint 38 determines that if a job is assigned to the first 

step of a factory, it must also be assigned to the second step of the same factory. Constraint 39 specifies that each job 

must have a prerequisite in the third step. Constraint 40 shows that each job has at most one post-requirement in the 

third step. Constraint 41 determines that zero job on each machine has at most one post-requirement in the third step of 

each factory. Constraints 42 and 43 determine that each job is assigned only to its dedicated machine in the third step. 

Constraint 44 determines that each job is assigned to only one factory in the third step. Constraints 45 specifies that 

each job is assigned to only one machine in the third step. Constraint 46 presents the precedence and delay of two jobs 

and shows that two jobs cannot be prerequisites and post-requirement of each other in the third step. Constraint 47 

determines that if a job is assigned to the first step of a factory, it must be assigned to the third step of the same factory. 

Constraints 48 and 49 show the completion times of the jobs in the first step. Constraints 50 and 51 determine the time 

to complete the jobs in the second step. Constraints 52 and 53 indicate the completion times of the jobs in the third step. 

Constraint 54 defines the tardiness of each job. Constraint 55 determines the binary variables. Constraint 56 

demonstrates the range of continuous variables. 

C. Performance comparison of sequence and position based models 

To compare the two models and select the most appropriate one, each model was coded in GAMS software. Given a 

time limitation of 3600 seconds, the calculation results for 40 instances are shown in Table III. For each models, the 

value of the objective function (obj), the solution time (time) and the deviation from the best solution (GAP) for two 

models have been calculated in each instance. The value of GAP is obtained through the use of equation (57). 

     
      

   
         (57) 

 

In equation (57),     represents the best solution obtained from the two models.    is the solution obtained from 

model   and      is the relative deviation from the best solution for the model  . According to Table III, the sequence-

based model appears to be more effective in finding optimal solutions compared to the position-based model. It 

achieved the optimal solution in 29 out of 40 instances, while the position-based model reached the optimal solution in 

only 16 instances. This suggests that the sequence-based model is more robust and can handle a wider range of problem 

instances. As can be seen, the position-based model has memory errors in 6 instances (indicated by    in the table), 

while the sequence-based model has memory errors in two instances. This suggests that the position-based model is 

more prone to memory errors than the sequence-based model. The average of calculated values is shown in the end of 

the table. The average of solution time and      for the sequence-based model equal 1113 and 0, respectively, and for 

the position-based model equal 2167 and 0.3260. For both parameters, the sequence-based model values are better than 

the position-based model values. Overall, the results indicate that the sequence-based model demonstrates better 

efficiency and is more suitable for solving the problem in small dimensions. 
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Table III. results comparison of sequence and position based models 

Instance n f          
Position based Sequence based 

obj time GAP obj time GAP 

1 3 2 2 2 2 0 2 0 0 2 0 

2 3 2 4 2 2 0 2 0 0 2 0 

3 3 2 6 2 2 0 2 0 0 1 0 

4 4 2 2 2 2 23 3 0 23 2 0 

5 4 2 6 2 2 31 4 0 31 2 0 

6 4 3 4 2 2 0 3 0 0 2 0 

7 5 2 2 2 2 33 16 0 33 2 0 

8 5 2 6 2 2 117 86 0 117 2.3 0 

9 5 2 4 3 3 104 85 0 104 2 0 

10 5 3 2 2 2 0 8 0 0 2 0 

11 5 3 4 2 2 9 129 0 9 2 0 

12 6 2 2 2 2 86 1184 0 86 3 0 

13 6 2 4 3 3 155 2951 0 155 3 0 

14 6 3 2 2 2 16 1653 0 16 5 0 

15 6 3 4 2 2 25 2754 0 25 2 0 

16 7 2 2 2 2 92 3600 0.001 92 4 0 

17 7 2 6 3 3 339 3600 0.0059 337 37 0 

18 7 3 4 2 3 47 3600 0.3206 35 3 0 

19 7 4 2 3 2 0 232 0 0 2 0 

20 7 4 4 2 3 12 3600 0 12 4 0 

21 8 2 4 2 2 388 3600 0.0517 369 603 0 

22 8 2 2 2 3 230 3600 0.0701 215 69 0 

23 8 2 6 3 3 585 (OM) 1308 0.3496 433 416 0 

24 8 3 2 2 3 93 3600 0.086 85 89 0 

25 8 4 4 2 2 83 3600 0.7594 47 11 0 

26 10 2 4 3 2 656 (OM) 2410 0.3014 504 3600 0 

27 10 3 2 2 3 193 3600 0.3822 139 3600 0 

28 10 3 4 2 3 320 (OM) 1995 0.4237 225 3600 0 

29 10 4 2 3 2 88 3600 1.1884 40 410 0 

30 10 4 6 3 3 489 3600 1.2211 220 3600 0 

31 12 2 4 3 2 1325 3600 0.3482 983 3600 0 

32 12 3 2 2 3 406 3600 0.1275 360 2218 0 

33 12 3 4 2 3 871 3600 0.4915 584 1260 0 

34 12 4 2 3 2 516 (OM) 2723 1.4674 209 3600 0 

35 12 4 6 3 3 584 3600 0.3297 439 3600 0 

36 15 2 4 3 2 3160 3600 0.6079 1965 3543 0 

37 15 3 2 2 3 1880 (OM) 1877 1.1717 866 (OM) 1335 0 

38 15 3 4 2 3 1596 (OM) 2490 0.3539 1179 (OM) 2105 0 

39 15 4 2 3 2 1234 3600 1.1247 581 3600 0 

40 15 4 6 3 3 2531 3600 1.8552 886 3600 0 

Average 458 2167.93 0.326 285 1113.58 0 
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IV. SOLUTION METHOD 

It is certainly promising that the proposed solution method is a highlight of the research. The pursuit of improved 

optimization methods is essential for solving complex real-world problems and achieving greater efficiency across 

various fields.  This paper presents the BBO algorithm to address the problem at hand. The BBO algorithm is inspired 

by nature, specifically the migration patterns of animals and birds between islands. Introduced by Simon (2008), the 

algorithm draws from biogeography, which examines the behavior of various biological species over time and across 

different geographical locations. In this context, habitats are considered along with their resident species.. The Habitat 

Suitability Index (HSI) indicates how suitable a geographical area is for the residence of a species. Suitability Index 

Variables (SIV) are variables that determine the suitability of a habitat (Such as rainfall, plant diversity, diversity of 

topographic features, environment and temperature). Resident species in habitats (solutions) where have high HSI, 

because of crowded habitats migrate to another habitat. In biogeography, this migration is denoted as emigration and   

is the rate of this migration. Therefore, the rate   is higher in habitats with a high HSI. Habitats with low HSI serve as 

suitable destinations for species from other habitats due to lower population density. This type of migration is referred 

to as immigration, with the migration rate denoted by  . As species migrate to these lower-density habitats, the HSI 

increases, as the desirability of a habitat is proportional to its density. Figure 2 illustrates the distribution of species 

within a habitat, along with the emigration rate   and immigration rate  , both of which relate to the number of species 

present in the habitat. The migration curve indicates that the maximum immigration rate for a habitat occurs when there 

are no species present. As the number of species increases, the habitat becomes more crowded, resulting in a decreased 

immigration rate.      is the maximum possible species number that the habitat covers and the immigration rate 

becomes zero. 
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Fig. 2. The distribution of species in a habitat 

 

The emigration rate will be zero if the number of species is zero in a habitat. As the number of species increases, the 

habitat becomes more crowded, so to discover other possible habitats more species can leave the habitat, and the rate of 

emigration increases.   is the maximum rate of emigration.   happen when the habitat has the most species number.    

shows the species number in the point equilibrium that the rate of immigration and emigration are equal. The values of 

emigration and immigration rate are calculated based on equations 58 and 59.  

    (  
 

 
) (58) 
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In these equations,   indicates the rank of habitat   based on its suitability value, where 1 represents the worst rank 

and   the best. Each habitat has a population   at time  , and    denotes the probability of   species existing in the 

habitat. Over a time interval 𝛥 , the number of species can either increase, decrease, or remain constant. Thus, the 

number of species at time (𝛥   ) will be equal   if one of the following three situations occurs:  

1. The number of species would equal   if immigration and emigration don't take place. 

2. An immigration takes place, in which the number of species at time   equal (   ). 

3. An emigration takes place, in which the number of species at time   equal (   ). 

 

The probability of the number of species at time (𝛥   ) that equal   is calculated according to equation (60): 

  (𝛥   )    ( )(    𝛥    𝛥 )          𝛥          𝛥  (60) 
       

According to equation (60) in steady state, the probability of the species number that equal   is calculated by 

equation (61): 
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In equation (61), the value of    is calculated based on equation (62): 
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- Determination of the primary values of problem parameters includes:      ,   ,     
- The creation of primary population from habitats 

- Calculation of HSI values (fitness) for each habitat 

- Beginning of algorithm repetition loop 

- Transmission the part of the best solutions to the next generation 

- Calculation the values of     ،     ،    and    (mutation rate) for each habitat 

- Doing migration operations between habitats 

- Beginning of the loop to select the habitat   
- Selection of habitat   with probability    

- If habitat   is selected 

- Selection of habitat   with probability    (Roulette wheel mechanism) 

- If habitat j is selected: 

- Doing the two-point cross over operator 

- End if of habitat   selection  

- End loop of habitat   selection  

- End if of habitat   selection 

- End loop of habitat   selection  

- Doing variation or mutation operations in each habitat 

- Selection habitat   with probability    

- If habitat   is selected 

- Doing variation and evolution in each habitat through the inversion mutation 

operator 

- End if of habitat   selection 

- End loop of habitat   selection 

- The end loop of the algorithm repetition  

- Control the stop condition          
Fig. 3. BBO algorithm Steps 
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The BBO algorithm has operators that change the number of habitat species. Similar to the crossover operator in 

Genetic Algorithm (GA), the migration operator in BBO aims to enhance the diversity and quality of solutions by 

combining information from different parts of the search space. In BBO, habitats represent potential solutions, and the 

movement of species between habitats represents the exchange of information between these solutions. The analogy 

between migration and crossover is clarified when the specific implementation of the migration operator is considered. 

In BBO, the migration process involves selecting a pair of habitats and exchanging a subset of species between them. 

This process effectively combines the characteristics of the two habitats, leading to the creation of new and potentially 

better solutions. Just as crossover helps GA explore new regions of the search space, migration in BBO enables the 

exploration and exploitation of different solution possibilities. Both operators promote diversity and search efficiency, 

contributing to the overall effectiveness of their respective optimization algorithms. Natural disasters such as flood, 

storm, disease, etc. change the number of habitat species. The steps of BBO algorithm are according to Figure 3. 

To implement the algorithm, the required operators are calculated as follows. 

A. Solution representation 

In order to code the under investigation problem, it is necessary to select a suitable solution representation. 

According to through the use of algorithm, two types of solution representation have been examined in this section, for 

solving the problem. In the solution representation 1, the representation is in the single line. For example, for   

machines and   factories, (     ) random numbers are generated in the range of 0 to 1. The cells 1 to   show the 

jobs and the (   ) last number are for separation of the factories. The numbers are arranged in ascending order. An 

example with 10 jobs and 3 factories is illustrated in Figure 4. Here, (        ) random numbers are generated 

and sorted in ascending order. In this scenario, jobs 6 and 7 are assigned to the first factory, jobs 5 and 9 are assigned to 

the second factory, and jobs 8, 4, 10, 3, 2, and 1 are assigned to the third factory. All jobs are then processed in the same 

manner.  

                         
1 2 3 4 5 6 7 8 9 10 11 12 

0.96 0.81 0.39 0.32 0.26 0.07 0.08 0.3 0.27 0.35 0.29 0.18 

sort 

6 7 12 5 9 11 8 4 10 3 2 1 

0.07 0.08 0.18 0.26 0.27 0.29 0.3 0.32 0.35 0.39 0.81 0.96 

 

            
Fig. 4. Solution representation 1 (SR1) 

    

In the solution representation 2, random numbers are generated in the range of ,     ). The integer section of the 

number indicates the factory number, and the decimal section determines the processing sequence of each factory. In 

Figure 5, if the numbers are arranged in ascending order, the lowest value is 1.25, which is related to job 4. Considering 

it is in the range of ,   ), is assigned to the first factory and is placed in the first position. The next number is 1.52, that 

is related to job 1. Therefore, it is placed in the second position of the first factory. In the same way, the jobs are 

assigned to the factories and the sequence is determined. 
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1.52 2.32 1.75 1.25 2.13 2.64 3.72 3.81 2.44 3.56 

 

         
Fig. 5. Solution representation 2 (SR2) 

The utilization results of the two solution representations in the BBO algorithm are presented in Table IV. For six 

samples, each sample was executed five times for each solution representation, and the values for minimum (Min), 

average (Ave), and maximum (Max) deviation from the best solution were calculated using Equation (55). Based on the 

results obtained within the same time limitation (1200 seconds) for both solution representations, the best solutions 

across all five samples correspond to Solution Representation 2 (SR2). The average deviation of all samples equal 0.077 

for representation of solution 1 (SR1) and 0.0207 for representation of solution 2 (SR2), that the representation of 

solution SR2 is less and better. Also,     and     values are lower for SR2. Therefore, SR2 solution representation is 

selected.  

Table IV. Comparison of the solution representations 1 and 2 

Instance              
BBO-SR1 BBO-SR2 

Min Ave Max Min Ave Max 

1 15 3 2 2 2 0.0122 0.0224 0.0322 0.0000 0.0073 0.0133 

2 25 4 2 2 3 0.0097 0.0292 0.0563 0.0000 0.0057 0.0130 

3 35 4 4 3 3 0.0793 0.1079 0.1786 0.0000 0.0434 0.0787 

4 45 6 6 2 2 0.0528 0.0915 0.1277 0.0000 0.0145 0.0297 

5 55 6 4 3 2 0.0269 0.0955 0.1395 0.0000 0.0289 0.0662 

6 65 8 2 3 3 0.0491 0.1157 0.1914 0.0000 0.0245 0.0704 

Average 0.0383 0.0770 0.1209 0.0000 0.0207 0.0452 

B. Decoding 

Considering parallel machines in each job processing step is indeed a significant contribution and adds a whole new 

layer of complexity to the optimization problem. Considering that there are parallel machines in the second and third 

stages, after finishing the processing in the first stage, the jobs are processed on a machine in the second and third 

stages, which are released earlier. The presented sequence by solution representation is only related to the first step and 

the sequence of jobs processing on the machines is determined by decoding in the second and third steps. The second 

step in the decoding process often involves assigning jobs to the machine that becomes available first. This is a common 

approach called "earliest release time" (ERT) scheduling. In the third step, there are dedicated parallel machines, and 

each job is processed only on one machine in this step, if a processing queue is created, the jobs in the queue are 

processed in order of Modified Due-Date (MDD) (Baker & Trietsch, 2009). The MDD is according to rule 1. 

Rule 1: Suppose at time  , the machine is available and a job must be selected for processing. For jobs in the queue, 

the modified due-date is defined as equation (63) and the sequence of jobs is arranged in ascending order of the new 

due-date. 

  
 ( )     {       }                                                                                                                                                                                           (  ) 

 

For example, assume six jobs are assigned to a factory. As shown in Figure 6, the sequence of jobs processing is 6, 

3, 5, 1, 2 and 4 in the first step. There are three machines in the second step. jobs 5, 6 and 3 are processed on each of the 
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machines, firstly. Machine 2 processes job 1, that has the fastest completion time. Then machine 3 processes job 2. 

Machine 1 processes job 4 finally. Jobs 2, 3 and 6 can only be processed on machine 1 and jobs 1, 4 and 5 on machine 2 

in the third step. Job 6 is processed on machine 1 firstly. Then jobs 2 and 3 are in the queue. Suppose   
 ( )    

 ( ), 

job 2 is completed firstly, then job 3. On machine 2, job 5 is processed firstly, then jobs 1 and 4 are in the queue. 

Suppose   
 ( )    

 ( ), job 1 is processed firstly, then job 4.  

                       

 
The sequence of jobs 

processing in the first step 
 

The sequence of jobs 

processing in the second step 
 

The sequence of jobs 

processing in the third step 
 

23 6

54 1

2 1 5 34 6

4 5

32

61

 

 

           
Fig. 6. Sequence of jobs processing in the second and third step 

C. Creation of the primary 

Generating the initial population randomly is a common starting point for many optimization algorithms, in order to 

start the implementation of algorithm, the solutions primary population is randomly generated. By creating a diverse 

initial population through random generation, it ensures that the optimization algorithm explores a broader range of 

potential solutions. This increases the chances of finding high-quality solutions, even if the initial sequences themselves 

are not necessarily optimal. The population size is PS. This population is updated in each iteration of the algorithm and 

a new population of solutions is created. 

D. Elite selection 

In each iteration, some of the best solutions are transferred to the next generation unchange with the probability of 

     . This selection preserves the high quality solutions and improves them in the combination with other solutions. 

E. Migration operation 

To create new solutions in each generation of the algorithm, migration occurs between habitats. Emigration takes 

place in high HSI and SIV habitats, and the entrance probability of a new species is lower than the exit of a species 

from the habitat. Therefore, the present species in the habitat tend to leave it. Each species in the habitat leaves it with a 

probability of   . On the other hand, the habitat with low HSI tends to attract species from other habitats and the rate of 

immigration is higher than the habitat with high HSI. The immigration rate for each habitat is   . In the classic state, the 

migration diagram of a species in the habitat is linear, while it can be non-linear and change non-linearly due to sudden 

changes in the habitat. Ma, (2010) explored various states of the migration diagram for a species and identified six 

different models for it. According on this, the best values of the emigration and the immigration rate are calculated 

according to relations 64 and 65. 



Journal of Quality Engineering and Production Optimization  / Volume 9, Issue 1, Winter & Spring 2024, PP. 65-114 89 
 

 

   
 

 
(   (

  

 
)   ) (64) 

   
 

 
(    (

  

 
)   ) (65) 

 

In order to take place the migration, habitat   is selected as the first parent with probability   . In order to select the 

second parent, habitat   is selected by utilization of the roulette wheel mechanism with probability   . Here, the two-

point cross over operator of the genetic algorithm is used to do the migration (soon et al., 2013).  

In this method, two points are selected in parents accidentally. Cells between two points are moved to parents and 

new childs are created. Then the HSI value of each child is calculated and the child with better HSI is selected and 

passed on to the next generation. An example with 10 jobs is presented in Figure 7. Two points, 5 and 8, are randomly 

selected on the parent solutions. The numbers between two points are moved among parents. 

 

       

      
  

 
    

 
Parent 1 2.0 1.5 3.9 2.4 3.1 1.7 3.6 3.5 1.1 2.8 

      
  

 
    

 
Parent 2 3.3 2.1 1.9 1.4 2.6 3.8 1.7 3.1 2.7 1.3 

      
  

 
    

 

           3.8 1.7 3.1     

 
     

  
 

    
 

           1.7 3.6 3.5     

      
  

 
    

 
Child 1 2.0 1.5 3.9 2.4 3.1 3.8 1.7 3.1 1.1 2.8 

      
  

  
  

 
Child 1 3.3 2.1 1.9 1.4 2.6 1.7 3.6 3.5 2.7 1.3 

      
  

  
  

 
 

 

Fig. 7. An example of migration between two habitats 

The migration operation is performed with the probability      on each solution in every iteration of the algorithm. 

The pseudo-code of the migration operator between habitats is shown in Figure 8. 
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- Beginning of the loop to select the habitat   

- Selection of habitat   with    probability  

- If habitat   is selected 

- The Beginning of the loop to select the habitat   

- If habitat   is selected 

- Selection of habitat   with probability    using the roulette wheel mechanism  

- Migration between habitats using the two-point cross over operator 

- End if of habitat   selection  

- End loop of habitat   selection 

- End if of habitat   selection  

- End loop of habitat   selection  

         
Fig. 8. Pseudo-code of migration between two habitats 

F. Mutation operation 

In the BBO algorithm, natural disasters such as flood, storm or disease changes number of the habitat species. These 

changes are like mutation in the GA. The obtained solutions of the algorithm execution may not have the necessary 

diversification, or in order to improve the solutions, mutation is performed on a part of the solutions. Here, inversion is 

used to perform mutation on the solutions (Lin et al., 2010). In this type of mutation, two points are selected randomly, 

then the sequence of numbers between these two points is reversed. An example is shown in Figure 9. Two points 2 and 

6 are selected randomly, the sequence of numbers between these two points is reversed. 

 

Parent 2.0 1.5 3.9 2.4 3.1 1.7 3.6 3.5 1.1 

          Child 2.0 1.5 1.7 3.1 2.4 3.9 3.6 3.5 1.1 

 

                
Fig. 9. An example of migration between two habitats 

Mutation is applied to each habitat based on the mutation rate   . In order to calculate the mutation rate for each 

habitat, the value of    is calculated based on equation (66).  

   {

  

(     ) (   ) 
                                   (        )

                                                      (            )

     (66) 

 

According to the obtained value of   , the steady state value for the probability of species number is determined 

using equation (67).  

   
  

∑   
 
   

 (67) 

 

Based on the obtained value of   , the mutation rate is calculated using equation (68).  
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In equation (68),      is the maximum mutation rate, that is determined by the user.      is the maximum 

obtained value of   . Mutation is done with probability    in habitat  . The mutation operation is performed on each 

solution in each iteration of the algorithm with the probability     . The pseudo-code of the mutation operation is 

according to Figure 10.  

                   
- The starting loop to select the habitat   

- selection habitat   with probability    

- If habitat   is selected 

- Performing reverse mutation operation on the habitat 

- End if of habitat   selection 

- End loop of habitat   selection 

           
Fig. 10. Pseudo-code for the mutation operator 

G. Solutions improvment 

To enhance the performance of the proposed algorithm, dominance rules are introduced in this section. These rules 

not only accelerate the attainment of results but also represent a significant advancement in modifying the BBO 

algorithm from its classical form to an improved version. In the third step of the process, dedicated parallel machines 

are utilized, with each machine designated to process only one type of job. This arrangement effectively transforms 

each machine's problem into a single-machine problem, where the objective function is the minimization of the sum of 

tardiness times. Moreover, the completion time of each job in the second step serves as a release time. To improve 

solution results, rules relevant to the single-machine mode, which aims to minimize the sum of tardiness times and 

release times, can be applied to the jobs. Various rules have been examined for applicability to this problem, and the 

results will be evaluated to identify the most suitable rules (Yin et al., 2014). 

Parameters and variables: 

   Release date of job   in the third step (Completion time of job   in the second step) 

   The processing time of job   in the third step 

   Due date of job   

  Completion time of the last job in the sequence of third step machine 

 

Two schedules,   and   , are considered, with the order of jobs   and   reversed between them. in schedule  , job   is 

processed before job  , and it is the opposite in   . 

Rule 2: if       ,     *    +     {    } and        *   {    }       +  then  dominates. 

Rule 3: if    *    +     {    }     *    +     ,    *    +        {    }     and       then  dominates. 

Rule 4: if    *    +        ,     *    +     {    }     *    +     and       then  dominates .  

Rule 5: if    *   *    +     {    }           *    +     {    }+    and    {    }     *    +  

   {    }      then  dominates.  
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To evaluate the utilization percentage of each rule, the algorithm was executed with        and 10 repetitions. 

1000 solutions were checked in total. The related results to the utilization times and percentage are specified according 

to Table V. Rule 5 has the highest percentage of rule usage compared to other rules with a total average of 24%. 

Conversely, Rule 3 exhibited the lowest utilization percentage, averaging 20.09%. It is noteworthy that the average 

utilization percentage for each of the four rules exceeded 20%, indicating their potential for improving the problem. 

Additionally, an increase in the number of jobs, while keeping other parameters constant, led to a rise in the utilization 

percentage of each rule. To assess the algorithm's performance before and after applying the rules, three different 

problem sizes were employed for the instances. For each instance, the algorithm has been executed 5 times before and 

after applying the rules. The deviation from the best obtained solution is calculated for each execution, as well as the 

minimum (Min), average (Ave) and maximum (Max) values of the deviations are calculated and all of them are shown 

in Table VI. For rules 2, 3 and 5, applying the rule has improved the results in all three instances. In rule 4, the first 

instance of using the rule did not improve the average results, and also the average deviation percentage for the other 

two instances of this rule is more than 2%, that is more than other rules. 

Table V. The utilization percentage of dominance rules in the third step 

Rule size 

The utilization times in 1000 soutions Utilization percentage 

Run 1 Run 2 Run 3 Run 4 Run 5 Min Ave Max 

Rule 2 

20-3-2-3-2 143 133 169 118 109 10.90% 13.44% 16.90% 

30-3-2-3-2 267 211 258 237 212 21.10% 23.70% 26.70% 

40-3-2-3-2 290 249 223 272 319 22.30% 27.06% 31.90% 

Average 18.10% 21.40% 25.17% 

Rule 3 

20-3-2-3-2 153 94 59 90 170 5.90% 11.32% 17.00% 

30-3-2-3-2 145 226 175 198 180 14.50% 18.48% 22.60% 

40-3-2-3-2 337 258 305 330 293 25.80% 30.46% 33.70% 

Average 15.40% 20.09% 24.43% 

Rule 4 

20-3-2-3-2 101 167 150 122 150 10.10% 13.80% 16.70% 

30-3-2-3-2 255 228 207 273 280 20.70% 24.86% 28.00% 

40-3-2-3-2 319 271 296 326 269 26.90% 29.62% 32.60% 

Average 19.23% 22.76% 25.77% 

Rule 5 

20-3-2-3-2 151 135 124 192 117 11.70% 14.38% 19.20% 

30-3-2-3-2 103 285 253 277 284 10.30% 24.04% 28.50% 

40-3-2-3-2 375 347 334 321 302 30.20% 33.58% 37.50% 

Average 17.40% 24.00% 28.40% 
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Table VI. Performance evaluation of dominance rules in the third step 

Rule Size Without/With rule 
Deviation percentage from the best solution Min Ave Max 

Run 1 Run 2 Run 3 Run 4 Run 5 
   

Rule 2 

20-3-2-3-2 
Without 0.07% 0.28% 1.98% 0.92% 0.57% 0.07% 0.76% 1.98% 

With 0.00% 0.50% 1.27% 1.13% 0.71% 0.00% 0.72% 1.27% 

30-3-2-3-2 
Without 3.02% 1.62% 4.36% 1.89% 3.74% 1.62% 2.93% 4.36% 

With 3.54% 0.67% 1.85% 1.51% 0.00% 0.00% 1.51% 3.54% 

40-3-2-3-2 
Without 1.60% 4.31% 5.26% 5.72% 2.74% 1.60% 3.93% 5.72% 

With 1.85% 0.00% 5.04% 2.67% 3.43% 0.00% 2.60% 5.04% 

Rule 3 

20-3-2-3-2 
Without 1.00% 1.21% 2.93% 1.86% 1.50% 1.00% 1.70% 2.93% 

With 2.50% 0.00% 4.14% 0.43% 1.14% 0.00% 1.64% 4.14% 

30-3-2-3-2 
Without 2.75% 1.35% 4.08% 1.62% 3.46% 1.35% 2.65% 4.08% 

With 1.84% 0.00% 0.31% 0.82% 1.35% 0.00% 0.86% 1.84% 

40-3-2-3-2 
Without 1.10% 3.80% 4.74% 5.20% 2.23% 1.10% 3.41% 5.20% 

With 0.00% 1.33% 1.07% 0.56% 0.31% 0.00% 0.65% 1.33% 

Rule 4 

20-3-2-3-2 
Without 0.21% 0.42% 2.12% 1.06% 0.71% 0.21% 0.91% 2.12% 

With 0.00% 0.35% 2.55% 0.78% 1.13% 0.00% 0.96% 2.55% 

30-3-2-3-2 
Without 2.75% 1.35% 4.08% 1.62% 3.46% 1.35% 2.65% 4.08% 

With 3.24% 0.00% 1.29% 3.86% 2.53% 0.00% 2.18% 3.86% 

40-3-2-3-2 
Without 1.17% 3.87% 4.81% 5.27% 2.31% 1.17% 3.48% 5.27% 

With 3.37% 4.62% 0.26% 0.00% 2.73% 0.00% 2.20% 4.62% 

Rule 5 

20-3-2-3-2 
Without 0.57% 0.78% 2.49% 1.42% 1.07% 0.57% 1.27% 2.49% 

With 0.00% 1.71% 0.92% 2.56% 0.57% 0.00% 1.15% 2.56% 

30-3-2-3-2 
Without 2.61% 1.22% 3.94% 1.48% 3.32% 1.22% 2.52% 3.94% 

With 2.35% 3.19% 1.51% 0.55% 0.00% 0.00% 1.52% 3.19% 

40-3-2-3-2 
Without 0.42% 3.10% 4.04% 4.50% 1.55% 0.42% 2.72% 4.50% 

With 1.47% 2.32% 0.18% 0.00% 2.97% 0.00% 1.39% 2.97% 

 

According to the obtained results, rules 2, 3 and 5 have improved the results and can be used in the third step.  

H. Stop condition 

After the implementation of the algorithm and updating the solutions, the stop condition is checked. The stop 

condition is defined as a time limitation of 1,200 seconds, and the best solution obtained at this point is considered the 

solution of the algorithm. 
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V. CALCULATIONS AND NUMERICAL RESULTS METHOD 

The mathematical model performance and the provided solution algorithm are examined in this section. The model 

is coded in GAMS software with win 32 24.1.3 specifications and the solution algorithm is coded in Java software with 

version 2020.1.2. The system specifications is Intel(R) Core™ i5-3230M CPU @ 2.60GHz. It is possible for solving the 

problem in a reasonable time using the model in small dimensions. With increasing of the problem dimensions, the time 

of solution the model is not cost-effective, so the optimal or near-optimal solutions have been calculated by the meta-

heuristic algorithm in large dimensions. The ranges of different values for the problem parameters are shown in Table 

VII. 

Table VII. Parameter values to create problem examples 

Parameter 
Range of parameter values 

Small size Large size 

f {2,3,4} {4,6,8} 

n {3,4,5,6,7,8,10,12} {25,35,45,55,65,75,85,95,100} 

   {2,4,6} {2,4,6,8} 

   {2,3} {2,3,4,5} 

   {2,3} {2,3,4} 

pf U(1,100) U(1,100) 

ps U(1,100) U(1,100) 

pt U(1,100) U(1,100) 

 

The due date of job   is calculated based on equation (69) (Khare & Agrawal, 2021). 

      .      .  ⁄ /   / (69) 

 

In equation (69), the value of    is calculated using equation (70). The     is a random number in the range of 

,   -.   is the number of factories and   is considered equal to 0.7 according to various tests. 

      
 

            (70) 

 

In order to use of the BBO algorithm, the algorithm parameters values are set, firstly. Then the results are compared 

in two cases, small and large size.  

A. Parameters setting 

Inappropriate parameter values can definitely derail an algorithm from getting the desired results.  Therefore, the 

parameters adjustment of the algorithm can improve its results. The algorithm parameters including population size 

(  ), unchanged transmission rate to the next generation (    ), mutation rate (    ), modification rate (    ), 

maximum immigration rate ( ), maximum emigration rate ( ) and the maximum mutation rate (    ). Three levels are 

considered for each parameter which are shown in Table VIII.  
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Table VIII. Parameters Levels 

Factor Level Value Factor Level Value 

   

1 30 

  

1 0.7 
2 50 

3 80 
2 0.9 

     

1 0.02 

2 0.04 
3 1 

3 0.06 

     

1 0.2 

  

1 0.7 

2 0.25 2 0.9 

3 0.3 3 1 

     

1 0.8 

     

1 0.7 

2 0.9 2 0.9 

3 1 3 1 

 
Parameter adjustment has been done by using one-way analysis of variance (ANOVA) to specify the appropriate 

level for each of the parameters. According to the number of parameters and levels, the orthogonal matrix has created 

27 different combinations of parameter levels. For this purpose, an instance of the small size of the problem with    , 

   ,     ,     ,      and an instance of the large size with     ,    ,     ,     ,      have 

been used to determine the values of the parameters. Each combination is executed 5 times by the algorithm. For each 

execution, the percentage of deviation from the best solution is calculated based on equation (71). 

    
(                 )

       
⁄  (71) 

 

In equation (71),           is the obtained value of execution   and         is the best solution of 5 executions. The 

average of all deviations is calculated using equation (72). 

    
∑     

 
⁄  (72) 

 

For small-sized problems, the ARE values for 27 combinations are calculated and shown in Table IX. 

According to the obtained     values from the different levels combination of the parameters, the related graph to 

the average and dispersion has been drawn to specify the appropriate level of each parameter. According to Figure 11.1, 

in order to determine the value of    parameter, first the average deviation increases, then its value decreases at level 3 

and its value is lower than level 1. Therefore, the appropriate value of this parameter equal      . The next 

parameter is     , that it is shown in Figure 11.2. In this parameter, the average deviation has increased in levels 2 and 3 

by increasing its value, but the dispersion has increased in level 2 and decreased in level 3. Level 1 has the lowest 

average value and dispersion deviation, so it is selected and the appropriate value of this parameter is          . In 

order to determine the value of      and      parameters, their graphs have been drawn in Figures 11.3. and 11.4. 

According to the figures, the lowest average value and dispersion is related to level 2 of these parameters, it is equal to 
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          and         . Figure 11.5. shows the average and standard deviation of parameter  . By increasing the 

value of this parameter, the average and dispersion of the deviation increases. Therefore, the appropriate value of this 

parameter is at level 1 and equal      . Figure 11.6 is used for parameter  . By increasing the value of this parameter, 

the average and dispersion of the deviation first decrease and then increase at level 3. Therefore, the appropriate value 

of this parameter is equal to      . The last parameter is     , the average and dispersion of its deviation have been 

shown in Figure 11.7. For this parameter, the average value and dispersion increase in levels 2 and 3 by its increase. 

Therefore, the appropriate value of this parameter equal         . The value of the problem parameters in small size 

is equal      ,         ,          .                    and         . 

Table IX. Average relative deviation values for ANOVA instances in small-size 

Experiment number 
Parameters level 

ARE 
                  E I      

1 1 1 1 1 1 1 1 0.0204 

2 1 1 1 1 2 2 2 0.0219 

3 1 1 1 1 3 3 3 0.0210 

4 1 2 2 2 1 1 1 0.0120 

5 1 2 2 2 2 2 2 0.0320 

6 1 2 2 2 3 3 3 0.0259 

7 1 3 3 3 1 1 1 0.0384 

8 1 3 3 3 2 2 2 0.0256 

9 1 3 3 3 3 3 3 0.0521 

10 2 1 2 3 1 2 3 0.0466 

11 2 1 2 3 2 3 1 0.0241 

12 2 1 2 3 3 1 2 0.0256 

13 2 2 3 1 1 2 3 0.0136 

14 2 2 3 1 2 3 1 0.0167 

15 2 2 3 1 3 1 2 0.0759 

16 2 3 1 2 1 2 3 0.0370 

17 2 3 1 2 2 3 1 0.0556 

18 2 3 1 2 3 1 2 0.0247 

19 3 1 3 2 1 3 2 0.0037 

20 3 1 3 2 2 1 3 0.0127 

21 3 1 3 2 3 2 1 0.0287 

22 3 2 1 3 1 3 2 0.0213 

23 3 2 1 3 2 1 3 0.0519 

24 3 2 1 3 3 2 1 0.0055 

25 3 3 2 1 1 3 2 0.0296 

26 3 3 2 1 2 1 3 0.0259 

27 3 3 2 1 3 2 1 0.0389 
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Fig. 11.7. Dispersion and standard deviation of      parameter 

Fig. 11. Dispersion and standard deviation of algorithm parameters for different levels in small size 
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The     values for 27 combinations are calculated and are shown in Table X. for large-size problems. 

Table X. Average relative deviation values for ANOVA samples in large size 

Experiment number 
Parameters level 

ARE 
                  E I      

1 1 1 1 1 1 1 1 0.0258 

2 1 1 1 1 2 2 2 0.0507 

3 1 1 1 1 3 3 3 0.0206 

4 1 2 2 2 1 1 1 0.0211 

5 1 2 2 2 2 2 2 0.0507 

6 1 2 2 2 3 3 3 0.0228 

7 1 3 3 3 1 1 1 0.0620 

8 1 3 3 3 2 2 2 0.0534 

9 1 3 3 3 3 3 3 0.0522 

10 2 1 2 3 1 2 3 0.0222 

11 2 1 2 3 2 3 1 0.0408 

12 2 1 2 3 3 1 2 0.0324 

13 2 2 3 1 1 2 3 0.0157 

14 2 2 3 1 2 3 1 0.0814 

15 2 2 3 1 3 1 2 0.0354 

16 2 3 1 2 1 2 3 0.0131 

17 2 3 1 2 2 3 1 0.0298 

18 2 3 1 2 3 1 2 0.0185 

19 3 1 3 2 1 3 2 0.0282 

20 3 1 3 2 2 1 3 0.0210 

21 3 1 3 2 3 2 1 0.0437 

22 3 2 1 3 1 3 2 0.0260 

23 3 2 1 3 2 1 3 0.0206 

24 3 2 1 3 3 2 1 0.0154 

25 3 3 2 1 1 3 2 0.0168 

26 3 3 2 1 2 1 3 0.0301 

27 3 3 2 1 3 2 1 0.0441 

 

According to the obtained     values from the combination of different levels of the parameters, the related graph 

to the average and dispersion has been drawn to determine the appropriate level of each parameter. For the    

parameter, the dispersion and average diagram are according to Figure 12.1. By an increase of population size, the 

amount of dispersion and average deviation increases. In level 2, the average deviation is lower, but the value of 

dispersion is higher than level 1. In level 3, the amount of dispersion and average deviation is lower than the other two 

levels. Therefore, the appropriate value of the    parameter is at level 3 and equal      . For      parameter, by  
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Fig. 12. Dispersion and standard deviation of algorithm parameters for different levels in large size 
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increasing the value of this parameter, the value of dispersion and average deviation increases based on Figure 12.2. In 

level 2, the average and deviation increases versus level 1. In level 3, the average value increases versus level 2, but the 

dispersion value decreases. The value of dispersion and average deviation for levels 2 and 3 is higher than level 1. 

Therefore, level 1 is the best value of this parameter and equal          . The next parameter is     . For this 

parameter, the dispersion and average deviation diagram is according to Figure 12.3. By increasing the value of this 

parameter, the average and dispersion increase in levels 2 and 3. Therefore, the best value of this parameter is at level 1 

and equal         . The dispersion and average deviation of      parameter has been shown in Figure 12.4. By 

increasing its value, the average and dispersion decrease at level 2, but it increase again at level 3. Therefore, the 

appropriate value of this parameter is at level 2 and equal         . The value of parameter   is specified based on 

Figure 12.5. By increasing the value of this parameter, the average and dispersion increase at first and then decrease in 

level 3, but level 1 has the lowest value versus the other two levels. Therefore, the appropriate value of this parameter is 

     .  The appropriate value of parameter   has been shown in Figure 12.6. By increasing the value of this 

parameter, the average and dispersion of the parameter increases in levels 2 and 3. Therefore, the best value of this 

parameter exists on level 1 and equal      . The value of parameter      by drawing the dispersion diagram and 

average deviation has been shown in Figure 12.7. For this parameter, with its increase, the average and dispersion 

decrease in levels 2 and 3. So, the appropriate value of this parameter equal       . Therefore the value of the 

problem parameters in large size is equal to      ,          ,         ,         ,      ,       and 
      . 

Based on the results obtained from parameter settings, different combinations of the problem will be presented to 

evaluate the performance of the proposed algorithm and to solve the problem in large dimensions, creating both large 

and small sizes. 

B. Analysis of algorithm performance in small size 

The exact solution to the problem is obtained by coding the model in small dimensions. The performance of the 

algorithm is evaluated using the results from solving the model. Consequently, the performance of the improved 

algorithm (HBBO) is compared with BBO, HGA (as provided by Torkashvand et al., (2022)), and the exact solution 

across 32 different instances. The mathematical model and algorithms are solved with a time limitation of 3600 seconds 

and         seconds respectively. Each instance is executed 5 times by the algorithm, and the percentage of 

deviation from the best solution is calculated for each execution using equation (71). The minimum (Min), average 

(Ave) and maximum (Max) deviation values are computed for each instance. with the results summarized in Table XI. 

Based on the obtained results, the average ARE values for HGA, BBO and HBBO algorithms are 0.0620, 0.0348 and 

0.0073, respectively in 32 instances. HBBO algorithm has the lowest average deviation, that indicates its high 

effectiveness in comparison to other algorithms. As the problem size increases, achieving the optimal solution becomes 

more challenging for the model due to time limitations. Due to the time limitation, the optimal solution has not been 

obtained in 4 instances, a memory error has occurred in 3 instances, which is shown with the symbol    in the table. In 

25 instances, the optimal solution has been gotten, and the deviation value is zero and it is shown in bold. The average 

solution time for the HBBO algorithm is 11 seconds, and for CPLEX is 656 seconds, proving the algorithm's efficiency 

according to the average deviation from the best solution in the HBBO algorithm.  

At the end of Table XI, the average values of    ,     and     are calculated for 32 instances. In order to 

compare the results of the algorithms, the average values of deviation from the best solutions are shown in Figure 13 for 

small size. According to the Figure, for all three criteria—Min, Ave, and Max—the HBBO algorithm exhibits the 

lowest values compared to the other algorithms. For the Min values, the algorithms show little difference, with results 

close to each other. However, for the Ave and Max values, the gap between the HBBO algorithm and the other 

algorithms widens, indicating its superior performance. 
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Table XI. Evaluation of the presented algorithm performance versus the exact solution in small size 

In
st

a
n

ce
 

n f m1 m2 m3 
CPLEX HGA BBO HBBO 

T
im

e 

ARE Time Min ARE Max Min ARE Max Min ARE Max 

1 3 2 2 2 2 0.000 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3 

2 3 2 4 2 2 0.000 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3 

3 3 2 6 2 2 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3 

4 4 2 2 2 2 0.000 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4 

5 4 2 6 2 2 0.000 2 0.000 0.037 0.111 0.000 0.030 0.148 0.000 0.000 0.000 4 

6 4 3 4 2 2 0.000 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6 

7 5 2 2 2 2 0.000 2 0.000 0.048 0.242 0.000 0.000 0.000 0.000 0.000 0.000 5 

8 5 2 6 2 2 0.000 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5 

9 5 2 4 3 3 0.000 2 0.000 0.043 0.214 0.000 0.033 0.119 0.000 0.000 0.000 5 

10 5 3 2 2 2 0.000 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8 

11 5 3 4 2 2 0.000 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8 

12 6 2 2 2 2 0.000 3 0.000 0.014 0.035 0.000 0.028 0.081 0.000 0.000 0.000 6 

13 6 3 2 2 2 0.000 5 0.000 0.038 0.125 0.000 0.025 0.063 0.000 0.000 0.000 9 

14 6 4 4 3 3 0.000 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12 

15 6 4 3 2 2 0.000 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12 

16 7 2 2 2 2 0.000 4 0.000 0.087 0.207 0.000 0.039 0.109 0.000 0.004 0.022 7 

17 7 3 2 2 3 0.000 4 0.000 0.100 0.188 0.000 0.038 0.188 0.000 0.000 0.000 11 

18 7 4 2 3 2 0.000 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14 

19 7 4 4 2 3 0.000 5 0.000 0.100 0.250 0.000 0.083 0.167 0.000 0.017 0.083 14 

20 7 4 6 3 3 0.000 6 0.000 0.063 0.158 0.000 0.000 0.000 0.000 0.000 0.000 14 

21 8 2 2 2 3 0.000 69 0.000 0.067 0.140 0.000 0.026 0.042 0.005 0.007 0.009 8 

22 8 3 2 2 3 0.000 89 0.000 0.089 0.188 0.024 0.068 0.094 0.000 0.007 0.024 12 

23 8 3 6 3 3 0.000 331 0.035 0.119 0.163 0.050 0.082 0.121 0.000 0.006 0.014 12 

24 8 4 2 2 2 0.000 7 0.000 0.062 0.138 0.000 0.028 0.069 0.000 0.007 0.034 16 

25 10 2 4 2 3 0.012 3600 0.042 0.148 0.192 0.037 0.061 0.089 0.000 0.012 0.023 10 

26 10 3 2 2 3 0.000 3600 0.042 0.123 0.218 0.035 0.079 0.155 0.000 0.008 0.014 15 

27 10 4 3 3 2 0.000 550 0.061 0.124 0.220 0.000 0.056 0.098 0.000 0.019 0.049 20 

28 10 4 6 3 3 0.062 3600 0.062 0.153 0.276 0.000 0.077 0.138 0.069 0.079 0.097 20 

29 12 3 2 2 3 OM 2248 0.037 0.154 0.352 0.022 0.085 0.142 0.000 0.007 0.017 18 

30 12 4 4 2 3 OM 1828 0.000 0.104 0.220 0.016 0.098 0.299 0.010 0.020 0.035 24 

31 12 4 2 3 2 0.039 3600 0.065 0.147 0.326 0.035 0.094 0.152 0.000 0.016 0.035 24 

32 12 4 6 3 3 OM 1422 0.068 0.163 0.227 0.026 0.083 0.152 0.000 0.024 0.047 24 

Average 656 0.0129 0.0620 0.1309 0.0076 0.0348 0.0758 0.0026 0.0073 0.0157 11 
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Fig. 13. Comparison of the    ,     and     average values for the algorithms in small size 

 

  

Fig. 14.2. Box graph for     values Fig. 14.1. Box graph for     values 
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Fig. 14. Box graph for    ,     and     deviation values of each algorithm in 35 large size instances 
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To evaluate the performance of the algorithms in the small size, a Box and Whisker graph for the Min, Ave, and 

Max criteria is presented in Figure 14, based on the results from the 32 instances in Table XI. For the     values, 

HBBO algorithm has the least average value based on Figure 14.1. Following this, the BBO and HGA algorithms 

exhibit relatively low average values as well. The Max values are illustrated in Figure 14.2, where the HBBO algorithm 

again shows the least average value and dispersion. The BBO and HGA algorithms follow in performance. After that, 

there are BBO and HGA algorithms. The algorithm's performance is compared with each other based on     values, in 

Figure 14.3. The HBBO algorithm has the least value compared to the other algorithms, and the instance with the 

highest deviation value is in the HGA algorithm. 

C. Analysis of algorithm performance in large size 

Following the assessment of efficiency and effectiveness for the solution algorithm in small sizes, the algorithm is 

applied to solve the problem in larger sizes. 35 instances of different parameter combinations have been created. Each 

instance is run 5 times with 1200-second time limitation and the best obtained solution is recorded in each execution. 

Like small-size instances, the percentage of deviation from the best solution h was calculated for each solution. The 

minimum (   ), average (   ) and maximum (   ) deviation values were determined for each instance. The results 

of the calculations are shown in Table XII. The average values of     in 35 instances are 0.0852, 0.0477 and 0.0285 

for HGA, BBO and HBBO algorithms, respectively. HBBO algorithm has the least average deviation.  

Table XII. Comparison of solution algorithm results for large size 

In
st

a
n

ce
 

n f          
HGA BBO HBBO 

Min ARE Max Min ARE Max Min ARE Max 

1 25 4 2 2 2 0.014 0.041 0.105 0.001 0.027 0.067 0.000 0.013 0.028 

2 25 4 4 3 3 0.072 0.095 0.120 0.008 0.025 0.048 0.000 0.007 0.017 

3 25 6 6 3 2 0.029 0.061 0.079 0.000 0.022 0.033 0.000 0.012 0.028 

4 25 8 8 2 3 0.000 0.044 0.092 0.007 0.036 0.082 0.003 0.016 0.024 

5 35 4 2 2 2 0.146 0.158 0.170 0.027 0.037 0.044 0.000 0.021 0.045 

6 35 4 4 3 3 0.000 0.042 0.077 0.055 0.078 0.097 0.002 0.046 0.073 

7 35 6 6 2 2 0.026 0.042 0.058 0.027 0.032 0.037 0.000 0.018 0.037 

8 35 8 8 3 3 0.093 0.119 0.147 0.044 0.052 0.067 0.046 0.059 0.083 

9 45 4 2 4 2 0.000 0.045 0.110 0.000 0.031 0.052 0.003 0.015 0.033 

10 45 6 4 2 3 0.047 0.068 0.091 0.045 0.054 0.063 0.000 0.013 0.030 

11 45 6 2 3 4 0.111 0.141 0.174 0.004 0.024 0.046 0.000 0.016 0.028 

12 45 8 4 2 2 0.046 0.084 0.174 0.000 0.015 0.048 0.006 0.022 0.031 

13 55 8 8 4 4 0.073 0.093 0.102 0.018 0.027 0.045 0.000 0.014 0.036 

14 55 4 4 5 3 0.000 0.046 0.102 0.039 0.072 0.096 0.030 0.056 0.092 

15 55 6 2 3 3 0.023 0.050 0.089 0.000 0.027 0.066 0.011 0.022 0.028 

16 55 8 2 2 2 0.010 0.046 0.080 0.015 0.036 0.085 0.000 0.012 0.031 

17 65 8 8 4 2 0.000 0.041 0.072 0.030 0.046 0.055 0.011 0.035 0.050 

18 65 4 4 5 3 0.007 0.020 0.031 0.008 0.019 0.029 0.000 0.011 0.019 

19 65 6 4 3 4 0.083 0.116 0.142 0.030 0.045 0.068 0.035 0.041 0.044 

20 65 8 2 2 3 0.031 0.043 0.068 0.017 0.044 0.066 0.000 0.015 0.036 
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Continue Table XII. Comparison of solution algorithm results for large size 

In
st

a
n

ce
 

n f          

HGA BBO HBBO 

Min ARE Max Min ARE Max Min ARE Max 

21 75 4 2 4 4 0.003 0.067 0.125 0.028 0.060 0.088 0.000 0.031 0.069 

22 75 4 4 5 4 0.000 0.082 0.156 0.085 0.102 0.123 0.028 0.068 0.116 

23 75 6 6 3 3 0.027 0.042 0.058 0.025 0.045 0.067 0.000 0.022 0.063 

24 75 6 4 2 2 0.010 0.019 0.028 0.014 0.033 0.059 0.000 0.024 0.040 

25 85 4 2 4 4 0.302 0.364 0.401 0.061 0.145 0.238 0.027 0.074 0.139 

26 85 4 4 5 4 0.049 0.127 0.248 0.000 0.059 0.087 0.027 0.052 0.089 

27 85 6 6 3 3 0.000 0.025 0.063 0.021 0.038 0.065 0.000 0.019 0.039 

28 85 8 4 2 3 0.015 0.027 0.042 0.016 0.036 0.057 0.005 0.017 0.040 

29 95 4 2 4 4 0.002 0.070 0.193 0.001 0.046 0.099 0.000 0.020 0.047 

30 95 4 4 5 3 0.149 0.192 0.280 0.019 0.049 0.062 0.000 0.029 0.064 

31 95 6 4 3 2 0.003 0.042 0.110 0.027 0.063 0.088 0.000 0.036 0.053 

32 95 6 2 2 2 0.123 0.182 0.228 0.036 0.105 0.299 0.008 0.065 0.147 

33 100 4 2 4 4 0.011 0.102 0.217 0.022 0.035 0.056 0.000 0.025 0.046 

34 100 6 2 3 3 0.022 0.033 0.040 0.024 0.053 0.077 0.000 0.025 0.036 

35 100 4 4 5 2 0.085 0.213 0.367 0.016 0.051 0.080 0.000 0.025 0.044 

Average 0.0460 0.0852 0.1326 0.0220 0.0477 0.0782 0.0069 0.0285 0.0521 

 

The average of    ,     and     obtained results from solving the problem in 35 instances are calculated at the 

end of Table XII. For comparison the results of the algorithms, the average values are shown in Figure 15. In all three 

cases, the HBBO algorithm has the least value compared to other algorithms. For    , the value of BBO algorithm is 

almost half of HGA. Therefore, the HBBO algorithm performs better than other algorithms. 

 

 

 

 

 

 

 

 

 

      
Fig. 15. Comparison of the    ,     and     average values for the algorithms in large size 
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Based on the results obtained in Table XII, the performance of the algorithms under review has been analyzed by 

drawing the related graphs for the average values of the minimum, average, and maximum deviations in Figure 16. For 

    values, the average line of HBBO algorithm is lower than other algorithms and its value equal 0.0069 in Figure 

16.1. Also, the dispersion of result in this algorithm is less than other algorithms and BBO and HGA algorithms are in 

the next ranks, respectively. For     values, the average and dispersion of the HBBO algorithm are less than the other 

algorithms according to Figure 16.2. After that, BBO and HGA algorithms have the least values, respectively.  

For     values, like the     graph, HBBO algorithm its value is 0.0285, has the least value versus the other 

algorithms according to Figure 16.3. For three all criteria    ,     and    , the HBBO algorithm is superior to other 

algorithms, and it has achieved better results according to Figure 16. 

          

  

Fig. 16.2. Box graph for     values Fig. 16.1. Box graph for     values 

 
Figure 16.3. Box plot for     values 

   
Fig. 16. Box graph for    , ARE and     deviation values of each algorithm in 35 large-size instances 

VI. SENSITIVITY ANALYSIS  

According to managerial insight regarding the provision of services and production of products, considering the 

appropriate values of parameters before building a production space or providing services can have a great impact on 

increasing income and customer satisfaction. For this purpose, conducting appropriate analyses is one of the necessities 

of starting a business. Therefore, in this section, the sensitivity analysis on the parameters of the problem is discussed. 
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Different objective functions can be considered according to management decisions. After determining the 

objective, it should be optimized by either minimizing the required capital or maximizing exploitation with a fixed 

asset. Therefore, the effect of different values of the parameters on the objective function should be checked. The 

influential parameters in the problem are  ,  ,   ,    and   . In order to check the effect of each parameter, 5 modes 

are presented in Table XIII, that their optimal solution is obtained in a small size. 

Table XIII. The value of objective function  for different parameters of problem 

Parameter              SumTj 

n 

5 3 6 2 2 18.45 

6 3 6 2 2 37.96 

7 3 6 2 2 83.33 

8 3 6 2 2 141 

9 3 6 2 2 190 

f 

7 1 3 2 2 410 

7 2 3 2 2 133 

7 3 3 2 2 35 

7 4 3 2 2 1 

7 5 3 2 2 0 

   

8 3 1 3 2 85 

8 3 2 3 2 54 

8 3 3 3 2 116 

8 3 4 3 2 126 

8 3 6 3 2 141 

   

7 3 3 1 2 48 

7 3 3 2 2 35 

7 3 3 3 2 35 

7 3 3 4 2 35 

7 3 3 5 2 35 

   

8 3 3 2 1 0 

8 3 3 2 2 116 

8 3 3 2 3 122 

8 3 3 2 4 116 

 

The appropriate value of each parameter can be determined from the obtained results for each of problem 

parameters. Supposing that the other parameters are constant, as the value of   increases, the objective function value 

increases according to Figure 17.1. Therefore, the appropriate value of parameter   can be determined through the 

objective function value. For parameter   by increasing the value of this parameter, the value of the objective function 

decreases according to Figure 17.2. Therefore, the appropriate number of factories is determined according to the 

available capital and the objective function value. For parameter   , as this parameter increases, the objective function 

value decreases at first and then increases according to Figure 17.3. Therefore, the appropriate number of factories is 

determined according to the requirements, available capital and the value of the objective function. With increase value 

of parameter   , the value of the objective function decreases then remains constant at value of 35 according to Figure 

17.4. Therefore, to reduce costs, its value can be considered equal 2. With an increase the value of parameter   , the 

objective function value increases according to Figure 17.5. For      and     , the objective function value 

equals 116, and for the high diversity of products, the value 4 can be chosen. 
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To examine the effect of different values of  ,  ,   ,    and    on the algorithms performance, the average     

for different values of the parameters are caculated based on Table XII for large sizes of problem.   

The graph of the deviation from the best solution for different values of the parameters is drawn in Figure 18. In 

these graphs, the average value of     has been calculated for the instances including each parameter. The performance 

of the algorithms is investigated for different values of n in Figure 18.1. According to this, the HBBO algorithm has the 

least value versus the other algorithms for all   values. By increasing the value of  , the dispersion has increased for the 

values of 35, 55, 65, 75 and 85. Different values of factories number ( ) are investigated in Figure 18.2. By increasing 

 , the average deviation from the best solution has decreased for all algorithms. Different values of    have been 

investigated based on Figure 18.3. In this graph, the HBBO algorithm has the least values versus the other algorithms, 

and the value of dispersion has increased by increase the value of this parameter. To check the effect of machines 

number in the second step (  ), the graph is drawn in Figure 18.4. The HBBO algorithm has the least value compared 

to the other algorithms in this graph. For all algorithms, the amount of deviation increases for value 5 than value 4. 

Different values of parameter    are checked in Figure 18.5. For the HBBO and BBO algorithms, the dispersion value 

increases by the increase of the parameter value, but for the HGA algorithm, it decreases in the value 3 and then 

increases in the value 4. For all graphs, the least value belongs to the HBBO algorithm.  

                

  

Fig. 18.2. The average deviation for different values of   Fig. 18.1. The average deviation for different values of   

  

Fig. 18.4. The average deviation for different values of    Fig. 18.3. The average deviation for different values of    
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Fig. 18.5. The average deviation for different values of    

             
Fig. 18. The average deviation for different values of problem parameters 

VII. CONCLUSION  

Effective planning and scheduling of jobs is fundamental to optimizing production and service complexes for both 

profit and customer satisfaction and scheduling of jobs plays a crucial role in achieving this balance. So in this article, a 

flow shop scheduling problem was presented in the production-assembly field in parallel factories. This problem is used 

for the production of various products. Each factory consists of three steps: The first step includes dedicated parallel 

machines that produce multiple components of a product. The second step has identical parallel machines that assemble 

the produced parts of the previous step. In the third step, there are dedicated parallel machines that perform post-

assembly operations, and each product can only be processed by one them. 

There are many applications in real world such as production of personal computers, manufacture of car, printing of 

invoices, etc. According to the managerial insight, different objective functions can be considered. In this article, two 

models were presented to minimize the total tardiness times based on the sequence and position of jobs in small sizes. 

Because of the time limitation and processor power, achieving the optimal solution is difficult in large sizes and the 

problem is NP-hard, so a developed mode of Biogeography Based Optimization (BBO) meta-heuristic algorithm was 

presented from a combination with the dominance rules that is called Hybrid BBO (HBBO). Also, to check the 

performance of the presented algorithm, its results were compared with the Hybrid Genetic Algorithm (HGA) algorithm 

used, which is close to the problem under investigation. 

For solving the problem, In order to reach the better results and increase the efficiency of the presented algorithm, 

the parameters of the algorithm were adjusted using the one-way analysis of variance (ANOVA) method. The obtained 

results from solving the problem show the proper performance of the presented algorithm versus the other algorithms. 

Managers must make the right decisions to achieve their goals in different situations. In order to choose the right 

parameters of the problem the sensitivity analysis has been performed on the parameters of the problem at the end of the 

research, so that an appropriate decision can be made at the appropriate time. Some future studies, can be mentioned 

such as: 1- representation of new meta-heuristic algorithms, 2- considering the same parallel machines for each type of 

dedicated parallel machines in the third step, 3- considering other objective functions according to the conditions, 4- 

increase the number of steps by considering cases like transport between the steps or packaging of products. 
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