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Abstract— Flexible job-shop scheduling problem (FJSP) is an extension 

of job shop scheduling problem which allows an operation to be 

performed by any machine amongst a set of available machines in each 

stage. This paper addresses a no-wait flexible job shop scheduling 

problem with machines availability constraints for maintenance activities 

and machines processing capability to minimize total weighted tardiness. 

The study is organized in two steps. In the first step, a new nonlinear 

mathematical model is developed for the considered problem, and then it 

is converted into a linear mathematical model using the techniques in the 

literature. Since the structure of the problem is NP-hard, thus in the 

second step, an Imperialist competitive algorithm is proposed to solve 

real-size instances of the problem. In the proposed algorithm, an effective 

solution representation with an efficient and greedy decoding 

methodology is adopted to reduce the search space. Numerical 

experiments are used to evaluate the performance of the developed 

algorithm. It is concluded that in small instances, solving the 

mathematical model by GAMS leads to the optimal solution, but with the 

increased size of instances, this method loses its efficiency and ICA 

performs better under these conditions.  
  

Keywords— flexible job shop, no-wait, maintenance activities, Imperialist 

competitive algorithm.  

I. INTRODUCTION 

Job shop scheduling is a type of scheduling problem that is used in various production environments. 

The job shop scheduling problem was first raised by Manne (1960). In this study, it is proved that job 

shop scheduling, known as the NP-hard optimization problem in production scheduling literature, is 

highly complex. To the best of our knowledge, no methodologies in the literature are reported to be able 

to solve large instances in real-time.  

 Due to the restrictions and special conditions in each production environment and their specific 

constraints, production scheduling requires consideration of these constraints, which complicates the 

scheduling problem. One of the manufacturing industries that has special conditions and restrictions is 
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the perishable products industry. Delay during the production of perishable products, can be very 

destructive. As a result, perishables are produced without delay, packaged and stored immediately. If 

the production system is in the form of a job shop, the scheduling problem will become a no-wait job 

shop scheduling problem. In addition, due to the possible machines malfunction, it is imperative to 

incorporate machines maintenance activities into the model. Therefore, it can be stated that in the 

production of perishable products, if the production system is in the form of a job shop, various 

restrictions must be considered. 

In this paper, a no-wait flexible job shop scheduling problem with processing constraints is 

investigated. This scheduling problem is of special importance both from a theoretical and practical 

point of view. From theoretical point, considering the machines capability and machines maintenance 

activities in no-wait FJSSP show, a number of feasible solutions, albeit limited, are available. And in 

situations where there are such constraints in a flexible job shop scheduling problem, such solutions can 

be applied. From practical perspective, one of the production environments, where conditions are very 

similar to the problem discussed in this study, is the perishable food manufacturing industry where the 

production process is predominately carried out in the form of job shop scheduling. In such industries, 

to prevent food spoilage, it is necessary to eliminate the waiting time during production. On the other 

hand, due to the probability of machine malfunction, consideration of machines maintenance activities 

and machines capabilities constraints in any production environment is inevitable. Therefore, the 

applicability of this problem with the considered constraints is clear in the perishable food 

manufacturing industry.  

As far as we are aware, this is the first study on the flexible job shop scheduling problem (FJSSP) 

where machines processing capability, machines periodic maintenance activities, and no-wait 

constraints are simultaneously considered. The contributions are described as follows: 

 Investigating an NP-hard scheduling problem that is widely used in the perishable food manufacturing 

industry. 

 A non-linear mathematical model based on precedence variable is established for the no-wait flexible 

job shop scheduling problem with processing constraints. 

 The proposed model is linearized by techniques in the literature to be solved by linear solvers. 

 An Imperialist competitive algorithm (ICA) is customized to solve the no-wait flexible job shop 

scheduling problem. 

The rest of the paper is organized as follows: In Section II, the latest and related works are presented. 

Section III describes the problem and presents the mathematical model and its linearization process. In 

Section IV, an Imperialist competitive algorithm is proposed to solve real-size instances of the problem. 

Computational results are discussed in Section V. Finally, conclusions and future research are presented 

in Section VI. 
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II. LITERATURE REVIEW 

In recent years, many researchers have studied job shop scheduling problem with various constraints. 

In this section, the newest related works are reviewed. El Khoukhi et al. (2017) investigated a flexible 

job shop scheduling problem with machines availability constraints to minimize the makespan. They 

proposed a mathematical model for this problem and due to its complexity, they developed a new 

optimization algorithm based on the ant nest algorithm. Zandieh et al. (2017) studied the flexible job 

shop scheduling problem with machines availability constraints to minimize makespan and proposed 

an improved Imperialist competitive algorithm for real-size instances. Yazdani et al. (2017) studied a 

job shop scheduling problem to minimize the sum of maximum tardiness and maximum earliness. They 

developed a mathematical model and a new optimization approach based on the Imperialist competitive 

algorithm. Lu et al. (2017) studied a multi objective flexible job shop scheduling problem with 

controllable processing times. In this study, makespan and minimizing the sum of consuming resources 

are considered to be objective functions. They developed a new multi-objective meta-heuristic 

algorithm called MODVOA. Benttaleb et al. (2018) studied job shop scheduling problem with two 

machines where one of the machines is out of reach in a certain period. In this study, the objective 

function is minimizing the longest completion time. They investigated the optimality of Jackson's 

algorithm and designed a heuristic algorithm using Jackson's law. Then, they proposed a branch and 

bound algorithm for the problem. Fattahi et al (2018) proposed a new cyclic algorithm based on Tabu 

search to improve the exploration and exploitation powers of some solution encoding that are suggested 

in the literature. In this research by solving several instances, the effectiveness of the proposed solution 

representation is shown. Bürgy and Bülbül (2018) studied a job shop scheduling problem with the 

irregular objective function of minimizing the sum of convex costs depending on the operations start 

time and proposed a Tabu search algorithm for it. Shen et al. (2018) proposed a mathematical model 

for a flexible job shop scheduling problem with sequence-dependent setup times to minimize the 

makespan. They also developed a Tabu search algorithm based on new neighborhood search functions 

and various structures. Tamssaouet et al. (2018) studied a job shop scheduling problem with the 

objective function of minimizing the makespan in which machines are not always available and become 

unavailable at intervals. They developed simulated annealing and Tabu search algorithms with 

neighborhood functions for real-size instances of the problem. García-León et al. (2019) proposed a 

local search approach for the multi-objective flexible job shop scheduling problem to obtain Pareto 

solutions for any combination of regular functions. Caldeira et al. (2019) developed an improved Jaya 

algorithm for a flexible job shop scheduling problem with the objective function of minimizing the 

makespan. In this problem, they considered machines' setup time and transfer time between machines. 

Dai et al. (2019) studied a multi-objective flexible job shop scheduling problem with energy 

consumption and transportation constraints. In this problem, the objective function is minimizing the 

makespan and energy consumption. They developed an improved multi-objective Genetic algorithm 
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for this problem. Shen et al. (2019) investigated a flexible job shop scheduling problem, in which the 

processing time of jobs are variable and depend on the start time of their processing. In this study, the 

objective function is minimizing the longest completion time and the amount of energy consumed by 

machines. For this problem, they presented a hybrid multi-objective algorithm called MOHPIOSA. 

Samarghandi (2019) studied a no-wait job shop scheduling problem with delivery deadline constraints 

and the objective function of minimizing the longest completion time. He turned the problem into 

another problem and presented a mathematical model for both of them. Then, he developed the genetic 

algorithm to solve large instances. Miyata et al. (2019) studied a no-wait flow shop scheduling problem 

with dependent sequenced setup times and machines preventive maintenance to minimize makespan. 

In this problem, they postulated new policy for preventive maintenance which its parameters are based 

on Weibull distribution. In this study, they developed constructive heuristics for proposed problem. 

Samarghandi and Jahantigh (2019) studied a no-wait flow shop scheduling problem with due dates 

constraints to minimize makespan. They proposed two mathematical models and applied a Constraint 

Programming Model.  

Zhang et al. (2020) investigated a no-wait flow shop scheduling problem with the objective function 

of minimizing the longest completion time. They developed the Discrete Migratory Bird Optimization 

(MBO) algorithm to achieve high quality solutions. Ahmadian et al. (2020) studied a job shop 

scheduling problem in which delivery date is considered for each job. In this problem, any difference 

between the completion time of a job and its delivery date is considered as a penalty, and the objective 

function is to minimize the sum of earliness and tardiness. They developed a Variable Neighborhood 

Search (VNS) algorithm for this problem. Zhang et al. (2020) developed an improved Genetic algorithm 

for a multi-objective flexible job shop scheduling problem. In this study, they considered machines 

setup time and jobs transfer time between machines. Li et al. (2020) developed an improved Jaya 

algorithm for a flexible job shop scheduling problem, in which machine setup times and jobs transfer 

time between machines are considered. Ying and Lin (2020) studied a no-wait job shop scheduling 

problem to minimize the makespan. They developed MSA-BST algorithm, which is based on the 

simulated annealing algorithm. Zhu et al. (2020b) studied a flexible job shop scheduling problem with 

job precedence constraints in which the processing time of jobs is expressed as an interval and the 

objective function is to minimize the interval length that is obtained for makespan. They developed a 

new optimization algorithm called SLHO for real-size instances of the problem. Zhu et al. (2020a) 

developed an efficient evolutionary grey wolf optimizer for multi-objective flexible job shop scheduling 

problem with job precedence constraints. In this problem, the objective function is to minimize the 

makespan and maximizing the workload of machines simultaneously. Zhang et al. (2020) proposed an 

improved memetic algorithm for the flexible job shop scheduling problem with transportation times to 

minimize the makespan. Li et al. (2020) studied a multi-objective job shop scheduling problem in a 

robotic cell. In this problem, each job has a specific due date as a time window and the objective function 
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is to minimize the makespan and the total earliness and tardiness simultaneously. They developed a 

TLBO algorithm for large instances of the problem. Defersha and Rooyani (2020) developed a two-

stage Genetic algorithm for a flexible job shop scheduling problem with sequence-dependent setup 

times. In this problem, the machines are available for processing operations at different times and each 

machine needs time to cool down after processing each operation. Ozolins (2020) studied a no-wait job 

shop scheduling problem to minimize makespan. In this study, a new exact algorithm is developed to 

solve benchmark instances within a reasonable time limit. GAO et al. (2021) studied a no-wait job shop 

scheduling problem with due date and subcontracting cost constraints. They proposed two mathematical 

models. Then, they developed an artificial bee colony algorithm based on a rolling timeline. Boyer et 

al. (2021) studied a flexible job shop scheduling problem with machine capacity, time lags, holding 

times, and sequence-dependent setup times. They proposed a mixed integer linear programming and a 

constraint programming (CP) models to represent the problem and developed a metaheuristic based on 

a Greedy Randomized Adaptive Search Procedure to solve real size instances of the problem. 

Valenzuela et al. (2022) studied a no-wait job shop scheduling problem to minimize makespan and 

proposed a cooperative coevolutionary algorithm to solve large instances. Weng et al. (2022) studied a 

flexible job shop scheduling requiring operations to be performed by either a worker or a machine and 

to perform a machine operation, two workers are needed. They modeled the scheduling problem and 

propose four methods that form a realtime scheduling and control system for JIT production. Fan and 

Su (2022) investigated a job shop scheduling problem with conveyor-based Continuous Flow 

Transporters to minimize makespan. In this study, the jobs are processed on the machines which are 

connected in series via the conveyor. They presented mathematical programming model of the problem 

to find exact solutions in small instances and developed simulated annealing algorithm with NGS  

scheme to solve larger instances. Zhu et al. (2022) studied a no-wait flow shop scheduling problem with 

due windows to minimize the total weighted earliness and tardiness. In this problem, a concept called 

factory has been proposed, which exists in a specific number and includes machines for processing 

operations of jobs. In this scheduling problem,  each job is assigned to a factory to process its operations. 

To solve large instances they proposed a new approach known as discrete knowledge-guided learning 

fruit fly optimization algorithm. Nohair et al. (2022) studied a non-delay job shop scheduling problem 

with the objective of minimizing makespan. They developed a new matrix heuristic to generate non-

delay schedules that is computationally fast, simple and easy to implement. Winklehner et al. (2022) 

investigated a flexible job shop scheduling problem with periodic machines maintenance activities and 

processing constraints as a real world problem. They developed  a constraint programming approach to 

minimize the total completion times. Valenzuela et al. (2022) proposed cooperative coevolutionary 

algorithm approach for no-wait job shop scheduling problem to minimize the makespan. In table 1, all 

of the studies that is reviewed above, are classified.  
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TABLE 1. SUMMARIZED LITERATURE REVIEW  

Solving 

approach 

Constraints 

Objective 

function 
Type Year Author No 

Other 

Type of 

parallel 

in each 

stage 

Setup 

times 

Job 

transportation 

time  

Machine 

capability 

Machine 

availability 

No-

wait 

Based on 

ACO 

Precedence 

constraints 
Pm    ×  Cmax 

Flexible 

job shop 
2017 

El 

Khoukhi 

et al. 

1 

ICA  Qm    ×  Cmax 
Flexible 

job shop 
2017 

Zandieh 

et al. 
2 

Based on 

ICA 
 -   × 

 

 

 

 Emax + Tmax Job shop 2017 
Yazdani 

et al. 
3 

MODVOA 

Control the 

processing 

time of jobs by 

allocating 

resources 

Pm      

Cmax 

+   

Minimizing  

consuming 

resources 

Flexible 

job shop 
2017 Lu et al. 4 

Algorithm 

based on 

Jackson's 

rule 

     ×  Cmax Job shop 2018 
Bentaleb 

et al. 
5 

Tabu search  Pm ×     Cmax 
Flexible 

job shop 
2018 Shen et al. 6 

SA - TS  -    ×  Cmax Job shop 2018 
Tamssaou

et et al. 
7 

Tabu search 

Considering 

the costs 

related to the 

start of 

operations 

-      
Minimizing 

convex costs 
Job shop 2018 

Burgy et 

al. 
8 

new cyclic 

algorithm 

based on TS 

 -      Cmax Job shop 2018 
Fattahi et 

al. 
9 

Constructive 

heuristics 

Flexible 

preventive 

maintenance 

- ×   × × Cmax 
Flow 

shop 
2019 

Miyata et 

al. 
10 

Local search 

approach to 

obtain Pareto 

solutions 

 Pm   ×   

A set of 

regular 

objective 

functions 

Flexible 

job shop 
2019 

Garcia 

Leon et 

al. 

11 

Jaya 

algorithm 
 Pm × ×    Cmax 

Flexible 

job shop 
2019 

Caldeira 

et al. 
12 

MOHPIOSA 

The  jobs 

processing 

times are 

variable 

Rm   ×   

Minimizing 

energy 

consumption 

+ 

Cmax 

Flexible 

job shop 
2019 Shen et al. 13 

NSGA II  Pm  × ×   

Minimizing 

energy 

consumption 

+ 

Cmax 

Flexible 

job shop 
2019 Dai et al. 14 
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Solving 

approach 

Constraints 

Objective 

function 
Type Year Author No 

Other 

Type of 

parallel 

in each 

stage 

Setup 

times 

Job 

transportation 

time  

Machine 

capability 

Machine 

availability 

No-

wait 

Problem is 

extremely 

NP-hard in 

the case of 

two machines 

Scheduling 

with two 

machines  

-    × × Cmax 
Flow 

shop 
2020 

Chen et 

al. 
15 

MBO  -     × Cmax 
Flow 

shop 
2020 

Zhang et 

al. 
16 

A heuristic 

algorithm 

called PBIG 

 -   
 

 

 

 

 

× 

Minimizing 

the sum of 

completion 

time 

Job shop 2020 
Deng et 

al. 
17 

GA  Pm × ×    Cmax 
Flexible 

job shop 
2020 

Zhang et 

al. 
18 

Jaya 

algorithm 
 Pm × ×    

Minimizing 

energy 

consumption 

+ 

Cmax 

Flexible 

job shop 
2020 Li et al. 19 

VNS 

Independent 

due date for 

each job 

-      JIT Job shop 2020 
Ahmadian 

et al. 
20 

Gray wolf 

algorithm 

Precedence 

constraints 
Pm      

Maximizing 

machines 

workload 

+ 

Cmax 

Flexible 

job shop 
2020 Zhu et al. 21 

GA 

machines are 

available at 

different times 

Pm ×  × ×  Cmax 
Flexible 

job shop 
2020 

Defersha 

et al. 
22 

Improved 

memetic 

algorithm 

 Qm  ×    Cmax 
Flexible 

job shop 
2020 

Zhang et 

al. 
23 

MSA-BST  -   
 

 
 × Cmax Job shop 2020 Ying et al. 24 

New 

optimization 

algorithm 

called SLHO 

Precedence 

constraints 
Pm      

Minimizing 

the length of 

Cmax interval 

Flexible 

job shop 
2020 Zhu et al. 25 

Improved 

GA 
 Qm  ×    Cmax 

Flexible 

job shop 
2020 

Zhang 

and Sun 
26 

New 

optimization 

algorithm 

called 

IMOTLBO 

Job due date as 

a time window 
-  Using robots    

Cmax 

+ 

JIT 

Job shop 2020 Li et al. 27 

New exact 

algorithm 

based on DP 

 -     × Cmax Job shop 2020 Ozolins 28 

ABC based 

on a rolling 

timeline 

Subcontracting 

strategy to 

satisfy the 

deadlines 

-     × 

Cmax and 

subcontracting 

cost 

Job shop 2021 Gao et al. 29 
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Solving 

approach 

Constraints 

Objective 

function 
Type Year Author No 

Other 

Type of 

parallel 

in each 

stage 

Setup 

times 

Job 

transportation 

time  

Machine 

capability 

Machine 

availability 

No-

wait 

Metaheuristic 

based on a 

Greedy 

Randomized 

Adaptive 

Search 

Procedure 

With machine 

capacity and 

time lags 

Qm ×     Cmax 
Flexible 

job shop 
2021 

Boyer et 

al. 
30 

Cooperative 

coevolutionar

y algorithm  

 -    

 

 

 

× Cmax Job shop 2022 
Valenzuel

a et al. 
31 

Proposed 

four method 

that form a 

realtime 

scheduling. 

Each operation 

needs worker 

and worker  

like machine 

has key role 

Rm ×     JIT 
Flexible 

job shop 
2022 

Weng et 

al. 
32 

Simulated 

Annealing 

algorithm 

with NGS  

scheme 

The jobs are 

processed on 

the machines 

which are 

connected in 

series via the 

conveyor 

-      Cmax Job shop 2022 
Fan and 

Su 
33 

A discrete 

algorithm 

Considering 

time window 

for jobs due 

dates 

-     × Weighted JIT 
Flow 

shop 
2022 Zhu et al. 34 

New matrix 

heuristic  

Machines are 

never kept idle 

while job is 

waiting 

- 

 

 

 

 

 

    Cmax Job shop 2022 
Nohair et 

al. 
35 

Constraint 

programming 

approach 

Deadline for 

each job 
 

Release date 

for each job 

Rm ×  × ×  

Minimizing 

the total 

completion 

times 

Flexible 

job shop 
2022 

Winklehn

er et al. 
36 

ICA based on 

greedy 

decoding 

methodology 

Independent 

periodic 

maintenance 

activities for 

each machine 

Rm 

 

 

 

 

 

 × × × 

Minimizing 

sum of 

weighted 

tardiness 

Flexible 

job shop 
Current study *** 

 

In summary, the reviewed scientific works show that no single paper exists, which covers flexible 

job shop scheduling problem with unrelated parallel machines in each stage, machines periodic 

maintenance activities, no-wait constraint and machines capability to minimize sum of weighted 

tardiness. 

III. PROBLEM DESCRIPTION AND FORMULATIONS 

A. Problem statement 

  In a flexible job shop scheduling, there are a set of machines and a set of jobs that have to be 

processed on the machines. In this problem, m machines and n jobs are considered. Each job consists 
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of a sequence of operations where they are allowed to be processed on any among a set of available 

machines. The other assumptions of the problem are as follows: 

 All jobs and machines are available at time 0, each machine can only execute one operation at a given 

time. 

 Each job has its operation sequence, which indicates its processing route. 

 To process each job it may not require machines during all stages. 

 No job can be processed on more than one machine simultaneously. 

 No operation can be interrupted once started (preemption is not allowed). 

 Waiting time between two consecutive operations of the same job is not allowed. 

 Each job has an independent due date so if it is processed later than the due date, a penalty will be 

imposed. 

 Machines can not necessarily process all operations. 

 The type of parallel machines in each stage is unrelated. 

 The setup time of machines is considered as a part of the processing time of the operations. 

 Machines are periodically unavailable for maintenance activities. 

 The length of each unavailability interval is specified. 

The objective is to identify a feasible schedule that minimizes the total weighted tardiness. 

B. Problem formulations 

The notation describing the indices, parameters, and decision variables used in the models are as 

follows: 

 Indices: 

i, h: index of jobs (1, …, n) 

j: index of operations (1, … ,Ji) 

k: index of machines (1, …, m) 

r: index of unavailability interval 

 Parameters: 

n: total number of jobs 

m: total number of machines 

Ji: total number of operations of job i 

prkij: processing time of oij if performed on machine k 

di : due date of job i 

wi : weight of job i 

SMkr : starting time of rth unavailability interval on machine k 

FMkr : finishing time of rth unavailability interval on machine k (FMkr − SMkr = T) 

M: a large number 
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 Decision variables: 

Ti: tardiness of job i 

Vijk: Vijk is 1 if oij performed on machine k; otherwise Vijk is 0. 

Zijhgk: Zijhgk is 1 if oij precedes operation ohg on machine k; otherwise Zijhgk is 0. 

cmij: completion time of operation oij 

Bijkr: binary variable in unavailability constraints 

In this section, an approach called the precedence variable-based model is used to present a 

mathematical model for the problem. This approach relies on the precedence variable Zijhgk, introduced 

by Manne (Manne, 1960). It denotes the sequence of operations assigned to the same machine.  Zijhgk 

is equal to one if operation oij precedes operation ohg on machine k; otherwise  Zijhgk is equal to zero. 

Note that operation oij is not necessarily positioned immediately before operation ohg when Zijhgk is 

equal to one. For this type of variable, it has to be defined only i < h because Zijhgk = 1 −  Zhgijk. 

According to this approach, a precedence variable-based model for this problem is developed. 

This kind of model was proposed first by Gao et al. (Jie Gao, Gen, & Sun, 2006) to formulate FJSSP 

and we have adopted it for our FJSSP. The objective function is as minimizing total weighted tardiness: 

Min ∑ (wi ∗ Ti)i     (1) 

The following constraints enforce each job to follow a specified operation sequence and guarantee 

no-wait constraint: 

cmij − cmij−1 ≥ prkij. Vijk ,  ∀ i , k , ∀j = 2 , … , Ji (2) 

cmij − cmij−1 ≤ prkij. Vijk ,  ∀ i , k , ∀j = 2 , … , Ji (3) 

Constraint 4 ensures the completion time of the first operation of job i equal to be at least the 

processing time of oij: 

cmij ≥ prkij. Vijk ,  ∀ i , j = 1   ∀k ∈ Mij (4) 

The following constraints are disjunctive constraints: 

(cmhg − cmij − prkhg). Vhgk. Vijk.  Zijhgk ≥ 0 ,  ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (5) 

(cmij − cmhg − prkij). Vijk. Vhgk.  Zhgijk ≥ 0 ,  ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg  (6) 

These constraints represent that the operation ohg should not be started before the completion of the 

operation oij or that the operation ohg must be completed before the start of the operation oij if they are 

assigned to the same machine k. Constraints 5 and 6 are nonlinear and should be linearized. For this 

purpose, the nonlinear expression Vhgk. Vijk.  Zijhgk is first linearized by variable Oijhgk: 

 Oijhgk ≤ Vhgk                                     

 Oijhgk ≤ Vijk                                       

 Oijhgk ≤  Zijhgk                                  

 Oijhgk ≥ Vhgk + Vijk +  Zijhgk − 2

 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (7) 
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  Therefore, constraints 5 and 6 become as follows: 

cmhg. Oijhgk − cmij. Oijhgk − prkhg. Oijhgk ≥ 0 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (8) 

cmij. Oijhgk − cmhg. Oijhgk − prkhg. Oijhgk ≥ 0 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (9) 

Then the nonlinear expressions cmij. Oijhgk and cmhg. Oijhgk should be linearized .Expression 

cmij. Oijhgk is linearized as follows: 

 Dijhgk ≤ cmij                                 

Dijhgk ≤ M. Oijhgk                        

 Dijhgk ≥ cmij − M(1 −  Oijhgk)
 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (10) 

And expression cmhg. Oijhgk is linearized as follows: 

 BSijhgk ≤ cmhg                                     

 BSijhgk ≤ M. Oijhgk                              

 BSijhgk ≥ cmhg − M(1 −  Oijhgk)    
 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (11) 

Finally, the linear equivalent of constraints 5 and 6 are as follows: 

 BSijhgk −  Dijhgk − prkhg. Oijhgk ≥ 0          

 Dijhgk −  BSijhgk − prkhg. Oijhgk ≥ 0          

And constraints 7, 10 and 11                    

 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (12) 

The following constraint states that one machine must be selected from a set of available machines 

for each operation: 

∑ Vijk = 1k∈Mij
   , ∀ i, j  (13) 

Constraint 14 enforces to be chosen one of two precedence relationships. 

 Zijhgk +  Zhgijk = Vijk. Vhgk   , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg  (14) 

 Constraints 14 is nonlinear and should be linearized. For this purpose, the nonlinear expression 

Vijk. Vhgk is linearized by variable Fijhgk: 

 Fijhgk ≤ Vhgk                               

 Fijhgk ≤ Vijk                                 

 Fijhgk ≥ Vhgk + Vijk − 1            
 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (15) 

Finally, the linear equivalent of constraint 14 are as follows: 

Zijhgk +  Zhgijk =  Fijhgk    

And constraints 15          
 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (16) 

Constraints 17 to 22 describe unavailability intervals for machines and force each operation 𝑜𝑖𝑗 can 

be processed between intervals when the machine is active. 

(cmij − prkij). Vijk < (SMk,r ∗ Vijk) + M ∗ Bijkr   , ∀ i , j, k, r  (17) 

cmij. Vijk < (SMk,r ∗ Vijk) + M ∗ Bijkr , ∀ i , j, k, r  (18) 

(cmij − prkij). Vijk < (SMk,r+1 ∗ Vijk) + M(1 − Bijkr) , ∀ i , j, k, r  (19) 

cmij. Vijk < (SMk,r+1 ∗ Vijk) + M(1 − Bijkr) , ∀ i , j, k, r  (20) 

(cmij − prkij). Vijk > (FMk,r ∗ Vijk) − M(1 − Bijkr) , ∀ i , j, k, r  (21) 
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cmij. Vijk > (FMk,r ∗ Vijk) − M(1 − Bijkr) , ∀ i , j, k, r  (22) 

In these constraints, the expression cmij. Vijk is nonlinear, which becomes linear as follows: 

 VCijk ≤ cmij                                

 VCijk ≤ M. Vijk                            

 VCijk ≥ cmij − M(1 − Vijk)     
 , ∀ i , j, k, r (23) 

Finally, the linear equivalent of constraints 17 to 22 are as follows: 

 VCijk − prkij. Vijk < (SMk,r ∗ Vijk) + M ∗ Bijkr , ∀ i , j, k, r  (24) 

 VCijk < (SMk,r ∗ Vijk) + M ∗ Bijkr , ∀ i , j, k, r  (25) 

 VCijk − prkij. Vijk < (SMk,r+1 ∗ Vijk) + M(1 − Bijkr) , ∀ i , j, k, r  (26) 

 VCijk < (SMk,r+1 ∗ Vijk) + M(1 − Bijkr) , ∀ i , j, k, r  (27) 

 VCijk − prkij. Vijk > (FMk,r ∗ Vijk) − M(1 − Bijkr) , ∀ i , j, k, r  (28) 

 VCijk > (FMk,r ∗ Vijk) − M(1 − Bijkr) , ∀ i , j, k, r  (29) 

And constraints 23   

Finally with constraint 30 can determine the tardiness of each job: 

Ti ≥ cmij − di , ∀ i , j = Ji  (30) 

According to mentioned above, the linearized mathematical model is as follows: 

Min ∑ (wi ∗ Ti)i    (31) 

S. T.     

cmij − cmij−1 ≥ prkij. Vijk , ∀ i , k , ∀j = 2 , … , Ji  (32) 

cmij − cmij−1 ≤ prkij. Vijk , ∀ i , k , ∀j = 2 , … , Ji  (33) 

cmij ≥ prkij. Vijk , ∀ i , j = 1   ∀k ∈ Mij  (34) 

BSijhgk −  Dijhgk − prkhg. Oijhgk ≥ 0 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (35) 

Dijhgk −  BSijhgk − prkhg. Oijhgk ≥ 0 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (36) 

Oijhgk ≤ Vhgk , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (37) 

Oijhgk ≤ Vijk , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (38) 

Oijhgk ≤  Zijhgk , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (39) 

Oijhgk ≥ Vhgk + Vijk +  Zijhgk − 2 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (40) 

Dijhgk ≤ cmij , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (41) 

Dijhgk ≤ M. Oijhgk  , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (42) 

Dijhgk ≥ cmij − M(1 −  Oijhgk) , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (43) 

BSijhgk ≤ cmhg , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (44) 

BSijhgk ≤ M. Oijhgk , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (45) 

BSijhgk ≥ cmhg − M(1 −  Oijhgk) , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg (46) 
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∑ Vijk = 1k∈Mij
  , ∀ i, j  (47) 

Zijhgk +  Zhgijk =  Fijhgk , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg  (48) 

Fijhgk ≤ Vhgk , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg  (49) 

Fijhgk ≤ Vijk , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg  (50) 

Fijhgk ≥ Vhgk + Vijk − 1 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg  (51) 

VCijk − prkij. Vijk < (SMk,r ∗ Vijk) + M ∗ Bijkr , ∀ i , j, k, r   (52) 

VCijk < (SMk,r ∗ Vijk) + M ∗ Bijkr , ∀ i , j, k, r   (53) 

VCijk − prkij. Vijk < (SMk,r+1 ∗ Vijk) + M(1 − Bijkr) , ∀ i , j, k, r   (54) 

VCijk < (SMk,r+1 ∗ Vijk) + M(1 − Bijkr) , ∀ i , j, k, r   (55) 

VCijk − prkij. Vijk > (FMk,r ∗ Vijk) − M(1 − Bijkr) , ∀ i , j, k, r   (56) 

VCijk > (FMk,r ∗ Vijk) − M(1 − Bijkr) , ∀ i , j, k, r   (57) 

VCijk ≤ cmij , ∀ i , j, k, r   (58) 

VCijk ≤ M. Vijk , ∀ i , j, k, r   (59) 

VCijk ≥ cmij − M(1 − Vijk)   , ∀ i , j, k, r   (60) 

Ti ≥ cmij − di , ∀ i , j = Ji  (61) 

Vijk ∈ {0,1} , ∀ i , j, k  (62) 

Bijkr ∈ {0,1} , ∀ i , j, k, r (63) 

Oijhgk ∈ {0,1} , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg  (64) 

Fijhgk ∈ {0,1} , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg  (65) 

Ti ≥ 0 , ∀ i  (66) 

cmij ≥ 0 , ∀ i , j  (67) 

Dijhgk ≥ 0 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg  (68) 

BSijhgk ≥ 0 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg  (69) 

VCijk ≥ 0 , ∀ i , h, j, g,   ∀k ∈ Mij ∩ Mhg  (70) 

IV. IMPERIALIST COMPETITIVE ALGORITHM 

In the previous section, the mathematical model was presented to obtain the optimal solution in 

GAMS software for small instances of the problem. However, as the size of the instances increase, the 

exact methods lose their effectiveness due to the high complexity of the problem and in such cases, we 

have to use approximate methods such as heuristic or metaheuristic algorithms. In this study, the 

Imperialist competitive algorithm has been presented for the considered problem and its effectiveness 

in solving different instances has been evaluated. The Imperialist competitive algorithm is one of the 

population-based metaheuristic algorithms proposed by Atashpaz-Gargari et al. (2007). This algorithm 
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is proposed to solve optimization problems and has been gradually developed by various researchers to 

solve scheduling problems. For example, Zandieh et al. (2017) developed an improved Imperialist 

competitive algorithm for flexible job shop scheduling problem. Ahmadizar et al. (2019) developed an 

Imperialist competitive algorithm for unrelated parallel machine scheduling problem.  

The Imperialist competitive algorithm starts with the initial population of solutions, each called a 

country. Some of the best countries are selected as imperialists and the rest of the population is allocated 

to these imperialists as colonies. The total power of an empire depends on the imperialist and its 

colonies. Each imperialist will gradually try to attract its colonies to itself, which will lead the search to 

the good areas of the solution space. Also, the occurrence of a revolution in a colony can cause changes 

in it, which can lead to the search for new areas of solution space. Over time, if a colony achieves a 

better position (according to the objective function of the problem) than its imperialist, it will replace 

it. After the formation of the early empires, Imperialist competitive algorithm for the possession of each 

other's colonies begins amongst them; in each iteration of the algorithm, a competition is formed 

between the empires to seize the weakest colony of the weakest empire. Any empire that fails to increase 

its power will gradually lose its colonies during the competition and eventually will be eliminated. This 

process continues until all the empires fall and only one empire remains with control over the rest of 

the countries. Since reaching such a state can be very time-consuming, an upper bound for the number 

of iterations of the proposed algorithm is also considered as a stop condition; if the number of iterations 

reaches a certain value, the algorithm terminates. In the following section, the various components of 

the proposed algorithm are examined. 

A. Solution representation 

Solution representation is the first and most important step in the development of metaheuristic 

algorithms. Thus, for the proposed algorithm, an effective solution representation with efficient and 

greedy decoding methodology is adopted in order to reduce the search space. We use the job-based 

encoding for this problem to represent a solution, i.e., a sequence of the execution order of the job on 

the machines. For a problem with n job, this representation gives a sequence of n elements in which 

each job appears exactly one time. Due to the no-wait constraint in the problem and the method of 

performing and sequencing operations, the first operation of a job starts when all subsequent operations 

belonging to that job continue without any interruption. For this reason, all operations of a job can be 

joined together and considered as an operation that is processed at specific intervals and on 

predetermined machines without any interruption. After processing one job, the next job is processed. 

Therefore, the length of the solution vector is equal to the sum of the total jobs (n), and the location of 

the jobs inside the solution vector is the order of their processing on the machines. For example, Fig.1 

shows the solution for a problem with four jobs, where each job consists of some operations. 
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1 4 2 3 
 

 

Fig. 1. An encoded solution for a problem with four jobs 

To calculate the value of the objective function of a solution, it must first be decoded. In the literature 

related to job shop scheduling problems, various approaches to decoding have been proposed. In this 

research, the decryption algorithm which is developed by Brizuela et al. (2001) for problems with no-

wait constraint has been used to decode the problem under study. The steps of the decryption algorithm 

are as follows: 

Step 1: An idle times list is provided for each machine, and at the beginning of the schedule when no 

job is started, each machine is completely idle except periods that are assigned for maintenance 

activities. 

Step 2: The operations of the first unprocessed job in the solution representation should be processed 

respectively. 

Step 3: The list of machine idle times is updated. 

Step 4: If the processing of all jobs is finished, the algorithm stops; otherwise it returns to step 2. 

Due to the objective function of the problem, it is clear that according to a greedy approach, the jobs 

should be processed as soon as possible to minimize total tardiness. To better illustrate the decoding 

approach, consider a solution which is shown in Fig. 1 with 4 jobs and 3 stages. It is remarkable that 

processing each job may not require machines of all stages. The processing route for each job is shown 

in Fig.2 and jobs processing time on machines are presented in Table 2.  

Machines also become unavailable once every 5-time units due to preventive maintenance and repair 

activities. The length of the unavailability period for each machine is two-time units. In the beginning, 

the list of machines' idle times is presented in Table 3. According to the encoded solution in Fig.1, at 

first, job 1 must be processed, therefore job 1 is scheduled according to the timetable in Fig.3. After 

scheduling for job 1, the machines' idle times are updated as in Table 4. 

 

 

Fig. 2. Jobs processing routes 

 

 

Processing route Job 

Stage 1 Stage 3 1 

Stage 2 Stage 3 2 

Stage 2 Stage 1 3 Stage 3 

Stage 3 

 

Stage 2 4 
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TABLE 2. JOBS PROCESSING TIMES 

Jobs 

Stage 1  Stage 2  Stage 3 

𝑀1  𝑀2 𝑀2
′   𝑀3 

1 3  - -  2 

2 -  1 1  2 

3 3  1 2  1 

4 -  3 2  3 

 

 

 

TABLE 3. MACHINES IDLE TIMES LIST IN THE BEGINNING 

Idle time Machine 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀1 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀2 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀2
′  

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀3 

 

 

 

 

 

Fig. 3. Timetable for job 1 according to presented encoded solution 
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TABLE 4. MACHINES IDLE TIMES LIST AFTER SCHEDULING JOB 1 

Idle time Machine 

[3,5] ∪ [7,12] ∪ [14,19] + … 𝑀1 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀2 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀2
′  

[0,3] ∪ [7,12] ∪ [14,19] + … 𝑀3 

 

After updating the idle times' list, it should be examined when the processing of job 4 should start so 

that all its operations can be processed in a row on different required machines without interruption. 

Job 4 is scheduled according to the timetable in Fig.4. After scheduling for jobs 1 and 4, the machines' 

idle times are updated as in Table 5. 

After updating the idle times' list, it should be examined when the processing of job 2 should start so 

that all its operations can be processed in a row on different required machines without interruption. 

Job 2 is scheduled according to the timetable in Fig.5. After scheduling for jobs 1, 4 and 2, the machines' 

idle times are updated as in Table 6. 

After updating the idle times' list, it should be examined when the processing of job 3 should start so 

that all its operations can be processed in a row on different required machines without interruption. 

Job 3 is scheduled according to the timetable in Fig.6. 

 

 

 

Fig. 4. Timetable for job 1 and 4 according to presented encoded solution 
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TABLE 5. MACHINES IDLE TIMES LIST AFTER SCHEDULING JOBS 1 AND 4 

Idle time Machine 

[3,5] ∪ [7,12] ∪ [14,19] + … 𝑀1 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀2 

[0,3] ∪ [7,12] ∪ [14,19] + … 𝑀2
′  

[7,12] ∪ [14,19] + … 𝑀3 

 

 

 

 

Fig. 5. Timetable for jobs 1, 4 and 2 according to presented encoded solution 

 

 

 

TABLE 6. MACHINES IDLE TIMES LIST AFTER SCHEDULING JOBS 1, 4 AND 2 

Idle time Machine 

[3,5] ∪ [7,12] ∪ [14,19] + … 𝑀1 

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀2 

[0,3] ∪ [8,12] ∪ [14,19] + … 𝑀2
′  

[7,8] ∪ [10,12] [14,19] + … 𝑀3 
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Fig. 6. Timetable for all jobs according to presented encoded solution 

 

As shown in Fig.6, due to the no-wait constraint and the machines availability constraint, job 3 cannot 

start earlier than time unit 7. As the processing of all jobs is completed, the decoding algorithm is 

stopped and the timetable in Fig.6 is selected as the final timetable of the encrypted solution in Fig.1. 

B. Formation of initial Empires 

At first, the initial population has been produced then, the Nimp number of the best members is selected 

as the imperialist. To assign the rest of the members to the imperialists, the normalized value of each 

imperialist's objective function is first calculated as follows: 

f́(imp) = fmax − f(imp) (71) 

Where f (imp) is the value of the imperialist objective function for imp and fmax is the maximum 

value of the objective function among the imperialists. Note that normalization is done because 

minimizing the objective function of the problem is intended; Now, minimizing f (imp) is equivalent to 

maximizing f ́ (imp). Then, the relative power of each imperialist is calculated as follows and the 

colonized countries are distributed among the imperialists based on equation 72. 

pw(imp) =
f́(imp)

∑ f́(τ)
Nimp

τ=1

⁄      (72) 

 

  ↓  ↓    
4 6 7 2 5 3 1  :Imperialist 

        
6 2 4 7 1 5 3  :Colony 

        
  7 2 5   ( :a) 
        
 4 7 2 5 1  ( :b) 
        
6 4 7 2 5 1 3  :Assimilated 

 

Fig. 7. Assimilation process 
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 ↓    ↓   

4 6 7 2 5 3 1  :Colony 
        

4 3 7 2 5 6 1  : after revolution 

 

Fig. 8. Revolution process 

 

C. Assimilation operator 

According to what is called the assimilation policy, each imperialist tends its colonies towards it from 

different social and political dimensions to gradually cause their evolution. In the proposed algorithm, 

an operator is used to execute the assimilation policy. To illustrate this operator, consider an example 

with 7 jobs. First, two cells are randomly selected and the numbers between them are copied from the 

imperialist to the assimilated colony (Fig.7 (a)). Then, the numbers that existed in the initial colony 

between the two selected cells and were not copied, are copied into the assimilated colony after 

matching the numbers that occupied their place. In other words, the number 1 is copied in place of 

number 5 and the number 4 is copied in place of number 2. Finally, the remaining numbers of the 

assimilated colony are allocated like the order of the initial colony (Fig.7 (b)). 

D. Revolution operator 

In some cases, a social-political revolution can suddenly change the characteristics of a country. In 

the proposed Imperialist competitive algorithm, the revolution is modeled by moving a colony to a 

new random position and due to the diversity of the search path, prevents it from falling into the trap 

of local optimal. In the proposed algorithm, after the assimilation process, a revolution occurs in each 

colony with a probability of  Prev (which is called the revolution rate). The operator of the revolution 

is that two cells are randomly selected and their jobs are moved together (Fig.8). 

E. Imperialist competitive 

Empires compete for possession of each other's colonies and increase their power. Imperialist 

competition gradually increases the power of stronger empires and decreases the power of weaker 

empires. If an empire fails to increase its power, it will eventually be eliminated from the competition. 

To compete in each iteration of the algorithm, the total power of each empire in proportion to the power 

of the imperialist and its colonies is calculated as follows: 

Tf(imp) = f(imp) + αfavg
col (imp) (73) 

Where favg
col (imp) is the average objective function value of the colonies in the imp empire and α is 

also a number between zero and one. Since in most implementations, α equal to 0.05 has led to favorable 
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results, the same value has been used in this study. The normalized value of the total power of each 

empire is then calculated as follows: 

Tf ′(imp) = Tfmax − Tf(imp) (74) 

Where Tfmax is the total power of the weakest empire. Finally, the probability of taking over the 

weakest colony of the weakest empire by each imp empire is calculated as follows: 

Ppos(imp) =
Tf ′(imp)

∑ Tf ′(τ)
Nimp

τ=1

⁄   (75) 

Thus, the weakest colony of the weakest empire will not necessarily be seized by the strongest 

empire, but the stronger empires will compete with more chances. Fig.9 shows the flowchart of the 

Imperialist competitive algorithm. 

V. COMPUTATIONAL RESULT 

In this study, the mathematical model is solved with GAMS software and the CPLEX solver is used. 

In this software, the maximum solution time for each instance is 7200 seconds and if the optimal 

solution is obtained during this period, it is reported. On the other hand, the ICA and its components 

are coded in the Python programming language and performed all the computational experiments on a 

Laptop with an Intel RCoreTMi7-4600U CPU clocked at 2.10 GHz with 8GB of memory operating 

under the Windows 10 operating system. To adjust the parameters of the ICA, different values were 

considered for each parameter, and then, by solving some numerical problems in the initial experiments, 

the appropriate values were selected as described in Table 7 for use in subsequent experiments. 

TABLE 7. PARAMETERS OF THE ICA 

ICA 

Parameter Adjusted value 

Population size 10 × n 

Max Number of  iterations 100 

Number of initial empires 0. 3 × n 

Revolution rate 0.4 

𝛼 0.05 

 

In the Table 7, n indicates the number of jobs that is used to determine the population size of the 

algorithm. In this research, the initial population is generated randomly and due to the random nature 
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of the proposed algorithm, each of the generated problems has been solved 5 times by the ICA and the 

minimum, average and maximum values of the objective function for obtained solutions have been 

reported. Also, to facilitate the comparison of the results, the following relative percentage deviation 

has been used to measure the value of the objective function of each solution (sol) for a given problem: 

RPD = (
f(sol) − f(solbest)

f(solbest)
) × 100 (76) 

solbest is the best solution for that problem among the obtained solutions. The RPD indicator 

compares each solution with the best solution obtained for that problem and declares their difference as 

a percentage; the lower the value of this indicator, the better the quality of the solution.  

As shown in Table 8, the results obtained from solving different sizes of the problem are reported, in 

which the RPD values for the problems that the mathematical model was able to find the optimal 

solution are bolded. In all instances presented in Table 8, the processing of each job requires exactly 

one machine from each stage. In small instances (problems with a maximum of 7 jobs) Gams software 

can provide an optimal solution in a reasonable time and ICA also shows high efficiency and provides 

the optimal solution every 5 times. In large instances, since the Gams software loses its efficiency, the 

ICA does very well and provides a suitable solution in a reasonable time. In other words, in large 

instances of the problem, the Gams software cannot find the optimal solution, and present solution that 

has low quality in comparison with the solution provided by the ICA. This difference in quality of the 

solutions becomes more visible in large instances which is completely obvious in the instance 22 , 23 

and 24. The weakness of Gams software becomes more obvious when it cannot find a solution in cases 

that have more than 25 jobs. The solution obtained from the ICA is reliable because it provided the 

optimal solution in small instances every 5 times such as exact method. The remarkable point of ICA 

is the low deviation of its presented solutions for each instance and this confirms the convergence of 

the algorithm. In general, according to the results, it can be claimed that the proposed ICA performs 

well and can obtain good solutions in an acceptable time, especially for large instances of the problem. 
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Fig. 9. Imperialist competitive algorithm flowchart 
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TABLE 8. COMPARISON RESULTS OF THE MATHEMATICAL MODEL AND ICA 

ICA  GAMS  

No. stages No. job Instance 
Run time (s) 

Output (RPD) 
 

Run time(s)  Output (RPD) 

 

Max Avg Min 
  

61 0 0 0  2231 0  5 5 1 

70 0 0 0  2768 0  7 5 2 

68 0 0 0  3952 0  9 5 3 

86 0 0 0  4721 0  5 6 4 

79 0 0 0  5147 0  7 6 5 

91 0 0 0  5772 0  9 6 6 

104 0 0 0  6692 0  5 7 7 

113 0 0 0  7083 0  7 7 8 

129 0 0 0  7200 0  9 7 9 

122     0 0  0  7200 0  5 8 10 

149     0 0 0  7200 0.04  7 8 11 

167  0.04 0.01 0  7200  0.07  9 8 12 

160  0.04 0.02 0  7200 0.15  5 9 13 

173 0.05 0.02 0  7200 0.23  7 9 14 

209 0.08 0.05 0  7200 0.26  9 9 15 

196 0.15 0.06 0  7200 0.37  5 10 16 

245 0.10 0.05 0  7200 0.41  7 10 17 

231 0.12 0.08 0  7200 0.38  9 10 18 

416 0.52 0.36 0  7200 1.17  5 15 19 

452 0.63 0.35 0  7200 1.74  7 15 20 

478 0.84 0.51 0  7200 1.98  9 15 21 

610 1.38 0.78 0  7200 3.25  5 20 22 

592 1.65 0.94 0  7200 4.18  7 20 23 

640 1.86 1.27 0  7200 4.71  9 20 24 

795 1.93 1.54 0  7200 -  5 25 25 

846 2.39 1.64 0  7200 -  7 25 26 

817 2.28 1.47 0  7200 -  9 25 27 

923 2.86 1.84 0  7200 -  5 30 28 

992 2.53 1.54 0  7200 -  7 30 29 

1031 2.70 1.73 0  7200 -  9 30 30 

368.1 0.74 0.47 0  6558 0.78  Average 
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VI. CONCLUSION AND FUTURE RESEARCH 

In this work, the no-wait flexible job shop scheduling problem with machines availability constraint 

for periodic maintenance activities and machines processing capability to minimize the sum of weighted 

tardiness has been formulated. Duo to its combinatorial complexity, the Imperialist competitive 

algorithm (ICA) is developed. The ICA as well as GAMS software presented good performance in 

solving small instances. In addition, the proposed ICA was able to solve large instances (which involve 

hundreds of operations) and show good performance according to quality and run time factors. The 

application of the considered problem is in the production of perishable products where delay during 

production can be very destructive and often production process is undertaken without any delay. In 

such production environments, it is common to consider periodic machines maintenance activities to 

prevent machine failure, and for this reason, these conditions have been considered in this research.  

For future research, the possibility of waiting during production process due to machine failure can 

be considered by allowing interruption during operations processing time. In addition, due to the 

discrete solution space of the problem, heuristic algorithms based on neighborhood search can be used. 
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