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Abstract –In statistical process control applications, the quality of certain processes or products can be 
accurately described by either a univariate or multivariate distribution. Nonetheless, in certain instances, the 
quality of a process or product can be defined by a profile, which represents the relationship between 
independent and response variables. Numerous studies have examined the monitoring of simple linear 
profiles that incorporate uncorrelated observations. Nevertheless, in practice, this assumption is seldom met 
as a result of spatial autocorrelation or time collapse, which can result in unsatisfactory outcomes. In 
numerous studies, the autocorrelation structure between observations is modeled as a first-order 
autoregressive (𝐴𝐴𝐴𝐴(1)) model. However, a wide range of autocorrelation between observations might not be 
modeled by 𝐴𝐴𝐴𝐴(1) models. Therefore, this paper examines a simple linear profile and assumes an 
autoregressive moving average (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) autocorrelation structure between each observation, which is more 
flexible than 𝐴𝐴𝐴𝐴 models. It is assumed that in each profile, random errors follow an 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞) model. This 
article mainly focuses on the Phase II monitoring of simple linear profiles, with a particular emphasis on the 
estimation of change points, which can lead to substantial reductions in time and cost. This paper aims to 
estimate the change point for each simple linear profile that possesses an autocorrelation structure of 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞). To achieve this, a maximum likelihood estimator is developed. Simulation experiments are 
conducted to compare Hotelling's 𝑇𝑇2 control chart with the proposed control chart. Additionally, the 
proposed change point estimator is compared to one of the built-in estimators for exponentially weighted 
moving average (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) control charts. The results demonstrate that the proposed estimator has accurately 
estimated the change point regardless of the shift size and the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞) coefficients, and it outperforms 
the built-in control chart estimator in terms of accuracy. 
 
Keywords– Autocorrelation, Autoregressive moving average process, Change point estimation, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 
control chart, Simple linear profile.                         

I. INTRODUCTION 
Statistical process control applications typically rely on a univariate or multivariate statistical distribution to describe 

the quality of a process or product. However, in some cases, the evaluation of quality can involve analyzing the 
correlation between a response variable and one or multiple explanatory variables. This relationship, which may have a 
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linear or nonlinear pattern, is known as a profile. Different types of profiles exist based on the relationship between 
variables, such as simple linear profiles, multiple linear profiles, polynomial profiles, nonlinear profiles, waveform 
profiles, spline profiles, and profiles based on generalized linear models. These profiles are utilized for various purposes 
in both manufacturing and services. Kang and Albin (2000) focused on monitoring a linear process in semiconductor 
manufacturing. Mahmoud and Woodall (2004) proposed a method using indicator variables in a multiple regression 
model. To enhance performance, Wang and Tsung (2005) suggested utilizing charting schemes that rely on quantile-
quantile (Q-Q) plots and profile monitoring techniques. Some other authors, including Stover and Brill (1998), Woodall 
et al. (2004), and Woodall (2007), have discussed practical applications of profiles. In recent years, many researchers 
have focused on profile monitoring, particularly for simple linear profiles, due to their specific use in calibration. Profile 
monitoring is performed in two phases. The objective of Phase I analysis is to assess the stability of the process and 
estimate its parameters. Salmasnia et al. (2019) proposed the concurrent use of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 and range (𝑅𝑅) control charts for 
profile monitoring. Several other authors, including Kang and Albin (2000), Kim et al. (2003), Mahmoud et al. (2007), 
Mahmoud and Woodall (2004), and Stover and Brill (1998), have investigated Phase I monitoring of simple linear 
profiles. 

The primary objective of Phase II analysis is to promptly identify any shifts in the process parameters. Many studies 
have concentrated on Phase II profile monitoring, assuming that the in-control parameters are already established. 
Atashgar and Adelian (2023) monitored the mean vector of multivariate processes using a wavelet-based model. Haq et 
al. (2022) suggested four control charts, namely the maximum cumulative (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), maximum Crosier CUSUM, 
maximum 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, and maximum double 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 charts, that utilize individual observations to monitor the Phase II 
parameters of simple linear profiles. Fallahdizcheh and Wang (2022) introduced a transfer learning framework aimed at 
extracting the inter-relationship between profiles to enhance monitoring accuracy. Amiri et al. (2022) investigated four 
different approaches for monitoring binomial regression profiles during Phase II. The 𝑇𝑇2 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 control chart, 
the likelihood ratio test (𝐿𝐿𝐿𝐿𝐿𝐿) and 𝐿𝐿𝐿𝐿𝐿𝐿/𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 method were among the methods investigated, whose effectiveness 
was assessed using the 𝐴𝐴𝐴𝐴𝐴𝐴 metric in both simulation experiments and a numerical example. Kim et al. (2003) 
proposed the use of three univariate control charts for Phase II monitoring. Additionally, other researchers, such as 
Gupta et al. (2006), Kang and Albin (2000), Zou et al. (2006), and Saghaei et al. (2009), have examined Phase II 
monitoring of simple linear profiles. 

The studies mentioned above have assumed that the error terms are independently distributed within and between 
profiles, but in practice, this assumption is frequently violated, particularly when samples are taken at brief intervals. 
There have been many studies exploring the monitoring of autocorrelated profiles during Phase I and II. Jensen et al. 
(2008) employed linear mixed models to observe autocorrelated linear profiles in Phase I. Meanwhile, Noorossana et al. 
(2008) put forward three techniques to monitor simple linear profiles when there is autocorrelation between successive 
profiles in Phase II. Additionally, Soleimani et al. (2009) focused on autocorrelated simple linear profiles and suggested 
a solution to remove the impact of first-order autoregressive autocorrelation between observations in each profile. 
Rahimi et al. (2021) created two control charts for monitoring the mean vector and covariance matrix of autocorrelated 
multivariate simple linear profiles simultaneously, even when the assumption of independence among observations 
within each profile is not met. Nadi et al. (2023) investigated how autocorrelations within and between profiles 
influence the effectiveness of four monitoring techniques for simple linear profiles in Phase II. Kazemzadeh et al. (2015, 
2016), Noorossana et al. (2010), Soleimani et al. (2013), Narvand et al. (2013), Koosha and Amiri (2013), Zhang et al. 
(2014), Khedmati and Niaki (2015), Niaki et al. (2015), Sogandi and Vakilian  (2015), Wang and Tamirat (2015), 
Kamranrad and Amiri (2016), Kazemzadeh et al. (2016b), Tamirat and Wang (2016), Chiang et al. (2017), Maleki et al. 
(2018), Pini et al. (2018), Taghipour et al. (2017), and Cheng and Yang (2018) are among the authors who have 
investigated monitoring autocorrelated profiles. 

Once the control chart indicates an out-of-control condition, the investigation into assignable causes of variation 
begins. Although control charts are useful, their drawback lies in the delay between the actual time of a process change, 
referred to as the change point, and the time at which the chart identifies the change, attributable to the inertia 



Journal of Quality Engineering and Production Optimization  / Vol. 8, No. 1, Winter & Spring 2023, PP. 87-114 89 
 

 

characteristic of the charts. Single-step, drift, isotonic, multiple-step, and sporadic changes are among the various types 
of changes that can cause a process to deviate from the in-control state. Although control charts are efficient in tracking 
process changes, they do not offer information about the timing or underlying causes of process variations. As a result, 
accurately estimating the change point is crucial for process engineers to promptly identify and address the root causes 
of variation, which can result in enhanced process quality. Accurate change point estimation can result in substantial 
time and cost savings. Many authors such as Perry and Pignatiello (2010), Ghazanfari et al. (2008), Noorossana and 
Shadman (2009), Amiri and Allahyari (2012), Asghari Torkamani et al. (2014), Sogandi and Amiri (2014), Shadman et 
al. (2015), Nie and Du (2017), Shadman et al. (2017), Sogandi and Amiri (2017) and so on studied the change point 
estimation.  

Numerous researchers have examined change point estimation in profile monitoring. Mahmoud et al. (2007) 
developed a maximum likelihood estimator (𝑀𝑀𝑀𝑀𝑀𝑀) for the change point of simple linear profiles using 𝐿𝐿𝐿𝐿𝐿𝐿 statistics in 
Phase I. In this phase, Sharafi et al. (2012, 2013) put forth a 𝑀𝑀𝑀𝑀𝑀𝑀 technique for identifying real-time step changes and 
linear trend changes in logistic profiles, respectively. They also presented an 𝑀𝑀𝑀𝑀𝑀𝑀-based method for estimating the time 
of drift and step changes in Poisson profiles. Kazemzadeh et al. (2015) expanded the 𝑀𝑀𝑀𝑀𝑀𝑀 method to take into account 
linear disturbances in the parameters of multivariate linear regression profiles. Sogandi and Amiri (2014) introduced 
estimators for step and drift in Gamma regression profiles. Moreover, Ayoubi et al. (2016) developed a maximum 
likelihood-based approach to estimate sporadic changes in the mean of multivariate linear profiles during Phase II. 
Ayoubi and Ebadi (2022) used the maximum likelihood approach to propose the step and linear drift change points 
estimators for multivariate multi-nominal contingency tables. 

There is a limited number of research on estimating change points in autocorrelated profiles. Khedmati et al. (2013) 
concentrated on first-order autoregressive autocorrelation structures in polynomial profiles. They proposed a solution 
for minimizing the effect of autocorrelation in Phase II monitoring of autocorrelated polynomial profiles, and they 
introduced a Generalized Linear Test (𝐺𝐺𝐺𝐺𝐺𝐺)-based control chart for tracking the coefficients of polynomial profiles. To 
monitor the variance of the error term, they employed an 𝑅𝑅 chart and recommended a likelihood ratio estimator for 
estimating the change points in the parameters of autocorrelated polynomial profiles. Kazemzadeh et al. (2016b) 
utilized 𝑀𝑀𝑀𝑀𝑀𝑀 and clustering methods to estimate the point at which a step change occurs in monitoring autocorrelated 
linear profiles. To address the issue of autocorrelation between observations in each profile, they applied a 
transformation. The researchers then evaluated and compared the effectiveness of the proposed estimators using 
simulation studies. He et al. (2021) presented a Phase I technique to detect and estimate the change point in Poisson 
profiles that exhibit autocorrelation and have design points that are distributed unevenly or randomly. Other research on 
autocorrelated profile change point estimation includes Sogandi and Vakilian (2015) and Maleki et al. (2018). 

This study addresses the monitoring of simple linear profiles when there is autocorrelation within each profile. In 
addition, it is assumed that there is no correlation between profiles. Instead of AR models commonly used to model 
within-profile autocorrelation, this research uses an autoregressive moving average model to express the autocorrelation 
structure within profiles. Since the ARMA models are more flexible in expressing the autocorrelation structures in most 
cases compared to AR models, this type of autocorrelation between observations is considered in this research. The 
proposed approach involves a linear transformation to eliminate the impact of autocorrelation within each profile. This 
research aims to develop a monitoring scheme for simple linear profiles in the presence of ARMA autocorrelation. 
Additionally, a maximum likelihood estimator that is based on the joint probability density function of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞) 
observations within each profile is used to estimate the actual time of the step change. To evaluate its effectiveness, the 
proposed estimator is compared to one of the built-in change point estimators of the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 control chart that was 
developed by Nishina (1992). 

The organization of the rest of the paper is as follows: Formulation of the problem is presented in Section 2. A quick 
review of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 processes is presented in Section 2.1. The autocorrelated simple linear profile modeling and the 
proposed transformation for eliminating the autocorrelation effect are given in Section 2.2. The 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 control charts 
for monitoring purposes are presented in Section 2.3. The Proposed change point estimator is also discussed in section 
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2.4. The simulation studies and the performance evaluation of the proposed change point estimator are indicated in 
Section 3. The confidence set estimator of the change point was constructed in Section 4, and its average cardinality and 
coverage probability were computed. A real case is discussed in Section 5.  Finally, conclusions and further studies are 
made in Section 6. 

II. PROBLEM FORMULATION 

A. Review of autoregressive moving average processes 
As stated in Section 1, the majority of profile monitoring research assumes that observations are independent. 

Nonetheless, this assumption is frequently violated in practice due to issues such as spatial autocorrelation or time 
collapse, which may have an adverse impact on the effectiveness of the relevant control charts. To address this issue, 
researchers have explored the autocorrelation structure between observations, with many studies focusing on an 𝐴𝐴𝐴𝐴(1) 
model. However, a wide range of autocorrelation between observations might not be modeled by 𝐴𝐴𝐴𝐴(1) models in 
some cases. As a result, this study uses 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 models, which are generalized to 𝐴𝐴𝐴𝐴 models, to model autocorrelation 
within observations. The random errors are assumed to follow an 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 model in each profile. For this purpose, 
according to Box et al. (2015), 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 models are briefly reviewed in this Section. 

Consider the general stationary and invertible 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞) process defined by: 

𝜙𝜙(𝐵𝐵)𝑧̃𝑧𝑡𝑡 = 𝜃𝜃(𝐵𝐵)𝑎𝑎𝑡𝑡 , 𝑡𝑡 = 1, 2, . . . ,𝑛𝑛 (1) 

 
where 𝑧̃𝑧𝑡𝑡 = (𝑧𝑧𝑡𝑡 − 𝜇𝜇) and 𝑧𝑧𝑡𝑡 is the value of the process at time 𝑡𝑡, while 𝜇𝜇 denotes the process's mean. The random 

error terms are denoted by 𝑎𝑎𝑡𝑡, which are normally independently distributed with 𝐸𝐸(𝑎𝑎𝑡𝑡) = 0 and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎𝑡𝑡) = 𝜎𝜎𝑎𝑎2. 
Moreover, the stationary autoregressive operator of order 𝑝𝑝 is denoted by 𝜙𝜙(𝐵𝐵) = (1 −  𝜙𝜙1𝐵𝐵 −· · · −𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝),  while the 
invertible moving average operator of order 𝑞𝑞 is denoted by 𝜃𝜃(𝐵𝐵) = (1 −  𝜃𝜃1𝐵𝐵 −· · · −𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞). In addition, the backshift 
operator 𝐵𝐵 is defined such that  𝐵𝐵𝑘𝑘𝑧̃𝑧𝑡𝑡 = 𝑧̃𝑧𝑡𝑡−𝑘𝑘. To ensure that the process in equation (1) is stationary and invertible, all 
roots of 𝜙𝜙(𝐵𝐵) = 0 and 𝜃𝜃(𝐵𝐵) = 0 must lie outside the unit circle, respectively. 

Equation (1) for the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞) process implies that 𝐸𝐸(𝑧𝑧𝑡𝑡) = 𝜇𝜇. By multiplying equation (1) with 𝑧̃𝑧𝑡𝑡−𝑘𝑘 and taking 
the expectation, one can derive the autocovariance function of the 𝑧̃𝑧𝑡𝑡 process. The resulting lag 𝑘𝑘 autocovariance is 
denoted by 𝛾𝛾𝑘𝑘. Then, according to Box et al. (2015), the autocovariance function is given by: 

𝛾𝛾𝑘𝑘 = 𝜙𝜙1𝛾𝛾𝑘𝑘−1 + ⋯+ 𝜙𝜙𝑝𝑝𝛾𝛾𝑘𝑘−𝑝𝑝 − 𝜎𝜎𝑎𝑎2(𝜃𝜃𝑘𝑘𝜓𝜓0 + 𝜃𝜃𝑘𝑘+1𝜓𝜓1 + ⋯+ 𝜃𝜃𝑞𝑞𝜓𝜓𝑞𝑞−𝑘𝑘) (2) 

 
where 𝜃𝜃(𝐵𝐵)

𝜙𝜙(𝐵𝐵)
= 𝜓𝜓(𝐵𝐵) = 1 + ∑ 𝜓𝜓𝑗𝑗𝐵𝐵𝑗𝑗∞

𝑗𝑗=1 , with the convention that 𝜃𝜃0 = −1: 

𝑧̃𝑧𝑡𝑡 = 𝜓𝜓(𝐵𝐵)𝑎𝑎𝑡𝑡 (3) 

𝜓𝜓(𝐵𝐵) = 𝜙𝜙−1(𝐵𝐵)𝜃𝜃(𝐵𝐵) (4) 

𝜓𝜓(𝐵𝐵) = 1 + 𝜓𝜓1𝐵𝐵1 + 𝜓𝜓2𝐵𝐵2 + ⋯ (5) 

 
In time series literature, there are two different representations of linear processes. The first is shown by a linear 

combination of random error terms. Through this representation, equation 1 can be rewritten as equation (3), in which 
the weights 𝜓𝜓𝑗𝑗; 𝑗𝑗 = 0,1,2, …, corresponding to the operator of infinite order moving average. 

In the second representation, 𝑧̃𝑧𝑡𝑡 is shown as a linear combination of previous process values plus the current error 
term. Using this representation, equation (1) can be rewritten as: 
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𝜋𝜋(𝐵𝐵)𝑧̃𝑧𝑡𝑡 = 𝑎𝑎𝑡𝑡 (6) 

𝜋𝜋(𝐵𝐵) = 𝜙𝜙(𝐵𝐵)𝜃𝜃−1(𝐵𝐵) (7) 

𝜋𝜋(𝐵𝐵) = 1 − 𝜋𝜋1𝐵𝐵1 − 𝜋𝜋2𝐵𝐵2 − ⋯ (8) 

 
where the 𝜋𝜋𝑗𝑗; 𝑗𝑗 = 0,1,2, …, weights corresponding to the infinite order autoregressive operator. It can be concluded 

from equations (3) and (6) that 𝜋𝜋(𝐵𝐵)𝜓𝜓(𝐵𝐵) = 1.  

For 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 processes, the weights of 𝜋𝜋𝑗𝑗’s and 𝜓𝜓𝑗𝑗’s are available in Box et al. (2015). In this study, 𝜋𝜋 weights are 
used to remove autocorrelation within profiles. For an 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞) model, they are given below: 

�
𝜋𝜋𝑗𝑗 = 𝜃𝜃1𝜋𝜋𝑗𝑗−1 + 𝜃𝜃2𝜋𝜋𝑗𝑗−2 + ⋯+ 𝜃𝜃𝑞𝑞𝜋𝜋𝑗𝑗−𝑞𝑞 + 𝜙𝜙𝑗𝑗    ;    𝑗𝑗 > 0 ; 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 > 𝑝𝑝  𝜙𝜙𝑗𝑗 = 0

𝜋𝜋0 = −1
𝜋𝜋𝑗𝑗 = 0   ;    𝑗𝑗 < 0

 (9) 

 
According to equation (6), it can be concluded that the value of independent random shocks is obtained as follows: 

𝑎𝑎𝑡𝑡 =  𝑧̃𝑧𝑡𝑡 − 𝜋𝜋1𝑧̃𝑧𝑡𝑡−1 − 𝜋𝜋2𝑧̃𝑧𝑡𝑡−2 − ⋯ = �𝜋𝜋𝑗𝑗𝑧̃𝑧𝑡𝑡−𝑗𝑗

∞

𝑗𝑗=0

 (10) 

 
Using equation (10), a series of infinite terms is needed to calculate the value of independent shocks. However, 

since the underlying time series is invertible, it is evident that the 𝜋𝜋𝑗𝑗; 𝑗𝑗 = 1,2, …, weights vanish. Thus, a finite number 
of these weights can be used, and the approximate values of random shocks can be calculated as follows: 

𝑎𝑎𝑡𝑡 ≈�𝜋𝜋𝑗𝑗𝑧̃𝑧𝑡𝑡−𝑗𝑗

𝑀𝑀

𝑗𝑗=0

 (11) 

 
where this study uses the hyperparameter 𝑀𝑀 to perform a transformation to remove the autocorrelation effect from 

observations. This paper uses a graphical method to determine the value of 𝑀𝑀. For example, consider an 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1, 1) 
model with parameters 𝜙𝜙 = 0.8 and 𝜃𝜃 = 0.5. According to equation (9), 𝜋𝜋𝑗𝑗 may be obtained as follows: 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜋𝜋1 = 𝜃𝜃1𝜋𝜋0 + 𝜙𝜙1 = (0.5 × −1) + 0.8 = 0.3

𝜋𝜋2 = 𝜃𝜃1𝜋𝜋1 = (0.5 × 0.3) = 0.15
𝜋𝜋3 = 𝜃𝜃1𝜋𝜋2 = (0.5 × 0.15) = 0.075
𝜋𝜋4 = 𝜃𝜃1𝜋𝜋3 = (0.5 × 0.075) = 0.0375
𝜋𝜋5 = 𝜃𝜃1𝜋𝜋4 = (0.5 × 0.0375) = 0.0187
𝜋𝜋6 = 𝜃𝜃1𝜋𝜋5 = (0.5 × 0.0187) = 0.0093

⋮

 

 
𝜋𝜋𝑗𝑗 weights against lags for this example are shown in Figure 1: 

According to Figure 1, 𝜋𝜋𝑗𝑗  weights vanish as j tends to infinity, so the last lag before 𝜋𝜋𝑗𝑗; 𝑗𝑗 = 1,2, …, becomes 
approximately zero, is considered the value of the 𝑀𝑀 hyperparameter. Here, it is appropriate to consider 𝑀𝑀 = 6. 
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Figure 1. π weights against lags for ARMA (1,1) model 

B. Autocorrelated simple linear profile and the proposed method of removing autocorrelation 
In numerous studies concerning the monitoring of simple linear profiles, it is assumed that there is no 

autocorrelation among the observations within each profile. Nonetheless, in practical applications, this assumption is 
seldom observed due to spatial autocorrelation or time collapse, which can result in poor outcomes for the related 
control charts. This study assumes that when the process is in-control, the relationship between the response variable 
and independent variable for the 𝑖𝑖𝑡𝑡ℎ;  𝑖𝑖 = 1,2, … ,𝑛𝑛, observation in the 𝑗𝑗𝑡𝑡ℎ; 𝑗𝑗 = 1,2, …, sample can be expressed as 
follows: 

𝑦𝑦𝑖𝑖𝑖𝑖 = A0𝑗𝑗 + A1𝑗𝑗𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (12) 

𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜙𝜙1𝜀𝜀(𝑖𝑖−1)𝑗𝑗 + ⋯+ 𝜙𝜙𝑝𝑝𝜀𝜀(𝑖𝑖−𝑝𝑝)𝑗𝑗 + 𝑎𝑎𝑖𝑖𝑖𝑖 − 𝜃𝜃1𝑎𝑎(𝑖𝑖−1)𝑗𝑗 − ⋯− 𝜃𝜃𝑞𝑞𝑎𝑎(𝑖𝑖−𝑞𝑞)𝑗𝑗 (13) 

 
in which 𝜀𝜀𝑖𝑖𝑖𝑖′𝑠𝑠 follow the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞) model. 

In equation (13) 𝑎𝑎𝑖𝑖𝑖𝑖′𝑠𝑠 are normally independently distributed with 𝐸𝐸(𝑎𝑎𝑖𝑖𝑖𝑖) = 0, and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎𝑖𝑖𝑖𝑖) = 𝜎𝜎𝑎𝑎2. 

Let 𝐵𝐵 denote the backshift operator such that 𝐵𝐵𝑘𝑘𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀(𝑖𝑖−𝑘𝑘)𝑗𝑗. Using this operator, equation (13) can be written as 
follows: 

(1 −  𝜙𝜙1𝐵𝐵 −· · · −𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝)𝜀𝜀𝑖𝑖𝑖𝑖 = (1 −  𝜃𝜃1𝐵𝐵 −· · · −𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞)𝑎𝑎𝑖𝑖𝑖𝑖 (14) 

 
In equation (14),  𝜙𝜙(𝐵𝐵) = 1 −  𝜙𝜙1𝐵𝐵 −· · · −𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝, and 𝜃𝜃(𝐵𝐵) = 1 −  𝜃𝜃1𝐵𝐵 −· · · −𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞, are the autoregressive and 

moving average operators, respectively. It is required that all roots of 𝜙𝜙(𝐵𝐵) = 0, and 𝜃𝜃(𝐵𝐵) = 0, lie outside of the unit 
circle for an ARMA process to be stationary and invertible, respectively.     

As an example, for 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1, 1) model, 𝜙𝜙(𝐵𝐵) = (1 − 𝜙𝜙𝜙𝜙), and 𝜃𝜃(𝐵𝐵) = (1 − 𝜃𝜃𝜃𝜃), are the autoregressive and 
moving average operators, respectively. Thus, for this model 𝜋𝜋(𝐵𝐵) = (1−𝜙𝜙𝜙𝜙)

(1−𝜃𝜃𝜃𝜃)
, using equation (6), the relationship 

between autocorrelated error terms, 𝜀𝜀𝑖𝑖𝑖𝑖, and independent error terms 𝑎𝑎𝑖𝑖𝑖𝑖 is obtained as follows: 
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𝜋𝜋(𝐵𝐵)𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 (15) 

 
In equation (12), it is assumed that the x-values remain constant and consistent across all profiles. The present article 

focuses on Phase II analysis, where the in-control values of parameters A00, A10 and 𝜎𝜎𝑎𝑎02  are considered to be known. 
The model described in equation (12) features an 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞) autocorrelation structure within each profile but not 
between profiles. 

It can be shown that the relationship between the error terms in the autoregressive moving average structure results 
in autocorrelation among the observations within each profile. For this purpose, one may multiply both sides of 
equation (12) by 𝜙𝜙(𝐵𝐵) = 1 −  𝜙𝜙1𝐵𝐵 −· · · −𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝, which gives the following result: 

𝜙𝜙(𝐵𝐵)𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜙𝜙(𝐵𝐵)A0𝑗𝑗 + A1𝑗𝑗𝜙𝜙(𝐵𝐵)𝑥𝑥𝑖𝑖 + 𝜙𝜙(𝐵𝐵)𝜀𝜀𝑖𝑖𝑖𝑖 (16) 

 
According to equation (14), equation (16) may be rewritten as follows,  

𝑦𝑦𝑖𝑖𝑖𝑖 = (𝜙𝜙1𝐵𝐵 +· · · +𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝)𝑦𝑦𝑖𝑖𝑖𝑖 + 𝜙𝜙(𝐵𝐵)A0𝑗𝑗 + A1𝑗𝑗𝜙𝜙(𝐵𝐵)𝑥𝑥𝑖𝑖 + 𝜃𝜃(𝐵𝐵)𝑎𝑎𝑖𝑖𝑖𝑖 (17) 

 
Based on equation (17), it can be inferred that there is an autocorrelation among the response values within each 

profile. To facilitate monitoring, it is advisable to eliminate the autocorrelation between observations. In this research, a 
linear transformation is used to make the observations uncorrelated. According to equation (15), using linear operator 
𝜋𝜋(𝐵𝐵) one may transform 𝜀𝜀𝑖𝑖𝑖𝑖’s to 𝑎𝑎𝑖𝑖𝑖𝑖’s which are uncorrelated. Thus, to remove autocorrelation between observations, it 
is proposed to multiply both sides of equation (12) by 𝜋𝜋(𝐵𝐵) operator. This operator is an infinitive order polynomial in 
B. However, it can be shown that if the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 model is invertible, 𝜋𝜋𝑗𝑗 weights vanish as j tends to infinity, according to 
Box et al. (2015). Thus, instead of using an infinite order polynomial 𝜋𝜋(𝐵𝐵), which is shown in equation (8), one may 
use a truncated polynomial 𝜋𝜋�(𝐵𝐵) as follows: 

𝜋𝜋�(𝐵𝐵) = 1 − 𝜋𝜋1𝐵𝐵1 − 𝜋𝜋2𝐵𝐵2 − ⋯− 𝜋𝜋𝑀𝑀𝐵𝐵𝑀𝑀 (18) 

 
in which the hyperparameter M is a sufficiently large number where 𝜋𝜋𝑗𝑗 ≈ 0, for 𝑗𝑗 > 𝑀𝑀. Since this paper primarily 

focuses on phase II analysis, it is assumed that in-control values of profile parameters such as 𝜙𝜙 and 𝜃𝜃 are available 
from Phase I to obtain the 𝜋𝜋 weights according to equation (9). The value of 𝑀𝑀 can also be obtained from the analysis 
of 𝜋𝜋 weights. 

Therefore, to remove autocorrelation between observations, both sides of equation (12) are multiplied by the linear 
operator 𝜋𝜋�(𝐵𝐵) which gives the following results:  

𝜋𝜋�(𝐵𝐵)𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜋𝜋�(𝐵𝐵)A0𝑗𝑗 + A1𝑗𝑗(𝜋𝜋�(𝐵𝐵)𝑥𝑥𝑖𝑖) + 𝜋𝜋�(𝐵𝐵)𝜀𝜀𝑖𝑖𝑖𝑖 (19) 

 
After simplifying equation (19), the result is as follows: 

𝑦𝑦𝑖𝑖𝑖𝑖′ = 𝐴𝐴0𝑗𝑗′ + A1𝑗𝑗𝑥𝑥𝑖𝑖′ + 𝑎𝑎𝑖𝑖𝑖𝑖 (20) 

 
where 𝑦𝑦𝑖𝑖𝑖𝑖′ = 𝜋𝜋�(𝐵𝐵)𝑦𝑦𝑖𝑖𝑖𝑖, 𝐴𝐴0𝑗𝑗′ = 𝜋𝜋�(𝐵𝐵)A0𝑗𝑗, 𝑥𝑥𝑖𝑖′ = 𝜋𝜋�(𝐵𝐵)𝑥𝑥𝑖𝑖, and 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝜋𝜋(𝐵𝐵)𝜀𝜀𝑖𝑖𝑖𝑖 ≈ 𝜋𝜋�(𝐵𝐵)𝜀𝜀𝑖𝑖𝑖𝑖. Note that: 
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𝑦𝑦𝑖𝑖𝑖𝑖′ = 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝜋𝜋1𝑦𝑦(𝑖𝑖−1)𝑗𝑗 − ⋯− 𝜋𝜋𝑀𝑀𝑦𝑦(𝑖𝑖−𝑀𝑀)𝑗𝑗; 𝑖𝑖 > 𝑀𝑀 ; 𝑗𝑗 = 1,2, … (21) 

𝐴𝐴0𝑗𝑗′ = 𝐴𝐴0𝑗𝑗(1 − 𝜋𝜋1 −⋯− 𝜋𝜋𝑀𝑀) (22) 

𝑥𝑥𝑖𝑖′ = 𝑥𝑥𝑖𝑖 − 𝜋𝜋1𝑥𝑥𝑖𝑖−1 − ⋯− 𝜋𝜋𝑀𝑀𝑥𝑥𝑖𝑖−𝑀𝑀 ; 𝑖𝑖 > 𝑀𝑀 ; 𝑗𝑗 = 1,2, … (23) 

 
As a result of transforming the variables 𝑦𝑦𝑖𝑖𝑖𝑖′ ’s and 𝑥𝑥𝑖𝑖′’s, a linear profile model with independent error terms can be 

established, as presented in equation (20). Subsequently, the profile parameters can be estimated using the ordinary least 
squares (𝑂𝑂𝑂𝑂𝑂𝑂) approach. 

Samples are taken sequentially from the process to monitor the process in Phase II. Transformed variables are 
obtained using equations (21) – (23). For each profile, the least squared estimators of regression parameters, 𝐴𝐴0𝑗𝑗′  and 
A1𝑗𝑗 are then computed. These estimators are used to construct test statistics for monitoring the process in Phase II. The 
next Section addresses the construction of control charts for monitoring the process.  

C. EWMA-3 control charts to monitor simple linear profiles in Phase II 
In this study, the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 control chart, which was initially proposed by Kim et al. (2003), is used to monitor the 

profile parameters following the transformation suggested in the preceding section. By reducing the impact of 
autocorrelation between observations, this transformation enables straightforward monitoring of the profile parameters 
during Phase II. Several studies have demonstrated that the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 approach exhibits superior performance 
compared to other methods, such as  𝑇𝑇2 and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸/𝑅𝑅, in detecting shifts in the individual parameters (see Kim et al. 
(2003) and Soleimani et al. (2009) for more details). The 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 control charts employ three distinct test statistics 
to monitor the slope, intercept, and variance of the error term separately. Since these charts monitor the process 
parameters separately, the root causes of the process being out-of-control can be determined more precisely after 
generating an out-of-control signal on these charts. Thus, the shifts in these parameters may be detected more rapidly. 
This technique centers the 𝑥𝑥′ variable by subtracting its mean, such that the resulting mean of the centered 𝑥𝑥′ values is 
zero. The objective of this transformation is to attain independence between the estimators of the intercept and slope. 
This enables the use of distinct control charts to monitor each parameter, making it easier to interpret any out-of-control 
signals. The transformed model can be formulated as follows: 

𝑦𝑦𝑖𝑖𝑖𝑖′ = β0𝑗𝑗 + β1𝑗𝑗𝑥𝑥𝑖𝑖′′ + 𝑎𝑎𝑖𝑖𝑖𝑖 (24) 

 
where β0𝑗𝑗 = 𝐴𝐴0𝑗𝑗′ + A1𝑗𝑗𝑥̅𝑥′, β1𝑗𝑗 = A1𝑗𝑗, 𝑥𝑥𝑖𝑖′′ = 𝑥𝑥𝑖𝑖′ − 𝑥̅𝑥′, 𝑥̅𝑥′ = ∑ 𝑥𝑥𝑖𝑖

′𝑛𝑛
𝑖𝑖=𝑀𝑀+1
𝑛𝑛−(𝑀𝑀+1)

. 

The least squared estimator of the intercept for the 𝑗𝑗𝑡𝑡ℎ sample “𝑏𝑏0(𝑗𝑗)” is used in the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 statistics as follows: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼(𝑗𝑗) = 𝜆𝜆𝑏𝑏0(𝑗𝑗) + (1 − 𝜆𝜆)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼(𝑗𝑗 − 1) (25) 

 
where 0 < 𝜆𝜆 ≤ 1, 𝜆𝜆 is a smoothing parameter, and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼(0) = β00 = 𝐴𝐴00′ + A10𝑥̅𝑥′. Equation (26) establishes the 

upper and lower control limits for the control chart. If the calculated 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼 statistics are within these control limits, 
the profile's intercept is considered to be in statistical control. 

(𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼,𝑈𝑈𝑈𝑈𝑈𝑈𝐼𝐼) = β00 ± 𝐿𝐿𝐼𝐼𝜎𝜎𝑎𝑎0�𝜆𝜆 (2 − 𝜆𝜆)(𝑛𝑛 − 1)�  (26) 
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where 𝐿𝐿𝐼𝐼 > 0 is chosen to give a specified in-control average run length (𝐴𝐴𝐴𝐴𝐴𝐴). 

The least squared estimator of the slope for the 𝑗𝑗𝑡𝑡ℎ sample “𝑏𝑏1(𝑗𝑗)” is used to define the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 statistics as follows: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠(𝑗𝑗) = 𝜆𝜆𝑏𝑏1(𝑗𝑗) + (1 − 𝜆𝜆)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠(𝑗𝑗 − 1) (27) 

 
where again 0 < 𝜆𝜆 ≤ 1 is a smoothing constant and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠(0) = β10 = 𝐴𝐴10. Equation (28) provides the lower and 

upper control limits for this control chart. If the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠 statistics fall within the control limits, then the slope of the 
profile is deemed to be in statistical control. 

(𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠,𝑈𝑈𝑈𝑈𝑈𝑈𝑠𝑠) = β10 ± 𝐿𝐿𝑠𝑠𝜎𝜎𝑎𝑎0�𝜆𝜆 (2 − 𝜆𝜆)∑  𝑥𝑥𝑖𝑖′′
2𝑛𝑛

𝑖𝑖=𝑀𝑀+1
�  (28) 

 
where 𝐿𝐿𝑠𝑠 > 0 is chosen to give a specified in-control ARL. 

To monitor the variance of the error term “𝜎𝜎𝑎𝑎2”, a third 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 control chart is employed. This control chart utilizes 
the estimator of the error term variance, which is based on the mean squared error of residuals (𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗). The 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 
statistics for this control chart are calculated as follows: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑗𝑗) = max (𝜆𝜆�𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 − 1� + (1 − 𝜆𝜆)𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑗𝑗 − 1), 0) (29) 

𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖′ − 𝑏𝑏0(𝑗𝑗) − 𝑏𝑏1(𝑗𝑗)𝑥𝑥𝑖𝑖′′ (30) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 =
∑ 𝑒𝑒𝑖𝑖𝑖𝑖2𝑛𝑛
𝑖𝑖=𝑀𝑀+1

𝑛𝑛 − (𝑀𝑀 + 1)
 (31) 

 
where 0 < 𝜆𝜆 ≤ 1 is a smoothing constant and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(0) = 0. The upper control limit of this control chart is given 

in equation (32). 

𝑈𝑈𝑈𝑈𝑈𝑈𝐸𝐸 = 𝐿𝐿𝐸𝐸�
𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆�𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗�

(2 − 𝜆𝜆)�  (32) 

 
where 𝐿𝐿𝐸𝐸 > 0 is chosen to give a specified in-control 𝐴𝐴𝐴𝐴𝐴𝐴, and 𝑣𝑣𝑣𝑣𝑣𝑣�𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗� = 2𝜎𝜎𝑎𝑎4

𝑛𝑛−1
. 

Following the creation of three control limits outlined in equations (26), (28), and (32), the test statistics defined in 
equations (25), (27), and (29) are calculated for each sample taken during Phase II, and they are compared to the 
corresponding control chart. If the test statistics fall outside the corresponding control limit, the process is deemed to be 
out of control. In such cases, it is necessary to estimate the change point. The forthcoming section introduces the 
proposed approach for estimating the change point.  

D. Proposed change point estimator 
As long as the test statistics remain within the control limits, the process is considered to be in statistical control 

with known parameters. However, if a change occurs at an unknown time 𝜏𝜏, the process shifts to an out-of-control state 
with unknown parameters. This study assumes that any alteration to the profile parameters takes the form of a step 
change, and the affected parameter remains at the adjusted level until the underlying causes are identified and 



96 Ahmadi, O. et al. / Monitoring of simple linear profiles and change point estimation in the presence of …  
 

 

remediated. Under this model, for the profiles 𝑗𝑗 = 1, 2, … , 𝜏𝜏, the process is considered to be in-control, and the 
parameters β00, β10,  and 𝜎𝜎𝑎𝑎02  are known. While for profiles 𝑗𝑗 = 𝜏𝜏 + 1, 𝜏𝜏 + 2, … ,𝑇𝑇, the parameters change to out-of-
control values β0′ , β1′ , and 𝜎𝜎′𝑎𝑎2 ; where 𝑇𝑇 is the time the first test statistic falls out of the corresponding control limits. 

Note that at time 𝑇𝑇, some test statistics may fall inside the corresponding control limits. Thus, the corresponding 
parameters are in control in this situation. Suppose that, for instance, at time 𝑇𝑇, the control chart for the intercept 
indicates that the process is out of control. While the other two control charts do not signal out-of-control conditions in 
slope and error term variance. Thus, it is concluded that at time 𝑇𝑇, a change in the intercept has occurred while other 
parameters have not changed. 

Transformed observations are used to compute the maximum likelihood estimators of 𝜏𝜏. In what follows, the worst 
case is considered. In essence, the assumption is that all three control charts indicate out-of-control conditions at time 𝑇𝑇. 
However, if some control charts at time 𝑇𝑇 do not reveal out-of-control conditions, there is no need to estimate the 
corresponding parameter.. 

 To determine the maximum likelihood estimator of the change point, it is required to obtain the likelihood function 
of 𝑦𝑦𝑖𝑖𝑖𝑖′ ’s. Since 𝑎𝑎𝑖𝑖𝑖𝑖’s are normally and independently distributed, it can be concluded that the 𝑦𝑦𝑖𝑖𝑖𝑖′ ; 𝑗𝑗 = 1,2, … , 𝜏𝜏, are also 
normally and independently distributed with mean β00 + β10𝑥𝑥𝑖𝑖′′, and variance of 𝜎𝜎𝑎𝑎02 . Therefore, the probability density 
function of 𝑦𝑦𝑖𝑖𝑖𝑖′ ; 𝑗𝑗 = 1,2, … , 𝜏𝜏, is as follows: 

𝑓𝑓�𝑦𝑦𝑖𝑖𝑖𝑖′ � =
1

𝜎𝜎𝑎𝑎0√2𝜋𝜋
𝑒𝑒
−

(𝑦𝑦𝑖𝑖𝑖𝑖
′ −(β00+β10𝑥𝑥𝑖𝑖

′′))2

2𝜎𝜎𝑎𝑎02  ; 𝑖𝑖 = 𝑀𝑀 + 1,𝑀𝑀 + 2, … ,𝑛𝑛; 𝑗𝑗 = 1,2, … , 𝜏𝜏 (33) 

 
After change point 𝜏𝜏, 𝑦𝑦𝑖𝑖𝑖𝑖′ ’s are normally independently distributed with mean β0′ + β1′ 𝑥𝑥𝑖𝑖′′, and variance 𝜎𝜎′𝑎𝑎2 . The 

probability distribution function of 𝑦𝑦𝑖𝑖𝑖𝑖′ ; 𝑗𝑗 = 𝜏𝜏 + 1, 𝜏𝜏 + 2, … ,𝑇𝑇, will be calculated as follows: 

𝑓𝑓�𝑦𝑦𝑖𝑖𝑖𝑖′ � =
1

σ𝑎𝑎′ √2𝜋𝜋
𝑒𝑒
−

(𝑦𝑦𝑖𝑖𝑖𝑖
′ −(β0′ +β1′ 𝑥𝑥𝑖𝑖

′′))2

2𝜎𝜎′𝑎𝑎2  ; 𝑖𝑖 = 𝑀𝑀 + 1,𝑀𝑀 + 2, … ,𝑛𝑛; 𝑗𝑗 = 𝜏𝜏 + 1, 𝜏𝜏 + 2, … ,𝑇𝑇 (34) 

 
If it is assumed that a change takes place at time 𝜏𝜏, the probability distribution function of the transformed 

observations can be expressed as follows: 

𝐿𝐿�β́0,β1́, 𝜎́𝜎𝑎𝑎2, 𝜏𝜏 ;  𝑦𝑦𝑖𝑖𝑖𝑖′ � = � � 𝑓𝑓�𝑦𝑦𝑖𝑖𝑖𝑖′ �
𝑛𝑛

𝑖𝑖=𝑀𝑀+1

𝑇𝑇

𝑗𝑗=1

=
1

(2𝜋𝜋𝜎𝜎𝑎𝑎02 )
𝜏𝜏(𝑛𝑛−𝑀𝑀)

2
𝑒𝑒
− 1
2𝜎𝜎𝑎𝑎02

∑ ∑ (𝑦𝑦𝑖𝑖𝑖𝑖
′ −(β00+β10𝑥𝑥𝑖𝑖

′′))2𝑛𝑛
𝑖𝑖=𝑀𝑀+1

𝜏𝜏
𝑗𝑗=1

×
1

(2𝜋𝜋𝜎𝜎′𝑎𝑎2)
(𝑇𝑇−𝜏𝜏)(𝑛𝑛−𝑀𝑀)

2
𝑒𝑒
− 1
2𝜎𝜎′𝑎𝑎2

∑ ∑ (𝑦𝑦𝑖𝑖𝑖𝑖
′ −(β0′ +β1′ 𝑥𝑥𝑖𝑖

′′))2𝑛𝑛
𝑖𝑖=𝑀𝑀+1

𝑇𝑇
𝑗𝑗=𝜏𝜏+1  

(35) 

 
Considering the logarithm of equation (35), the following can be obtained: 

ln �𝐿𝐿�β0′ ,β1′ ,𝜎𝜎′𝑎𝑎2 , 𝜏𝜏 ;  𝑦𝑦𝑖𝑖𝑖𝑖′ �� = −
𝜏𝜏(𝑛𝑛 −𝑀𝑀)

2
ln(2𝜋𝜋𝜎𝜎𝑎𝑎02 ) −

1
2𝜎𝜎𝑎𝑎02

� � (𝑦𝑦𝑖𝑖𝑖𝑖′ − (β00 + β10𝑥𝑥𝑖𝑖′′))2
𝑛𝑛

𝑖𝑖=𝑀𝑀+1

𝜏𝜏

𝑗𝑗=1

−
(𝑇𝑇 − 𝜏𝜏)(𝑛𝑛 −𝑀𝑀)

2
ln(2𝜋𝜋𝜎𝜎′𝑎𝑎2) −

1
2𝜎𝜎′𝑎𝑎2

� � (𝑦𝑦𝑖𝑖𝑖𝑖′ − (β0′ + β1′ 𝑥𝑥𝑖𝑖′′))2
𝑛𝑛

𝑖𝑖=𝑀𝑀+1

𝑇𝑇

𝑗𝑗=𝜏𝜏+1

 

(36) 
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Equation (36) involves a log-likelihood function that requires the estimation of four parameters: β0′ ,β1′ ,𝜎𝜎′𝑎𝑎2 , and 𝜏𝜏. 
Initially, the maximum likelihood estimators for β0′ ,β1′  and 𝜎𝜎′𝑎𝑎2  are determined based on a fixed value for the change 
point, which falls within the range 0 ≤ 𝑡𝑡 < 𝑇𝑇. It is important to note that the estimation of 𝜏𝜏 is also required for the log-
likelihood function stated in equation (36), making a total of four unknown parameters that need to be estimated. To 
determine these estimators, the partial derivative of equation (36) concerning β0′ ,β1′  and 𝜎𝜎′𝑎𝑎2  are computed and set to 
zero as follows: 

𝜕𝜕 ln 𝐿𝐿�β0′ ,β1′ ,𝜎𝜎′𝑎𝑎2 , 𝜏𝜏 ;  𝑦𝑦𝑖𝑖𝑖𝑖′ �
𝜕𝜕β0′

= 0 (37) 

𝜕𝜕 ln 𝐿𝐿�β0′ ,β1′ ,𝜎𝜎′𝑎𝑎2 , 𝜏𝜏 ;  𝑦𝑦𝑖𝑖𝑖𝑖′ �
𝜕𝜕 β1′

= 0 (38) 

𝜕𝜕 ln 𝐿𝐿�β0′ ,β1′ ,𝜎𝜎′𝑎𝑎2 , 𝜏𝜏 ;  𝑦𝑦𝑖𝑖𝑖𝑖′ �
𝜕𝜕𝜎𝜎′𝑎𝑎2

= 0 (39) 

 
Solving equations (37) – (39),  the estimators of the parameters β0′ ,β1′  and 𝜎𝜎′𝑎𝑎2  can be obtained as follows:  

β�1′ (𝑡𝑡) =
∑ ∑ (𝑦𝑦𝑖𝑖𝑖𝑖′ − 𝑦𝑦�′)𝑛𝑛

𝑖𝑖=𝑀𝑀+1  (𝑥𝑥𝑖𝑖′′ − 𝑥̅𝑥′′)𝑇𝑇
𝑗𝑗=𝜏𝜏+1

∑ (𝑥𝑥𝑖𝑖′′ − 𝑥̅𝑥′′)2𝑛𝑛
𝑖𝑖=𝑀𝑀+1  

=
(𝑆𝑆𝑥𝑥′′𝑦𝑦′)𝑡𝑡,𝑇𝑇

(𝑆𝑆𝑥𝑥′′𝑥𝑥′′)𝑡𝑡,𝑇𝑇
 (40) 

β�0′ (𝑡𝑡) =
∑ 𝑦𝑦𝑖𝑖𝑖𝑖′𝑛𝑛
𝑖𝑖=𝑀𝑀+1

𝑛𝑛 − (𝑀𝑀 + 1) = (𝑦𝑦�′)𝑡𝑡,𝑇𝑇    ;    𝜏𝜏 + 1 ≤ 𝑗𝑗 < 𝑇𝑇 (41) 

𝜎𝜎�′𝑎𝑎2 =
∑ ∑ (𝑦𝑦𝑖𝑖𝑖𝑖′ − (β�0(𝑡𝑡)

′ + β�1(𝑡𝑡)
′ 𝑥𝑥𝑖𝑖′′))2𝑛𝑛

𝑖𝑖=𝑀𝑀+1
𝑇𝑇
𝑗𝑗=𝜏𝜏+1

(𝑇𝑇 − 𝜏𝜏)(𝑛𝑛 −𝑀𝑀)
 (42) 

 
where the value of (. )𝑡𝑡,𝑇𝑇 is determined using the profiles ranging from 𝑡𝑡 to 𝑇𝑇. Subsequently, these estimated 

parameters are employed in equation (36) to derive the maximum likelihood estimate of the change point. 

𝜏̂𝜏 = arg max
𝜏𝜏

 �−
𝜏𝜏(𝑛𝑛 −𝑀𝑀)

2
ln(2𝜋𝜋𝜎𝜎𝑎𝑎02 ) −

1
2𝜎𝜎𝑎𝑎02

� � (𝑦𝑦𝑖𝑖𝑖𝑖′ − (β00 + β10𝑥𝑥𝑖𝑖′′))2
𝑛𝑛

𝑖𝑖=𝑀𝑀+1

𝜏𝜏

𝑗𝑗=1

−
(𝑇𝑇 − 𝜏𝜏)(𝑛𝑛 −𝑀𝑀)

2
ln(2𝜋𝜋𝜎𝜎�′𝑎𝑎2)

−
(𝑇𝑇 − 𝜏𝜏)(𝑛𝑛 −𝑀𝑀)

2
�    ;    0 ≤ 𝑡𝑡 < 𝑇𝑇 

(43) 

 
The succeeding paragraphs provide a summary of the proposed method: 

At first, the value of the hyperparameter 𝑀𝑀, which depends on the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1) coefficients, is estimated. 
The second step involves implementing the suggested transformation on the observations, known parameters, and 𝑥𝑥 
values. After that, the underlying profile is monitored using the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 control chart. A signal from a control chart 
denotes that the process is not in-control anymore. Upon receiving the signal, the investigation into the sources of 
variation begins. The proposed change point estimator is ultimately utilized to obtain a precise estimation of the change 
point, which is helpful in identifying the underlying causes of the change. The steps of the proposed method to monitor 
simple linear profiles are shown in Figure 2: 
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Figure 2. Proposed method flowchart  

III. SIMULATION STUDIES  
In this Section, first, the performance of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 control chart is compared with 𝑇𝑇2 control chart in terms of 

average run length criterion. Considering equation (12), the 𝑇𝑇𝑗𝑗2 statistics are written as follows: 

𝑇𝑇𝑗𝑗2 = ((𝐴𝐴0𝚥𝚥� ,𝐴𝐴1𝚥𝚥� ) − (A00, A10))𝑆𝑆−1((𝐴𝐴0𝚥𝚥� ,𝐴𝐴1𝚥𝚥� ) − (A00, A10))𝑇𝑇 (44) 
 

where 𝐴𝐴0𝚥𝚥�  and 𝐴𝐴1𝚥𝚥�   are the least squared estimators of the intercept and slope for the 𝑗𝑗𝑡𝑡ℎ sample, respectively, 𝑆𝑆 =

�
𝜎𝜎𝜀𝜀2( 1

𝑛𝑛−1
+ 𝑥̅𝑥2

𝑆𝑆𝑥𝑥𝑥𝑥
) −𝜎𝜎𝜀𝜀2

𝑥̅𝑥
𝑆𝑆𝑥𝑥𝑥𝑥

−𝜎𝜎𝜀𝜀2
𝑥̅𝑥
𝑆𝑆𝑥𝑥𝑥𝑥

𝜎𝜎𝜀𝜀2

𝑆𝑆𝑥𝑥𝑥𝑥

�, T stands for transpose operator, and 𝑆𝑆𝑥𝑥𝑥𝑥 = ∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1 . 

Under in-control conditions, the 𝑇𝑇𝑗𝑗2 statistic follows a chi-squared distribution with two degrees of freedom. As a 
result, the upper control limit for the 𝑇𝑇𝑗𝑗2 control chart is 𝑈𝑈𝑈𝑈𝑈𝑈 = 𝜒𝜒2,𝛼𝛼

2 , where 𝜒𝜒2,𝛼𝛼
2  represents the (1 − 𝛼𝛼)100 percentile 

of the chi-square distribution with two degrees of freedom. 

As a part of this study, the effectiveness of the suggested change point estimator is evaluated by comparing it with 
the built-in change point estimator of the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 control chart proposed by Nishina (1992). Nishina (1992) proposed an 
estimator that utilizes signals from an 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 control chart to detect the change point in processes monitored by the 
control chart. This methodology is employed on the control chart that generates an out-of-control signal, as the process 
is monitored using three distinct 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 control charts. Therefore, if the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼 control chart generates an out-of-
control signal, the estimated change point indicated by 𝜏̂𝜏𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is given by equation (45): 

𝜏̂𝜏𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �max{𝑗𝑗: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼(𝑗𝑗) ≤ 𝛽𝛽00}    𝑖𝑖𝑖𝑖   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼(𝑇𝑇) > 𝑈𝑈𝑈𝑈𝑈𝑈𝐼𝐼
max{𝑗𝑗: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼(𝑗𝑗) ≥ 𝛽𝛽00}    𝑖𝑖𝑖𝑖   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼(𝑇𝑇) < 𝐿𝐿𝐿𝐿𝐿𝐿𝐼𝐼

 (45) 

 
If the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆 control chart generates an out-of-control signal, the change point is estimated by: 

𝜏̂𝜏𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �max{𝑗𝑗: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆(𝑗𝑗) ≤ 𝛽𝛽10}    𝑖𝑖𝑖𝑖   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆(𝑇𝑇) > 𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆
max{𝑗𝑗: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆(𝑗𝑗) ≥ 𝛽𝛽10}    𝑖𝑖𝑖𝑖   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆(𝑇𝑇) < 𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆

 (46) 
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Finally, if the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  control chart generates an out-of-control signal, the estimated change point can be obtained by: 

𝜏̂𝜏𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = max{𝑗𝑗: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑗𝑗) ≤ ln𝜎𝜎𝑎𝑎02 } (47) 
     

This paper has used Python to perform all programming tasks in the simulation experiments that compare the 
performance of the proposed change point estimator with the built-in 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 estimator. 

The effectiveness of the suggested method for monitoring simple linear profiles is assessed through Monte Carlo 
simulation. The simulation studies consider a simple linear profile with 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1) error terms. Additionally, a 
comparison is made between the proposed estimator and the estimators obtained by the built-in change point estimator 
of the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 control chart. The simulation studies employ the following model: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 3 + 2𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (48) 

𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜙𝜙𝜀𝜀(𝑖𝑖−1)𝑗𝑗 + 𝑎𝑎𝑖𝑖𝑖𝑖 − 𝜃𝜃𝑎𝑎(𝑖𝑖−1)𝑗𝑗 (49) 
     

where 𝑎𝑎𝑖𝑖𝑖𝑖s are normally independently distributed with mean zero and variance one, and the explanatory variable is 
set equal to 2, 4, 6, … , 50, which is fixed from profile to profile.  

To achieve an overall in-control 𝐴𝐴𝐴𝐴𝐴𝐴 of approximately 200 under 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1) parameters with 𝜙𝜙 values of 0.2, 0.5, 
and 0.8 and 𝜃𝜃 values of 0.2, 0.5, and 0.8, the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 control chart employs a smoothing parameter of 0.2, along 
with parameter values of 𝐿𝐿𝐼𝐼, 𝐿𝐿𝑠𝑠, 𝐿𝐿𝐸𝐸 set to 3.014, 3.012, 3.870, respectively. 

In simulation studies, the change point value of 𝜏𝜏 = 10 is considered. Hence, the first ten profiles are generated 
from a simple linear profile with 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1) error terms and known parameters (β00 = 3, β10 = 2, 𝜎𝜎𝑎𝑎02 = 1) for the 
in-control state. Starting from the 11th profile, the observations are generated randomly from an out-of-control process 
that features a step shift in parameters, as (3 + 𝛿𝛿_1), (2 + 𝛿𝛿_2), and (1 + 𝛿𝛿_3), where 𝛿𝛿1 indicates the magnitude of 
both increasing and decreasing step changes in intercept, and it varies from −2 to −0.2 and from 0.2 to 2 with a 0.2 
increment. 𝛿𝛿2 indicates the magnitude of both increasing and decreasing step changes in slope, which varies from 
−0.25 to −0.025 and from 0.025 to 0.25 with a 0.025 increment. Moreover, 𝛿𝛿3 indicates the magnitude of the 
increasing step change in error term variance, which varies from 0.4 to 2 with a 0.4 increment. In this case, it is 
assumed that only one parameter changes at a time. 

The proposed transformation removes autocorrelation between observations by estimating 𝑀𝑀 using a graphical 
method. Using simulation studies, the value of 10 is considered for 𝑀𝑀, which gives a proper transformation for all levels 
of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1, 1) coefficients. Then, the test statistic is computed for each profile, and the results are plotted on both the 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 and 𝑇𝑇2 control charts to compare their performance. The generation of profiles continues until the EWMA-
3 control chart indicates that the process is out of control. At this stage, the observation generation ceases, and the 
suggested change point estimator is computed. This procedure is repeated 10,000 times, and the average run length, 
mean, and mean squared errors of the change point estimations obtained from all iterations are calculated. 𝐴𝐴𝐴𝐴𝐴𝐴 is 
calculated using the following formula: 

𝐴𝐴𝐴𝐴𝐴𝐴 =  
∑ 𝑅𝑅𝑅𝑅𝑚𝑚
𝑖𝑖=1

𝑚𝑚
   ;    𝑚𝑚 = 10,000 (50) 

     
where 𝑅𝑅𝑅𝑅 = 𝑇𝑇 is the signal time. 

Table 1 and Table 2 contain 𝐴𝐴𝐴𝐴𝐴𝐴(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸), 𝐴𝐴𝐴𝐴𝐴𝐴(𝑇𝑇2), mean, and mean squared errors (MSE) of the change point 
estimates under a step change in the intercept from β00 to β0′ =  β00 + 𝛿𝛿1 for the proposed change point estimator (𝜏̂𝜏0) 
and the built-in change point estimator (𝜏̂𝜏1) under different 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1, 1) coefficients. Note that the same control charts 
are used for monitoring profiles with the proposed change point estimator and the built-in change point estimator. Since 
𝐴𝐴𝐴𝐴𝐴𝐴s are also the same, only one is given in the following tables. 
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Table 1. Mean and MSE of the two change point estimators for the increasing step shifts in the intercept based on different 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝟏𝟏,𝟏𝟏) coefficients 
 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 
𝜹𝜹𝟏𝟏 ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE (𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

0.2 23.902 59.673 11.403 26.537 10.158 34.456 14.613 44.304 10.589 6.78 8.676 19.904 13.141 49.175 10.988 1.521 8.293 20.517 

0.4 14.819 45.814 10.765 3.480 8.509 19.591 13.120 38.583 10.783 1.979 8.344 19.761 11.906 38.311 10.377 1.413 8.27 20.372 
0.6 13.249 36.243 10.759 1.515 8.404 19.483 12.325 32.147 10.614 1.762 8.302 19.663 11.510 32.156 9.968 1.380 8.266 20.287 

0.8 12.617 27.926 10.704 1.075 8.313 19.452 11.968 25.401 10.293 1.423 8.344 19.506 11.484 29.629 9.951 1.336 8.242 20.173 

1 12.271 21.554 10.568 0.965 8.333 19.329 11.711 20.972 10.150 1.414 8.316 19.438 11.423 28.231 9.958 1.284 8.276 20.122 

1.2 12.035 18.324 10.391 0.958 8.388 19.033 11.627 18.314 10.057 1.397 8.347 19.195 11.527 25.323 9.966 1.249 8.228 20.034 

1.4 11.680 17.977 10.191 0.883 8.411 18.995 11.612 16.829 10.018 1.289 8.320 19.072 11.495 23.134 9.955 1.217 8.258 20.012 

1.6 11.728 15.641 10.057 0.875 8.300 18.887 11.596 14.204 9.987 1.218 8.284 19.047 11.470 18.283 9.950 1.173 8.277 20.007 
1.8 11.621 15.256 10.002 0.831 8.351 18.568 11.617 13.716 9.934 1.197 8.333 19.032 11.512 14.347 9.931 1.118 8.304 19.962 

2 11.612 14.842 9.998 0.784 8.364 18.234 11.631 13.062 9.915 1.182 8.368 19.013 11.488 12.110 9.908 1.091 8.308 19.943 
 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 
𝜹𝜹𝟏𝟏 ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE (𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE (𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE (𝝉𝝉�𝟏𝟏) 

0.2 46.284 78.732 14.602 124.993 26.083 1048.281 23.934 57.393 11.291 26.037 10.122 34.464 14.862 42.894 10.860 2.196 8.416 20.109 

0.4 19.493 62.652 10.656 14.152 9.070 21.658 14.935 47.925 10.711 3.308 8.541 19.733 12.581 38.123 10.743 1.752 8.368 19.362 

0.6 15.261 48.397 10.757 4.494 8.583 19.756 13.252 45.860 10.816 1.657 8.374 19.712 11.969 33.879 10.342 1.524 8.355 19.397 

0.8 13.582 38.817 10.736 2.190 8.394 19.552 12.614 32.663 10.747 1.314 8.359 19.547 11.632 31.499 10.009 1.381 8.255 20.398 

1 13.163 28.601 10.740 1.071 8.440 19.487 12.292 26.569 10.538 1.271 8.324 19.464 11.580 26.960 9.958 1.342 8.304 19.996 
1.2 12.717 24.174 10.662 1.063 8.351 19.418 12.041 24.287 10.373 1.152 8.306 19.451 11.571 24.802 9.924 1.270 8.306 19.830 

1.4 12.445 22.914 10.679 0.926 8.307 19.354 11.832 23.946 10.191 1.079 8.304 19.390 11.569 23.065 9.960 1.223 8.268 20.146 

1.6 12.314 17.273 10.578 0.876 8.395 18.316 11.675 17.591 10.071 1.066 8.245 19.317 11.554 19.302 9.952 1.217 8.298 20.078 

1.8 12.135 15.138 10.438 0.834 8.347 18.289 11.653 16.963 9.961 1.028 8.371 19.248 11.532 15.407 9.962 1.203 8.298 19.850 

2 12.011 13.665 10.320 0.801 8.307 18.175 11.590 13.793 9.915 1.008 8.326 19.123 11.524 12.164 9.946 1.172 8.356 19.408 
 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 
𝜹𝜹𝟏𝟏 ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE (𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE (𝝉𝝉�𝟏𝟏) 

0.2 167.602 188.304 25.225 454.151 154.404 46056.651 82.079 107.245 20.031 258.944 65.475 7927.153 23.778 48.094 11.700 25.227 10.037 35.742 

0.4 66.019 168.985 16.792 190.370 47.093 3951.625 28.941 88.183 12.071 52.100 12.711 108.616 14.912 38.093 10.726 3.598 8.541 19.461 

0.6 34.545 107.084 12.520 94.490 16.039 271.849 19.337 63.859 10.414 16.202 9.100 21.302 13.250 32.958 10.763 1.398 8.339 20.219 
0.8 23.810 84.276 10.716 22.987 10.180 34.607 16.107 58.873 9.903 11.264 8.721 19.291 13.613 31.213 10.685 1.247 8.372 19.369 

1 19.323 67.888 10.754 12.783 9.069 21.415 14.717 47.877 9.854 10.832 8.539 19.345 12.261 27.315 10.572 1.159 8.317 19.723 

1.2 17.139 44.308 10.160 11.360 8.745 19.912 13.849 31.319 9.619 10.082 8.392 20.144 12.072 25.743 10.358 1.115 8.397 18.895 

1.4 15.754 22.509 10.052 9.945 8.606 19.553 13.341 20.617 9.738 8.780 8.414 19.504 11.820 22.537 10.139 1.037 8.324 19.687 

1.6 14.907 18.499 9.943 9.215 8.577 19.343 12.946 19.189 9.772 8.763 8.362 19.804 11.741 17.931 10.035 1.022 8.360 19.203 

1.8 14.281 14.468 9.788 9.093 8.419 20.203 12.734 15.828 9.736 8.736 8.348 19.603 11.709 16.796 9.991 0.991 8.411 18.801 
2 13.916 14.051 9.860 7.990 8.480 19.278 12.550 13.064 9.548 8.413 8.349 19.498 11.644 13.846 9.955 0.958 8.350 19.251 



Journal of Quality Engineering and Production Optimization  / Vol. 8, No. 1, Winter & Spring 2023, PP. 87- 101 
 

 

Table 2. Mean and MSE of the two change point estimators for the decreasing step shifts in the intercept based on different 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝟏𝟏,𝟏𝟏) coefficients 
 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 

𝜹𝜹𝟏𝟏 ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE (𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

-2 11.536 14.840 9.943 0.793 8.357 19.130 11.564 13.065 9.965 1.179 8.361 19.198 11.481 12.118 9.976 1.092 8.318 19.957 

-1.8 11.587 15.257 10.010 0.827 8.369 19.496 11.575 13.719 9.928 1.192 8.337 19.445 11.526 14.336 9.957 1.116 8.331 19.949 

-1.6 11.609 15.643 10.047 0.872 8.317 19.865 11.580 14.196 9.913 1.216 8.289 20.162 11.472 18.278 9.946 1.177 8.272 20.735 

-1.4 11.712 17.981 10.182 0.880 8.398 18.963 11.628 16.821 9.937 1.291 8.316 19.710 11.533 23.139 9.959 1.215 8.257 20.469 
-1.2 12.137 18.327 10.375 0.962 8.403 19.105 11.624 18.318 9.951 1.392 8.351 19.197 11.520 25.331 9.957 1.242 8.239 20.758 

-1 12.478 21.555 10.570 0.961 8.348 19.524 11.711 20.970 10.067 1.411 8.319 19.627 11.487 28.231 9.951 1.280 8.258 20.118 

-0.8 12.548 27.930 10.721 1.072 8.316 19.869 11.967 25.406 10.285 1.425 8.348 19.513 11.494 29.637 9.949 1.339 8.234 20.679 

-0.6 13.343 36.254 10.759 1.517 8.414 19.487 12.338 32.144 10.610 1.765 8.296 19.659 11.522 32.170 9.964 1.374 8.260 20.281 

-0.4 14.685 45.799 10.768 3.474 8.509 19.593 13.121 38.576 10.779 1.982 8.342 19.767 11.893 38.304 10.397 1.415 8.293 20.361 

-0.2 23.745 59.687 11.399 26.524 10.218 34.451 14.609 44.314 10.581 6.765 8.671 19.909 13.121 49.184 10.997 1.526 8.217 20.520 
 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 

𝜹𝜹𝟏𝟏 ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE (𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE (𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

-2 12.019 13.619 10.328 0.811 8.314 19.914 11.582 13.736 9.927 1.012 8.376 19.714 11.537 12.156 9.940 1.171 8.347 19.428 

-1.8 12.145 15.156 10.419 0.832 8.350 19.274 11.654 16.917 9.953 1.023 8.363 19.237 11.558 15.430 9.967 1.206 8.263 19.851 

-1.6 12.318 17.289 10.563 0.879 8.336 18.939 11.672 17.527 10.119 1.068 8.249 20.459 11.562 19.363 9.950 1.219 8.291 20.067 

-1.4 12.441 22.932 10.671 0.924 8.317 19.829 11.861 23.946 10.187 1.074 8.304 19.834 11.567 23.052 9.961 1.221 8.279 20.149 
-1.2 12.725 24.178 10.654 1.065 8.351 19.621 12.047 24.280 10.369 1.150 8.301 19.871 11.557 24.836 9.929 1.263 8.300 19.871 

-1 13.169 28.619 10.749 1.076 8.439 19.087 12.261 26.552 10.547 1.272 8.327 19.632 11.582 26.969 9.951 1.304 8.317 19.928 

-0.8 13.579 38.862 10.763 2.187 8.397 19.993 12.619 32.641 10.739 1.316 8.355 19.574 11.630 31.491 10.090 1.389 8.257 20.392 

-0.6 15.263 48.337 10.747 4.493 8.576 19.662 13.250 45.893 10.811 1.658 8.317 19.737 11.961 33.886 10.343 1.526 8.347 19.397 

-0.4 19.419 62.662 10.663 14.129 9.081 21.650 14.937 47.971 10.719 3.307 8.537 19.561 12.571 38.137 10.744 1.750 8.369 19.323 

-0.2 46.223 78.740 14.619 124.983 26.053 1048.271 23.925 57.399 11.281 26.029 10.302 34.448 14.855 42.863 10.861 2.204 8.413 20.111 
 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 

𝜹𝜹𝟏𝟏 ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE (𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

-2 13.935 14.043 9.872 7.986 8.468 19.265 12.536 13.061 9.587 8.416 8.364 19.490 11.654 13.839 9.934 0.955 8.374 19.239 

-1.8 14.287 14.451 9.737 9.095 8.412 20.214 12.719 15.837 9.729 8.737 8.334 19.623 11.732 16.784 9.984 0.997 8.402 18.824 

-1.6 14.917 18.502 9.990 9.211 8.585 19.375 12.957 19.197 9.763 8.764 8.369 19.896 11.745 17.930 10.052 1.019 8.376 19.215 
-1.4 15.769 22.513 10.053 9.947 8.619 19.547 13.340 20.623 9.751 8.789 8.413 19.547 11.831 22.535 10.130 1.038 8.362 19.674 

-1.2 17.124 44.318 10.119 11.358 8.752 19.918 13.834 31.336 9.682 10.083 8.384 20.140 12.069 25.749 10.351 1.114 8.371 18.884 

-1 19.312 67.857 10.731 12.789 9.079 21.475 14.721 47.870 9.837 10.831 8.567 19.336 12.260 27.327 10.594 1.152 8.319 19.737 

-0.8 23.729 84.262 10.709 22.987 10.103 34.639 16.098 58.842 9.905 11.268 8.720 19.275 13.672 31.238 10.636 1.249 8.364 19.360 

-0.6 34.594 107.041 12.534 94.490 16.041 271.832 19.341 63.841 10.497 16.218 9.109 21.328 13.743 32.942 10.749 1.397 8.347 20.227 

-0.4 66.036 168.994 16.784 190.312 47.090 3951.619 28.930 88.174 12.064 52.163 12.717 108.660 14.911 38.086 10.719 3.592 8.540 19.458 
-0.2 167.671 188.317 25.231 454.152 154.414 46056.612 82.062 107.250 20.027 258.947 65.439 7927.137 23.767 48.067 11.708 25.231 10.025 35.732 
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Tables 1 and 2 demonstrate that the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 control chart performs better than the 𝑇𝑇2 control chart when considering the 𝐴𝐴𝐴𝐴𝐴𝐴 criterion. The results reveal that both 
estimators produce satisfactory mean values for both increasing and decreasing shifts. However, the proposed change point estimator delivers more precise estimates than the 
built-in estimator of the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 control chart for nearly all shift magnitudes and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1) coefficients. Furthermore, the estimated change points for small shifts are closer 
to the actual change point. Figure 3 showcases the results presented in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. MSE of two estimators for different change magnitudes in the intercept parameter. 

Based on Figure 3, for all shift magnitudes and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1, 1) coefficients, the proposed estimator of the change point has lower 𝑀𝑀𝑀𝑀𝑀𝑀 or, in other words, it is less scattered 
than the built-in estimator of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 control chart. 
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Table 3. Mean and MSE of the two change point estimators for the increasing step shifts in the slope based on different autocorrelation coefficients. 
 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 

𝜹𝜹𝟐𝟐 ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

0.025 12.615 27.149 10.731 1.683 8.554 20.06 12.053 28.752 10.368 1.763 8.361 19.819 11.531 27.111 9.936 1.449 8.265 20.169 

0.050 11.779 23.108 10.042 1.656 8.361 19.257 11.611 23.524 9.949 1.527 8.331 19.36 11.516 20.543 9.960 1.396 8.355 19.487 
0.075 11.613 18.619 9.924 1.642 8.290 19.707 11.625 19.642 9.939 1.481 8.347 19.32 11.519 18.405 9.949 1.332 8.276 20.147 

0.100 11.611 16.737 9.929 1.632 8.347 19.374 11.612 16.659 9.909 1.472 8.322 19.583 11.494 17.453 9.973 1.337 8.210 20.882 

0.125 11.603 15.632 9.907 1.591 8.329 19.531 11.584 15.704 9.934 1.469 8.338 19.501 11.481 15.938 9.960 1.278 8.263 20.434 

0.150 11.609 15.034 9.925 1.558 8.235 20.504 11.625 15.299 9.935 1.454 8.334 19.603 11.535 14.821 9.974 1.272 8.338 19.567 

0.175 11.623 14.234 9.917 1.482 8.317 19.64 11.636 14.356 9.93 1.446 8.391 18.935 11.484 14.168 9.954 1.257 8.209 20.853 

0.200 11.631 13.607 9.914 1.337 8.339 19.453 11.619 13.665 9.936 1.411 8.28 20.018 11.489 13.968 9.989 1.161 8.181 21.026 
0.225 11.595 13.187 9.954 1.229 8.254 20.241 11.637 13.597 9.932 1.364 8.342 19.485 11.450 13.344 9.945 1.136 8.182 21.153 

0.250 11.634 12.243 9.923 0.744 8.371 19.287 11.611 12.634 9.926 1.158 8.349 19.474 11.513 12.116 9.947 1.048 8.233 20.575 
 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 

𝜹𝜹𝟐𝟐 ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

0.025 13.776 29.383 10.778 1.791 8.995 20.132 12.635 28.008 10.716 1.742 8.586 19.335 11.773 29.475 10.148 1.639 8.324 19.989 
0.050 12.234 21.758 10.543 1.739 8.431 19.835 11.726 21.709 10.036 1.635 8.328 19.823 11.562 22.254 9.940 1.492 8.235 20.614 

0.075 11.748 19.515 10.035 1.535 8.301 19.905 11.621 18.963 9.933 1.529 8.301 19.933 11.571 19.056 9.919 1.471 8.356 19.331 

0.100 11.614 16.816 9.960 1.513 8.231 20.513 11.593 16.350 9.939 1.447 8.275 19.897 11.619 16.013 9.963 1.470 8.335 19.642 

0.125 11.603 15.908 9.922 1.498 8.302 19.828 11.594 15.933 9.943 1.439 8.346 19.577 11.565 15.861 9.960 1.387 8.280 19.992 

0.150 11.642 15.076 9.932 1.382 8.341 19.436 11.612 14.523 9.921 1.412 8.281 19.901 11.536 15.293 9.948 1.353 8.249 20.493 

0.175 11.581 14.340 9.941 1.314 8.318 19.784 11.629 14.476 9.940 1.353 8.326 19.626 11.594 14.407 9.928 1.276 8.282 20.046 
0.200 11.627 13.878 9.929 1.281 8.370 19.066 11.594 13.197 9.896 1.341 8.372 19.170 11.597 13.637 9.964 1.237 8.296 19.899 

0.225 11.595 13.702 9.952 1.279 8.356 19.348 11.617 13.215 9.963 1.231 8.288 19.926 11.582 13.192 9.937 1.184 8.333 19.544 

0.250 11.614 12.652 9.954 0.941 8.370 19.092 11.581 12.607 9.937 0.811 8.299 19.887 11.561 12.740 9.927 1.091 8.228 20.579 
 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 

𝜹𝜹𝟐𝟐 ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

0.025 19.823 34.151 10.450 12.612 13.392 57.795 15.225 33.761 10.621 3.976 9.861 21.353 12.654 29.828 10.686 1.755 8.558 19.574 
0.050 13.992 29.404 10.690 1.884 9.309 19.443 12.683 26.189 10.781 1.681 8.631 19.558 11.754 20.318 10.061 1.581 8.314 19.840 

0.075 12.824 23.690 10.730 1.541 8.736 19.146 12.092 20.101 10.355 1.679 8.456 19.287 11.596 19.467 9.935 1.536 8.312 19.680 

0.100 12.365 19.524 10.577 1.533 8.498 19.775 11.761 19.594 10.082 1.633 8.325 19.825 11.597 17.240 9.905 1.511 8.314 19.694 

0.125 12.049 15.652 10.349 1.435 8.356 20.085 11.635 16.349 9.970 1.514 8.331 19.631 11.601 15.774 9.925 1.482 8.283 20.107 

0.150 11.814 15.335 10.119 1.361 8.345 19.707 11.627 15.011 9.908 1.459 8.286 19.982 11.576 15.372 9.956 1.437 8.214 20.728 

0.175 11.681 14.379 9.969 1.342 8.320 19.807 11.612 14.081 9.943 1.382 8.334 19.468 11.603 14.071 9.930 1.426 8.301 19.750 
0.200 11.602 13.204 9.960 0.981 8.300 19.929 11.621 13.203 9.911 1.357 8.328 19.451 11.631 13.708 9.928 1.379 8.371 19.142 

0.225 11.643 13.328 9.919 0.979 8.428 18.676 11.639 13.853 9.903 1.313 8.323 19.667 11.614 13.102 9.922 1.287 8.298 19.897 

0.250 11.605 12.797 9.936 0.883 8.314 19.524 11.573 12.101 9.936 0.994 8.314 19.611 11.609 12.926 9.937 1.114 8.379 19.032 
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Table 4. Mean and MSE of the two change point estimators for the decreasing step shifts in the slope based on different autocorrelation coefficients. 
 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 

𝜹𝜹𝟐𝟐 ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

-0.250 11.601 15.049 9.913 1.661 8.228 20.491 11.614 12.647 9.935 1.157 8.351 19.469 11.509 12.114 9.952 1.054 8.234 20.569 
-0.225 11.605 13.197 9.967 1.21 8.26 20.236 11.623 13.573 9.931 1.364 8.339 19.491 11.458 13.340 9.946 1.137 8.180 21.152 

-0.200 11.609 18.611 9.937 1.482 8.298 19.717 11.619 13.651 9.935 1.409 8.279 20.021 11.483 13.972 9.993 1.146 8.179 21.031 

-0.175 11.613 15.626 9.916 1.65 8.322 19.526 11.627 14.363 9.937 1.446 8.382 18.943 11.474 14.161 9.947 1.259 8.212 20.850 

-0.150 11.621 16.741 9.915 1.589 8.362 19.388 11.630 15.279 9.930 1.459 8.347 19.598 11.537 14.827 9.975 1.271 8.335 19.572 

-0.125 11.621 13.613 9.908 1.618 8.353 19.443 11.588 15.720 9.940 1.465 8.327 19.507 11.491 15.934 9.963 1.281 8.267 20.431 

-0.100 11.623 12.261 9.916 1.586 8.357 19.296 11.623 16.664 9.939 1.475 8.329 19.571 11.488 17.945 9.978 1.337 8.214 20.886 
-0.075 11.627 14.22 9.91 1.674 8.328 19.63 11.620 19.643 9.939 1.482 8.340 19.319 11.522 18.405 9.941 1.359 8.272 20.145 

-0.050 11.762 23.117 10.057 1.332 8.358 19.261 11.619 23.524 9.947 1.524 8.327 19.360 11.515 20.547 9.965 1.391 8.351 19.489 

-0.025 12.620 27.134 10.733 0.734 8.54 20.077 12.061 28.750 10.368 1.701 8.370 19.815 11.538 27.106 9.930 1.451 8.268 20.171 
 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 

𝜹𝜹𝟐𝟐 ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

-0.250 11.618 12.655 9.956 0.944 8.372 19.095 11.584 12.601 9.941 0.805 8.301 19.888 11.557 12.734 9.925 1.093 8.231 20.582 
-0.225 11.588 13.707 9.953 1.279 8.350 19.352 11.595 13.190 9.892 1.228 8.370 19.170 11.588 13.187 9.931 1.187 8.330 19.540 

-0.200 11.627 13.876 9.930 1.283 8.374 19.061 11.622 13.213 9.958 1.342 8.289 19.923 11.593 13.633 9.964 1.234 8.287 19.902 

-0.175 11.579 14.341 9.945 1.311 8.319 19.787 11.621 14.479 9.941 1.358 8.321 19.627 11.589 14.415 9.923 1.281 8.285 20.054 

-0.150 11.637 15.079 9.937 1.388 8.344 19.433 11.619 14.519 9.920 1.403 8.283 19.918 11.537 15.290 9.947 1.357 8.250 20.487 

-0.125 11.601 15.911 9.925 1.495 8.303 19.831 11.597 15.931 9.942 1.444 8.349 19.579 11.556 15.869 9.962 1.399 8.287 19.994 

-0.100 11.608 16.818 9.962 1.515 8.230 20.515 11.604 16.350 9.943 1.444 8.277 19.891 11.610 16.013 9.959 1.469 8.334 19.641 
-0.075 11.744 19.513 10.034 1.534 8.301 19.896 11.629 18.959 9.932 1.525 8.297 19.930 11.571 19.051 9.920 1.473 8.361 19.327 

-0.050 12.232 21.761 10.548 1.737 8.439 19.837 11.727 21.711 10.035 1.628 8.320 19.823 11.569 22.257 9.937 1.498 8.243 20.619 

-0.025 13.770 29.381 10.772 1.788 8.994 20.136 12.631 28.018 10.719 1.744 8.581 19.341 11.773 29.472 10.145 1.645 8.320 19.993 
 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 

𝜹𝜹𝟐𝟐 ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

-0.250 11.611 12.778 9.934 0.879 8.317 19.526 11.572 12.096 9.941 0.989 8.308 19.609 11.612 12.929 9.942 1.103 8.382 19.037 
-0.225 11.608 13.203 9.962 0.972 8.321 19.927 11.628 13.210 9.917 1.31 8.332 19.450 11.609 13.107 9.918 1.281 8.289 19.891 
-0.200 11.652 13.325 9.922 0.98 8.432 18.679 11.641 13.858 9.914 1.359 8.325 19.661 11.637 13.715 9.931 1.37 8.373 19.137 
-0.175 11.676 14.382 9.971 1.346 8.320 19.812 11.616 14.083 9.948 1.388 8.334 19.467 11.598 14.067 9.930 1.426 8.307 19.790 
-0.150 11.819 15.339 10.120 1.365 8.347 19.703 11.620 15.018 9.914 1.463 8.275 19.983 11.571 15.371 9.952 1.438 8.217 20.723 
-0.125 12.047 15.650 10.349 1.427 8.349 20.089 11.631 16.357 9.963 1.502 8.333 19.630 11.607 15.779 9.979 1.484 8.291 20.116 
-0.100 12.371 19.527 10.574 1.535 8.492 19.782 11.769 19.593 10.091 1.632 8.331 19.835 11.587 17.243 9.911 1.508 8.310 19.699 
-0.075 12.823 23.691 10.734 1.539 8.733 19.152 12.083 20.112 10.365 1.683 8.451 19.281 11.607 19.465 9.936 1.53 8.307 19.672 
-0.050 13.995 29.415 10.610 1.88 9.311 19.440 12.695 26.192 10.775 1.685 8.628 19.559 11.790 20.319 10.057 1.58 8.313 19.840 
-0.025 19.821 34.146 10.451 12.615 13.379 57.799 15.231 33.768 10.619 3.981 9.858 21.347 12.653 29.833 10.676 1.749 8.561 19.571 
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Tables 3 and 4 present the mean and mean squared errors of the estimated change points when encountering a step change in the slope parameter from β10 to β1′ =  β10 +
 𝛿𝛿2. Based on these findings, the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 control chart performs better than the  𝑇𝑇2 control chart concerning the 𝐴𝐴𝐴𝐴𝐴𝐴 criterion, and the proposed change point estimator 
delivers precise estimates for almost all shift values and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1) coefficients. Notably, the proposed estimator offers more accurate results than both 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝜏̂𝜏1. Figure 4 
illustrates the results presented in Table 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                

 
             

Figure 4. MSE of two estimators for different change magnitudes in slope parameter. 
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According to Figure 4, again, for all shift magnitudes and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (1, 1) coefficients, the proposed change point estimates have lower 𝑀𝑀𝑀𝑀𝑀𝑀 than the built-in estimator of 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 control chart. 

Table 5. Mean and MSE of the two change point estimators for the increasing step shifts in the error term variance based on different autocorrelation coefficients 
 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 

𝜹𝜹𝟑𝟑 ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

0.4 20.082 30.292 18.353 88.379 16.552 84.544 20.060 32.226 18.886 93.666 16.568 88.865 19.024 32.489 18.169 76.790 15.586 73.058 

0.8 15.617 26.628 12.062 6.102 12.373 23.964 15.680 27.152 12.066 6.190 12.530 24.187 15.467 23.982 11.886 4.448 12.281 24.519 

1.2 14.539 18.725 10.874 0.805 11.521 18.403 14.585 18.507 10.875 0.788 11.517 18.735 14.574 17.310 10.949 0.844 11.530 19.887 

1.6 13.896 14.771 10.781 0.676 10.936 16.975 13.937 15.128 10.810 0.476 11.005 16.780 13.955 16.391 10.810 0.723 11.077 17.929 

2 13.380 14.598 10.669 0.589 10.460 16.540 13.474 14.256 10.690 0.358 10.627 15.560 13.522 14.412 10.763 0.540 10.646 17.733 
 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟓𝟓 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 

𝜹𝜹𝟑𝟑 ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

0.4 20.135 32.469 18.783 93.422 16.695 89.719 20.147 30.037 18.710 91.343 16.585 89.989 19.906 33.998 18.617 88.868 16.464 87.047 

0.8 15.610 24.602 12.038 5.604 12.417 24.462 15.652 21.205 11.926 5.169 12.535 24.387 15.675 28.627 12.008 5.035 12.539 25.083 

1.2 14.597 18.083 10.900 0.758 11.534 18.587 14.542 19.034 10.931 0.935 11.501 18.814 14.613 19.785 10.944 0.685 11.652 19.415 

1.6 13.949 15.160 10.752 0.712 11.013 16.569 13.876 15.852 10.749 0.814 10.908 17.435 14.068 16.772 10.827 0.496 11.149 17.099 

2 13.412 14.913 10.717 0.532 10.539 15.857 13.454 14.87 10.687 0.789 10.581 15.559 13.608 14.006 10.747 0.413 10.728 16.518 
 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟐𝟐 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟓𝟓 𝝓𝝓 = 𝟎𝟎.𝟖𝟖 ,𝜽𝜽 = 𝟎𝟎.𝟖𝟖 

𝜹𝜹𝟑𝟑 ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 

(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) ARL 
(EWMA) ARL(𝑻𝑻𝟐𝟐) E(𝝉𝝉�𝟎𝟎) MSE(𝝉𝝉�𝟎𝟎) E(𝝉𝝉�𝟏𝟏) MSE(𝝉𝝉�𝟏𝟏) 

0.4 20.007 33.804 18.716 95.509 16.494 88.935 19.922 33.464 18.591 94.351 16.378 87.943 20.127 32.087 18.513 90.840 16.597 89.282 

0.8 15.646 27.335 12.061 5.927 12.485 24.452 15.564 24.997 11.991 5.448 12.445 24.121 15.463 24.095 12.075 6.033 12.507 23.921 

1.2 14.568 17.646 10.864 0.837 11.566 18.360 14.543 18.492 10.889 0.594 11.529 18.096 14.510 18.478 10.861 0.842 11.464 19.069 

1.6 13.927 16.413 10.740 0.693 10.943 17.707 13.868 16.704 10.781 0.572 10.925 16.782 13.890 15.587 10.752 0.701 10.978 16.810 

2 13.426 14.552 10.701 0.666 10.542 15.998 13.356 14.723 10.659 0.476 10.511 15.883 13.446 14.298 10.701 0.558 10.507 16.111 

 

Table 5 displays the means and mean squared errors of the change point estimations when encountering a step change in the error term variance from 𝜎𝜎𝑎𝑎02  to 𝜎𝜎′𝑎𝑎2 =  𝜎𝜎𝑎𝑎02 +
 𝛿𝛿3. Once again, the results indicate that the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 control chart outperforms the 𝑇𝑇2 control chart in terms of the 𝐴𝐴𝐴𝐴𝐴𝐴 criterion, and the proposed change point estimator 
𝜏̂𝜏0 delivers more accurate estimates than 𝜏̂𝜏1 for nearly all shift magnitudes and autocorrelation coefficients. Figure 5 presents the results provided in Table 5. 
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Figure 5. MSE of two estimators for different change magnitudes in error variance. 

Finally, Figure 5 demonstrates that for the majority of shift magnitudes and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1) coefficients, the proposed 
change point estimator yields lower mean squared errors compared to the built-in estimator of the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 control chart. 

To summarize, the proposed change point estimator for a step change in the parameters of a simple linear profile 
with 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1, 1) error terms deliver sufficiently precise estimates of the change point, irrespective of the shift 
magnitude and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1) coefficients. Furthermore, the simulation study results suggest that 𝜏̂𝜏0 performs better than 
𝜏̂𝜏1 for nearly all shift values, with 𝜏̂𝜏1 frequently underestimating the actual change point. 
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IV. CARDINALITY AND COVERAGE PERCENTAGE OF CONFIDENCE SET ESTIMATOR 
This section develops a confidence set for the change point in the process. This set offers process engineers a set of 

potential change points to start their investigation into a specific cause. With this set, they can identify a range of 
possible change points that encompass the actual process change point with a certain degree of confidence. Box and 
Cox (1964) suggest constructing a confidence set estimator of the parameter by utilizing the likelihood function. By 
employing this technique, a confidence set can be derived in the following format: 

𝐶𝐶𝐶𝐶 = {𝑡𝑡: ln 𝐿𝐿(𝑡𝑡) > ln 𝐿𝐿(𝜏̂𝜏) − 𝐷𝐷} (51) 

 
The confidence set is constructed based on the maximum of the log-likelihood function, ln 𝐿𝐿(𝜏̂𝜏), calculated across 

all feasible change points 𝑡𝑡. If the log-likelihood function value at 𝑡𝑡, ln 𝐿𝐿(𝑡𝑡), surpasses the maximum log-likelihood 
function minus a reference value 𝐷𝐷, then 𝑡𝑡 is considered as a part of the confidence set. The number of points included 
in the set is known as the cardinality. The coverage probability is estimated by dividing the cardinality of the confidence 
set by the number of samples taken until the control chart issues an alarm. 

This section uses different values for D, shift in intercept, and shift in slope to compute the cardinality and coverage 
probability of the confidence set estimator of the process change point. The value of 𝐷𝐷 varies between 1 and 5 with an 
increment of 1. 𝛿𝛿1 indicates the magnitude of a shift in intercept, ranging from 0.2 to 4 with an increment of 0.2. 𝛿𝛿2 
indicates the magnitude of a shift in slope, and it varies from 0.02 to 2 with an increment of 0.05. 

 

 

 

 

 

 

 

                
Figure 6. The coverage probability and average cardinality for the proposed confidence set estimator under increasing step 

shifts in the intercept parameter 

Simulation studies were conducted to compute the average cardinality and coverage probability of the confidence 
set estimator. In each simulation run, ten random samples were generated from the in-control process shown by 
equations (48) and (49) with 𝜙𝜙 = 0.8 and 𝜃𝜃 =  0.5. From sample 11 onwards, profiles were generated from the out-of-
control process with an intercept equal to (3 + 𝛿𝛿1)  or slope equal to (2 + 𝛿𝛿2). The EWMA-3 control charts were used 
to monitor this process. After any of these control charts signals that the process is out of control, the change point was 
estimated using the proposed change point estimator. Then, the confidence set estimator of the change point was 
computed using equation (51). For each value of D and 𝛿𝛿1 or 𝛿𝛿2 , the average cardinality and the coverage probability of 
the confidence set were computed over 10000 simulation runs.  
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Figure 7. The coverage probability and average cardinality for the proposed confidence set estimator under increasing step 
shifts in the slope parameter 

     
The average cardinality and coverage probability of the confidence set estimator for various values of 𝛿𝛿1 and 𝐷𝐷 are 

depicted in Figure 6, while Figure 7 shows the average cardinality and coverage probability for different values of 𝛿𝛿2 
and 𝐷𝐷. For instance, when 𝛿𝛿1 is set to 1 and 𝐷𝐷 to 4, the expected cardinality of the resulting confidence set estimator is 
approximately 10. Moreover, in 0.85 percent of cases, this confidence set includes the actual change point. 

V. CASE STUDY 
In this section, a case study is presented to demonstrate the practical performance of the proposed change point 

estimation technique. In this regard, a study has been conducted on the relationship between the weight of newborn 
babies, the response variable, and their age (months), the independent variable. This weight of newborn babies is an 
essential criterion for measuring their health, and it is also crucial for specialists. Hence, it is vital to monitor the weight 
profile of babies to understand their health status. The data set of a health center in one of the big cities (the name of the 
city and the health center are not mentioned to preserve the information) was used as a case study. 

In phase I of profile monitoring, the weight profiles of 50 newborn female babies were recorded. The profile 
parameters, including the intercept and slope, were estimated based on these data. Also, the residual analysis showed 
that an ARMA (1,1) model was appropriate to express the autocorrelation between error terms. 

To verify whether the proposed approach can detect changes in the weight profile of babies or not, the weight 
profiles of 19 newborn babies were used in phase II. The data were divided into two groups of male and female babies. 
The first seven profiles were for female babies, while the others were for male babies.  

The EWMA-3 test statistics corresponding to the 19 weight profiles were computed. The test statistics and the 
corresponding control limits are shown in Figure 8. 

 Figure 8 illustrates the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 control chart for the intercept signals at sample 15, with the estimated change 
point determined using the proposed change point estimation method. The estimated change point was 7. It is the point 
where the last weight profile of female babies was plotted on the control charts. 
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Figure 8. The EWMA-3 control charts for weight profiles of newborn babies in phase II  
     

As expected, the estimated change point computed by the proposed method indicates that a change has occurred in 
the intercept parameter at sample 7, from which the test statistics of the weight profile of male babies were plotted. 

According to the results, the intercept of the weight profile of male babies is different from the intercept of the 
weight profile of female babies. It means that at a certain age, the average weight of male babies is higher than that of 
female babies. 

VI. CONCLUSIONS AND FUTURE RESEARCH 
This paper aims to monitor simple linear profiles in the presence of within-profile autocorrelation while assuming no 

correlation between profiles. Instead of relying on commonly used 𝐴𝐴𝐴𝐴 models to model within-profile autocorrelation, 
this research employs an autoregressive moving average model, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞), to capture the autocorrelation structure 
between observations within each profile. This is why, in most instances, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 models are more versatile in 
representing autocorrelation structures than 𝐴𝐴𝐴𝐴 models. Assuming an autoregressive moving average model, 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞), for the autocorrelation structure between observations within each profile, the proposed transformation 
eliminates the autocorrelation effect and yields a simple linear profile model with uncorrelated error terms. The 
intercept, slope, and error term variance of the profile are monitored individually using an 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 control chart 
until a signal is detected. For evaluating its effectiveness, the performance of the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 control chart is compared 
to that of the 𝑇𝑇2 control chart based on the 𝐴𝐴𝐴𝐴𝐴𝐴 criterion. Additionally, a maximum likelihood estimator is proposed to 
estimate the change point. Simulation was conducted to assess the performance of the proposed estimator, and the 
results were compared to those of the built-in change point estimator of the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 chart. The findings indicate that, in 
terms of the 𝐴𝐴𝐴𝐴𝐴𝐴 criterion, the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 3 control chart outperforms the 𝑇𝑇2 control chart for both increasing and 
decreasing shifts. Additionally, the results showed that the proposed estimator performs better than the built-in change 
point estimator of the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 chart in accurately estimating the change point, regardless of the magnitude of the shift 
and the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1) coefficients. The study also analyzed the cardinality and coverage percentage of a confidence set 
estimator under step shifts. Finally, a real case was presented to demonstrate the application of the proposed estimator. 

The proposed method can be extended by considering a change in autocorrelation coefficients and evaluating its 
effect on the change point estimator performance. In addition, the impact of the smoothing parameter can be 
investigated in further studies. 
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