
Journal of Quality Engineering and Production Optimization, Vol. x, No. y, quarter 2020 1

Manuscript Received day-Month-year and revised day-Month-year ISSN: ****-****

Accepted on day- month-year

Abstract— Flexible job-shop scheduling problem (FJSP) is an extension

of job shop scheduling problem which allows an operation to be

performed by any machine amongst a set of available machines in each

stage. This paper addresses a no-wait flexible job shop scheduling

problem with machines availability constraints for maintenance activities

and machines processing capability to minimize total weighted tardiness.

The study is organized in two steps. In the first step, a new nonlinear

mathematical model is developed for the considered problem, and then it

is converted into a linear mathematical model using the techniques in the

literature. Since the structure of the problem is NP-hard, thus in the

second step, an Imperialist competitive algorithm is proposed to solve

real-size instances of the problem. In the proposed algorithm, an effective

solution representation with an efficient and greedy decoding

methodology is adopted to reduce the search space. Numerical

experiments are used to evaluate the performance of the developed

algorithm. It is concluded that in small instances, solving the

mathematical model by GAMS leads to the optimal solution, but with the

increased size of instances, this method loses its efficiency and ICA

performs better under these conditions.

Keywords— flexible job shop, no-wait, maintenance activities, Imperialist

competitive algorithm.

I. INTRODUCTION

Job shop scheduling is a type of scheduling problem that is used in various production environments.

The job shop scheduling problem was first raised by Manne (1960). In this study, it is proved that job

shop scheduling, known as the NP-hard optimization problem in production scheduling literature, is

highly complex. To the best of our knowledge, no methodologies in the literature are reported to be able

to solve large instances in real-time.

 Due to the restrictions and special conditions in each production environment and their specific

constraints, production scheduling requires consideration of these constraints, which complicates the

scheduling problem. One of the manufacturing industries that has special conditions and restrictions is

Efficient scheduling of a no-wait flexible job

shop with periodic maintenance activities and

processing constraints

Kasra Mahdavi1, Mohammad Mohammadi2*, Fardin Ahmadizar3

1Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran

 2Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
3Department of Industrial Engineering, University of Kurdistan, Sanandaj, Iran

*Corresponding author: Mohammad Mohammadi (Email: Mohammadi@khu.ac.ir)

mailto:Mohammadi@khu.ac.ir

2

the perishable products industry. Delay during the production of perishable products, can be very

destructive. As a result, perishables are produced without delay, packaged and stored immediately. If

the production system is in the form of a job shop, the scheduling problem will become a no-wait job

shop scheduling problem. In addition, due to the possible machines malfunction, it is imperative to

incorporate machines maintenance activities into the model. Therefore, it can be stated that in the

production of perishable products, if the production system is in the form of a job shop, various

restrictions must be considered.

In this paper, a no-wait flexible job shop scheduling problem with processing constraints is

investigated. This scheduling problem is of special importance both from a theoretical and practical

point of view. From theoretical point, considering the machines capability and machines maintenance

activities in no-wait FJSSP show, a number of feasible solutions, albeit limited, are available. And in

situations where there are such constraints in a flexible job shop scheduling problem, such solutions can

be applied. From practical perspective, one of the production environments, where conditions are very

similar to the problem discussed in this study, is the perishable food manufacturing industry where the

production process is predominately carried out in the form of job shop scheduling. In such industries,

to prevent food spoilage, it is necessary to eliminate the waiting time during production. On the other

hand, due to the probability of machine malfunction, consideration of machines maintenance activities

and machines capabilities constraints in any production environment is inevitable. Therefore, the

applicability of this problem with the considered constraints is clear in the perishable food

manufacturing industry.

As far as we are aware, this is the first study on the flexible job shop scheduling problem (FJSSP)

where machines processing capability, machines periodic maintenance activities, and no-wait

constraints are simultaneously considered. The contributions are described as follows:

 Investigating an NP-hard scheduling problem that is widely used in the perishable food manufacturing

industry.

 A non-linear mathematical model based on precedence variable is established for the no-wait flexible

job shop scheduling problem with processing constraints.

 The proposed model is linearized by techniques in the literature to be solved by linear solvers.

 An Imperialist competitive algorithm (ICA) is customized to solve the no-wait flexible job shop

scheduling problem.

The rest of the paper is organized as follows: In Section II, the latest and related works are presented.

Section III describes the problem and presents the mathematical model and its linearization process. In

Section IV, an Imperialist competitive algorithm is proposed to solve real-size instances of the problem.

Computational results are discussed in Section V. Finally, conclusions and future research are presented

in Section VI.

 3

II. LITERATURE REVIEW

In recent years, many researchers have studied job shop scheduling problem with various constraints.

In this section, the newest related works are reviewed. El Khoukhi et al. (2017) investigated a flexible

job shop scheduling problem with machines availability constraints to minimize the makespan. They

proposed a mathematical model for this problem and due to its complexity, they developed a new

optimization algorithm based on the ant nest algorithm. Zandieh et al. (2017) studied the flexible job

shop scheduling problem with machines availability constraints to minimize makespan and proposed

an improved Imperialist competitive algorithm for real-size instances. Yazdani et al. (2017) studied a

job shop scheduling problem to minimize the sum of maximum tardiness and maximum earliness. They

developed a mathematical model and a new optimization approach based on the Imperialist competitive

algorithm. Lu et al. (2017) studied a multi objective flexible job shop scheduling problem with

controllable processing times. In this study, makespan and minimizing the sum of consuming resources

are considered to be objective functions. They developed a new multi-objective meta-heuristic

algorithm called MODVOA. Benttaleb et al. (2018) studied job shop scheduling problem with two

machines where one of the machines is out of reach in a certain period. In this study, the objective

function is minimizing the longest completion time. They investigated the optimality of Jackson's

algorithm and designed a heuristic algorithm using Jackson's law. Then, they proposed a branch and

bound algorithm for the problem. Fattahi et al (2018) proposed a new cyclic algorithm based on Tabu

search to improve the exploration and exploitation powers of some solution encoding that are suggested

in the literature. In this research by solving several instances, the effectiveness of the proposed solution

representation is shown. Bürgy and Bülbül (2018) studied a job shop scheduling problem with the

irregular objective function of minimizing the sum of convex costs depending on the operations start

time and proposed a Tabu search algorithm for it. Shen et al. (2018) proposed a mathematical model

for a flexible job shop scheduling problem with sequence-dependent setup times to minimize the

makespan. They also developed a Tabu search algorithm based on new neighborhood search functions

and various structures. Tamssaouet et al. (2018) studied a job shop scheduling problem with the

objective function of minimizing the makespan in which machines are not always available and become

unavailable at intervals. They developed simulated annealing and Tabu search algorithms with

neighborhood functions for real-size instances of the problem. García-León et al. (2019) proposed a

local search approach for the multi-objective flexible job shop scheduling problem to obtain Pareto

solutions for any combination of regular functions. Caldeira et al. (2019) developed an improved Jaya

algorithm for a flexible job shop scheduling problem with the objective function of minimizing the

makespan. In this problem, they considered machines' setup time and transfer time between machines.

Dai et al. (2019) studied a multi-objective flexible job shop scheduling problem with energy

consumption and transportation constraints. In this problem, the objective function is minimizing the

makespan and energy consumption. They developed an improved multi-objective Genetic algorithm

4

for this problem. Shen et al. (2019) investigated a flexible job shop scheduling problem, in which the

processing time of jobs are variable and depend on the start time of their processing. In this study, the

objective function is minimizing the longest completion time and the amount of energy consumed by

machines. For this problem, they presented a hybrid multi-objective algorithm called MOHPIOSA.

Samarghandi (2019) studied a no-wait job shop scheduling problem with delivery deadline constraints

and the objective function of minimizing the longest completion time. He turned the problem into

another problem and presented a mathematical model for both of them. Then, he developed the genetic

algorithm to solve large instances. Miyata et al. (2019) studied a no-wait flow shop scheduling problem

with dependent sequenced setup times and machines preventive maintenance to minimize makespan.

In this problem, they postulated new policy for preventive maintenance which its parameters are based

on Weibull distribution. In this study, they developed constructive heuristics for proposed problem.

Samarghandi and Jahantigh (2019) studied a no-wait flow shop scheduling problem with due dates

constraints to minimize makespan. They proposed two mathematical models and applied a Constraint

Programming Model.

Zhang et al. (2020) investigated a no-wait flow shop scheduling problem with the objective function

of minimizing the longest completion time. They developed the Discrete Migratory Bird Optimization

(MBO) algorithm to achieve high quality solutions. Ahmadian et al. (2020) studied a job shop

scheduling problem in which delivery date is considered for each job. In this problem, any difference

between the completion time of a job and its delivery date is considered as a penalty, and the objective

function is to minimize the sum of earliness and tardiness. They developed a Variable Neighborhood

Search (VNS) algorithm for this problem. Zhang et al. (2020) developed an improved Genetic algorithm

for a multi-objective flexible job shop scheduling problem. In this study, they considered machines

setup time and jobs transfer time between machines. Li et al. (2020) developed an improved Jaya

algorithm for a flexible job shop scheduling problem, in which machine setup times and jobs transfer

time between machines are considered. Ying and Lin (2020) studied a no-wait job shop scheduling

problem to minimize the makespan. They developed MSA-BST algorithm, which is based on the

simulated annealing algorithm. Zhu et al. (2020b) studied a flexible job shop scheduling problem with

job precedence constraints in which the processing time of jobs is expressed as an interval and the

objective function is to minimize the interval length that is obtained for makespan. They developed a

new optimization algorithm called SLHO for real-size instances of the problem. Zhu et al. (2020a)

developed an efficient evolutionary grey wolf optimizer for multi-objective flexible job shop scheduling

problem with job precedence constraints. In this problem, the objective function is to minimize the

makespan and maximizing the workload of machines simultaneously. Zhang et al. (2020) proposed an

improved memetic algorithm for the flexible job shop scheduling problem with transportation times to

minimize the makespan. Li et al. (2020) studied a multi-objective job shop scheduling problem in a

robotic cell. In this problem, each job has a specific due date as a time window and the objective function

 5

is to minimize the makespan and the total earliness and tardiness simultaneously. They developed a

TLBO algorithm for large instances of the problem. Defersha and Rooyani (2020) developed a two-

stage Genetic algorithm for a flexible job shop scheduling problem with sequence-dependent setup

times. In this problem, the machines are available for processing operations at different times and each

machine needs time to cool down after processing each operation. Ozolins (2020) studied a no-wait job

shop scheduling problem to minimize makespan. In this study, a new exact algorithm is developed to

solve benchmark instances within a reasonable time limit. GAO et al. (2021) studied a no-wait job shop

scheduling problem with due date and subcontracting cost constraints. They proposed two mathematical

models. Then, they developed an artificial bee colony algorithm based on a rolling timeline. Boyer et

al. (2021) studied a flexible job shop scheduling problem with machine capacity, time lags, holding

times, and sequence-dependent setup times. They proposed a mixed integer linear programming and a

constraint programming (CP) models to represent the problem and developed a metaheuristic based on

a Greedy Randomized Adaptive Search Procedure to solve real size instances of the problem.

Valenzuela et al. (2022) studied a no-wait job shop scheduling problem to minimize makespan and

proposed a cooperative coevolutionary algorithm to solve large instances. Weng et al. (2022) studied a

flexible job shop scheduling requiring operations to be performed by either a worker or a machine and

to perform a machine operation, two workers are needed. They modeled the scheduling problem and

propose four methods that form a realtime scheduling and control system for JIT production. Fan and

Su (2022) investigated a job shop scheduling problem with conveyor-based Continuous Flow

Transporters to minimize makespan. In this study, the jobs are processed on the machines which are

connected in series via the conveyor. They presented mathematical programming model of the problem

to find exact solutions in small instances and developed simulated annealing algorithm with NGS

scheme to solve larger instances. Zhu et al. (2022) studied a no-wait flow shop scheduling problem with

due windows to minimize the total weighted earliness and tardiness. In this problem, a concept called

factory has been proposed, which exists in a specific number and includes machines for processing

operations of jobs. In this scheduling problem, each job is assigned to a factory to process its operations.

To solve large instances they proposed a new approach known as discrete knowledge-guided learning

fruit fly optimization algorithm. Nohair et al. (2022) studied a non-delay job shop scheduling problem

with the objective of minimizing makespan. They developed a new matrix heuristic to generate non-

delay schedules that is computationally fast, simple and easy to implement. Winklehner et al. (2022)

investigated a flexible job shop scheduling problem with periodic machines maintenance activities and

processing constraints as a real world problem. They developed a constraint programming approach to

minimize the total completion times. Valenzuela et al. (2022) proposed cooperative coevolutionary

algorithm approach for no-wait job shop scheduling problem to minimize the makespan. In table 1, all

of the studies that is reviewed above, are classified.

6

TABLE 1. SUMMARIZED LITERATURE REVIEW

Solving

approach

Constraints

Objective

function
Type Year Author No

Other

Type of

parallel

in each

stage

Setup

times

Job

transportation

time

Machine

capability

Machine

availability

No-

wait

Based on

ACO

Precedence

constraints
Pm × Cmax

Flexible

job shop
2017

El

Khoukhi

et al.

1

ICA Qm × Cmax
Flexible

job shop
2017

Zandieh

et al.
2

Based on

ICA
 - ×

 Emax + Tmax Job shop 2017
Yazdani

et al.
3

MODVOA

Control the

processing

time of jobs by

allocating

resources

Pm

Cmax

+

Minimizing

consuming

resources

Flexible

job shop
2017 Lu et al. 4

Algorithm

based on

Jackson's

rule

 × Cmax Job shop 2018
Bentaleb

et al.
5

Tabu search Pm × Cmax
Flexible

job shop
2018 Shen et al. 6

SA - TS - × Cmax Job shop 2018
Tamssaou

et et al.
7

Tabu search

Considering

the costs

related to the

start of

operations

-
Minimizing

convex costs
Job shop 2018

Burgy et

al.
8

new cyclic

algorithm

based on TS

 - Cmax Job shop 2018
Fattahi et

al.
9

Constructive

heuristics

Flexible

preventive

maintenance

- × × × Cmax
Flow

shop
2019

Miyata et

al.
10

Local search

approach to

obtain Pareto

solutions

 Pm ×

A set of

regular

objective

functions

Flexible

job shop
2019

Garcia

Leon et

al.

11

Jaya

algorithm
 Pm × × Cmax

Flexible

job shop
2019

Caldeira

et al.
12

MOHPIOSA

The jobs

processing

times are

variable

Rm ×

Minimizing

energy

consumption

+

Cmax

Flexible

job shop
2019 Shen et al. 13

NSGA II Pm × ×

Minimizing

energy

consumption

+

Cmax

Flexible

job shop
2019 Dai et al. 14

 7

Solving

approach

Constraints

Objective

function
Type Year Author No

Other

Type of

parallel

in each

stage

Setup

times

Job

transportation

time

Machine

capability

Machine

availability

No-

wait

Problem is

extremely

NP-hard in

the case of

two machines

Scheduling

with two

machines

- × × Cmax
Flow

shop
2020

Chen et

al.
15

MBO - × Cmax
Flow

shop
2020

Zhang et

al.
16

A heuristic

algorithm

called PBIG

 -

×

Minimizing

the sum of

completion

time

Job shop 2020
Deng et

al.
17

GA Pm × × Cmax
Flexible

job shop
2020

Zhang et

al.
18

Jaya

algorithm
 Pm × ×

Minimizing

energy

consumption

+

Cmax

Flexible

job shop
2020 Li et al. 19

VNS

Independent

due date for

each job

- JIT Job shop 2020
Ahmadian

et al.
20

Gray wolf

algorithm

Precedence

constraints
Pm

Maximizing

machines

workload

+

Cmax

Flexible

job shop
2020 Zhu et al. 21

GA

machines are

available at

different times

Pm × × × Cmax
Flexible

job shop
2020

Defersha

et al.
22

Improved

memetic

algorithm

 Qm × Cmax
Flexible

job shop
2020

Zhang et

al.
23

MSA-BST -

 × Cmax Job shop 2020 Ying et al. 24

New

optimization

algorithm

called SLHO

Precedence

constraints
Pm

Minimizing

the length of

Cmax interval

Flexible

job shop
2020 Zhu et al. 25

Improved

GA
 Qm × Cmax

Flexible

job shop
2020

Zhang

and Sun
26

New

optimization

algorithm

called

IMOTLBO

Job due date as

a time window
- Using robots

Cmax

+

JIT

Job shop 2020 Li et al. 27

New exact

algorithm

based on DP

 - × Cmax Job shop 2020 Ozolins 28

ABC based

on a rolling

timeline

Subcontracting

strategy to

satisfy the

deadlines

- ×

Cmax and

subcontracting

cost

Job shop 2021 Gao et al. 29

8

Solving

approach

Constraints

Objective

function
Type Year Author No

Other

Type of

parallel

in each

stage

Setup

times

Job

transportation

time

Machine

capability

Machine

availability

No-

wait

Metaheuristic

based on a

Greedy

Randomized

Adaptive

Search

Procedure

With machine

capacity and

time lags

Qm × Cmax
Flexible

job shop
2021

Boyer et

al.
30

Cooperative

coevolutionar

y algorithm

 -

× Cmax Job shop 2022
Valenzuel

a et al.
31

Proposed

four method

that form a

realtime

scheduling.

Each operation

needs worker

and worker

like machine

has key role

Rm × JIT
Flexible

job shop
2022

Weng et

al.
32

Simulated

Annealing

algorithm

with NGS

scheme

The jobs are

processed on

the machines

which are

connected in

series via the

conveyor

- Cmax Job shop 2022
Fan and

Su
33

A discrete

algorithm

Considering

time window

for jobs due

dates

- × Weighted JIT
Flow

shop
2022 Zhu et al. 34

New matrix

heuristic

Machines are

never kept idle

while job is

waiting

-

 Cmax Job shop 2022
Nohair et

al.
35

Constraint

programming

approach

Deadline for

each job

Release date

for each job

Rm × × ×

Minimizing

the total

completion

times

Flexible

job shop
2022

Winklehn

er et al.
36

ICA based on

greedy

decoding

methodology

Independent

periodic

maintenance

activities for

each machine

Rm

 × × ×

Minimizing

sum of

weighted

tardiness

Flexible

job shop
Current study ***

In summary, the reviewed scientific works show that no single paper exists, which covers flexible

job shop scheduling problem with unrelated parallel machines in each stage, machines periodic

maintenance activities, no-wait constraint and machines capability to minimize sum of weighted

tardiness.

III. PROBLEM DESCRIPTION AND FORMULATIONS

A. Problem statement

 In a flexible job shop scheduling, there are a set of machines and a set of jobs that have to be

processed on the machines. In this problem, m machines and n jobs are considered. Each job consists

 9

of a sequence of operations where they are allowed to be processed on any among a set of available

machines. The other assumptions of the problem are as follows:

 All jobs and machines are available at time 0, each machine can only execute one operation at a given

time.

 Each job has its operation sequence, which indicates its processing route.

 To process each job it may not require machines during all stages.

 No job can be processed on more than one machine simultaneously.

 No operation can be interrupted once started (preemption is not allowed).

 Waiting time between two consecutive operations of the same job is not allowed.

 Each job has an independent due date so if it is processed later than the due date, a penalty will be

imposed.

 Machines can not necessarily process all operations.

 The type of parallel machines in each stage is unrelated.

 The setup time of machines is considered as a part of the processing time of the operations.

 Machines are periodically unavailable for maintenance activities.

 The length of each unavailability interval is specified.

The objective is to identify a feasible schedule that minimizes the total weighted tardiness.

B. Problem formulations

The notation describing the indices, parameters, and decision variables used in the models are as

follows:

 Indices:

i, h: index of jobs (1, …, n)

j: index of operations (1, … ,Ji)

k: index of machines (1, …, m)

r: index of unavailability interval

 Parameters:

n: total number of jobs

m: total number of machines

Ji: total number of operations of job i

prkij: processing time of oij if performed on machine k

di : due date of job i

wi : weight of job i

SMkr : starting time of rth unavailability interval on machine k

FMkr : finishing time of rth unavailability interval on machine k (FMkr − SMkr = T)

M: a large number

10

 Decision variables:

Ti: tardiness of job i

Vijk: Vijk is 1 if oij performed on machine k; otherwise Vijk is 0.

Zijhgk: Zijhgk is 1 if oij precedes operation ohg on machine k; otherwise Zijhgk is 0.

cmij: completion time of operation oij

Bijkr: binary variable in unavailability constraints

In this section, an approach called the precedence variable-based model is used to present a

mathematical model for the problem. This approach relies on the precedence variable Zijhgk, introduced

by Manne (Manne, 1960). It denotes the sequence of operations assigned to the same machine. Zijhgk

is equal to one if operation oij precedes operation ohg on machine k; otherwise Zijhgk is equal to zero.

Note that operation oij is not necessarily positioned immediately before operation ohg when Zijhgk is

equal to one. For this type of variable, it has to be defined only i < h because Zijhgk = 1 − Zhgijk.

According to this approach, a precedence variable-based model for this problem is developed.

This kind of model was proposed first by Gao et al. (Jie Gao, Gen, & Sun, 2006) to formulate FJSSP

and we have adopted it for our FJSSP. The objective function is as minimizing total weighted tardiness:

Min ∑ (wi ∗ Ti)i (1)

The following constraints enforce each job to follow a specified operation sequence and guarantee

no-wait constraint:

cmij − cmij−1 ≥ prkij. Vijk , ∀ i , k , ∀j = 2 , … , Ji (2)

cmij − cmij−1 ≤ prkij. Vijk , ∀ i , k , ∀j = 2 , … , Ji (3)

Constraint 4 ensures the completion time of the first operation of job i equal to be at least the

processing time of oij:

cmij ≥ prkij. Vijk , ∀ i , j = 1 ∀k ∈ Mij (4)

The following constraints are disjunctive constraints:

(cmhg − cmij − prkhg). Vhgk. Vijk. Zijhgk ≥ 0 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (5)

(cmij − cmhg − prkij). Vijk. Vhgk. Zhgijk ≥ 0 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (6)

These constraints represent that the operation ohg should not be started before the completion of the

operation oij or that the operation ohg must be completed before the start of the operation oij if they are

assigned to the same machine k. Constraints 5 and 6 are nonlinear and should be linearized. For this

purpose, the nonlinear expression Vhgk. Vijk. Zijhgk is first linearized by variable Oijhgk:

 Oijhgk ≤ Vhgk

 Oijhgk ≤ Vijk

 Oijhgk ≤ Zijhgk

 Oijhgk ≥ Vhgk + Vijk + Zijhgk − 2

 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (7)

 11

 Therefore, constraints 5 and 6 become as follows:

cmhg. Oijhgk − cmij. Oijhgk − prkhg. Oijhgk ≥ 0 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (8)

cmij. Oijhgk − cmhg. Oijhgk − prkhg. Oijhgk ≥ 0 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (9)

Then the nonlinear expressions cmij. Oijhgk and cmhg. Oijhgk should be linearized .Expression

cmij. Oijhgk is linearized as follows:

 Dijhgk ≤ cmij

Dijhgk ≤ M. Oijhgk

 Dijhgk ≥ cmij − M(1 − Oijhgk)
 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (10)

And expression cmhg. Oijhgk is linearized as follows:

 BSijhgk ≤ cmhg

 BSijhgk ≤ M. Oijhgk

 BSijhgk ≥ cmhg − M(1 − Oijhgk)
 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (11)

Finally, the linear equivalent of constraints 5 and 6 are as follows:

 BSijhgk − Dijhgk − prkhg. Oijhgk ≥ 0

 Dijhgk − BSijhgk − prkhg. Oijhgk ≥ 0

And constraints 7, 10 and 11

 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (12)

The following constraint states that one machine must be selected from a set of available machines

for each operation:

∑ Vijk = 1k∈Mij
 , ∀ i, j (13)

Constraint 14 enforces to be chosen one of two precedence relationships.

 Zijhgk + Zhgijk = Vijk. Vhgk , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (14)

 Constraints 14 is nonlinear and should be linearized. For this purpose, the nonlinear expression

Vijk. Vhgk is linearized by variable Fijhgk:

 Fijhgk ≤ Vhgk

 Fijhgk ≤ Vijk

 Fijhgk ≥ Vhgk + Vijk − 1
 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (15)

Finally, the linear equivalent of constraint 14 are as follows:

Zijhgk + Zhgijk = Fijhgk

And constraints 15
 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (16)

Constraints 17 to 22 describe unavailability intervals for machines and force each operation 𝑜𝑖𝑗 can

be processed between intervals when the machine is active.

(cmij − prkij). Vijk < (SMk,r ∗ Vijk) + M ∗ Bijkr , ∀ i , j, k, r (17)

cmij. Vijk < (SMk,r ∗ Vijk) + M ∗ Bijkr , ∀ i , j, k, r (18)

(cmij − prkij). Vijk < (SMk,r+1 ∗ Vijk) + M(1 − Bijkr) , ∀ i , j, k, r (19)

cmij. Vijk < (SMk,r+1 ∗ Vijk) + M(1 − Bijkr) , ∀ i , j, k, r (20)

(cmij − prkij). Vijk > (FMk,r ∗ Vijk) − M(1 − Bijkr) , ∀ i , j, k, r (21)

12

cmij. Vijk > (FMk,r ∗ Vijk) − M(1 − Bijkr) , ∀ i , j, k, r (22)

In these constraints, the expression cmij. Vijk is nonlinear, which becomes linear as follows:

 VCijk ≤ cmij

 VCijk ≤ M. Vijk

 VCijk ≥ cmij − M(1 − Vijk)
 , ∀ i , j, k, r (23)

Finally, the linear equivalent of constraints 17 to 22 are as follows:

 VCijk − prkij. Vijk < (SMk,r ∗ Vijk) + M ∗ Bijkr , ∀ i , j, k, r (24)

 VCijk < (SMk,r ∗ Vijk) + M ∗ Bijkr , ∀ i , j, k, r (25)

 VCijk − prkij. Vijk < (SMk,r+1 ∗ Vijk) + M(1 − Bijkr) , ∀ i , j, k, r (26)

 VCijk < (SMk,r+1 ∗ Vijk) + M(1 − Bijkr) , ∀ i , j, k, r (27)

 VCijk − prkij. Vijk > (FMk,r ∗ Vijk) − M(1 − Bijkr) , ∀ i , j, k, r (28)

 VCijk > (FMk,r ∗ Vijk) − M(1 − Bijkr) , ∀ i , j, k, r (29)

And constraints 23

Finally with constraint 30 can determine the tardiness of each job:

Ti ≥ cmij − di , ∀ i , j = Ji (30)

According to mentioned above, the linearized mathematical model is as follows:

Min ∑ (wi ∗ Ti)i (31)

S. T.

cmij − cmij−1 ≥ prkij. Vijk , ∀ i , k , ∀j = 2 , … , Ji (32)

cmij − cmij−1 ≤ prkij. Vijk , ∀ i , k , ∀j = 2 , … , Ji (33)

cmij ≥ prkij. Vijk , ∀ i , j = 1 ∀k ∈ Mij (34)

BSijhgk − Dijhgk − prkhg. Oijhgk ≥ 0 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (35)

Dijhgk − BSijhgk − prkhg. Oijhgk ≥ 0 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (36)

Oijhgk ≤ Vhgk , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (37)

Oijhgk ≤ Vijk , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (38)

Oijhgk ≤ Zijhgk , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (39)

Oijhgk ≥ Vhgk + Vijk + Zijhgk − 2 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (40)

Dijhgk ≤ cmij , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (41)

Dijhgk ≤ M. Oijhgk , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (42)

Dijhgk ≥ cmij − M(1 − Oijhgk) , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (43)

BSijhgk ≤ cmhg , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (44)

BSijhgk ≤ M. Oijhgk , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (45)

BSijhgk ≥ cmhg − M(1 − Oijhgk) , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (46)

 13

∑ Vijk = 1k∈Mij
 , ∀ i, j (47)

Zijhgk + Zhgijk = Fijhgk , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (48)

Fijhgk ≤ Vhgk , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (49)

Fijhgk ≤ Vijk , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (50)

Fijhgk ≥ Vhgk + Vijk − 1 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (51)

VCijk − prkij. Vijk < (SMk,r ∗ Vijk) + M ∗ Bijkr , ∀ i , j, k, r (52)

VCijk < (SMk,r ∗ Vijk) + M ∗ Bijkr , ∀ i , j, k, r (53)

VCijk − prkij. Vijk < (SMk,r+1 ∗ Vijk) + M(1 − Bijkr) , ∀ i , j, k, r (54)

VCijk < (SMk,r+1 ∗ Vijk) + M(1 − Bijkr) , ∀ i , j, k, r (55)

VCijk − prkij. Vijk > (FMk,r ∗ Vijk) − M(1 − Bijkr) , ∀ i , j, k, r (56)

VCijk > (FMk,r ∗ Vijk) − M(1 − Bijkr) , ∀ i , j, k, r (57)

VCijk ≤ cmij , ∀ i , j, k, r (58)

VCijk ≤ M. Vijk , ∀ i , j, k, r (59)

VCijk ≥ cmij − M(1 − Vijk) , ∀ i , j, k, r (60)

Ti ≥ cmij − di , ∀ i , j = Ji (61)

Vijk ∈ {0,1} , ∀ i , j, k (62)

Bijkr ∈ {0,1} , ∀ i , j, k, r (63)

Oijhgk ∈ {0,1} , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (64)

Fijhgk ∈ {0,1} , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (65)

Ti ≥ 0 , ∀ i (66)

cmij ≥ 0 , ∀ i , j (67)

Dijhgk ≥ 0 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (68)

BSijhgk ≥ 0 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (69)

VCijk ≥ 0 , ∀ i , h, j, g, ∀k ∈ Mij ∩ Mhg (70)

IV. IMPERIALIST COMPETITIVE ALGORITHM

In the previous section, the mathematical model was presented to obtain the optimal solution in

GAMS software for small instances of the problem. However, as the size of the instances increase, the

exact methods lose their effectiveness due to the high complexity of the problem and in such cases, we

have to use approximate methods such as heuristic or metaheuristic algorithms. In this study, the

Imperialist competitive algorithm has been presented for the considered problem and its effectiveness

in solving different instances has been evaluated. The Imperialist competitive algorithm is one of the

population-based metaheuristic algorithms proposed by Atashpaz-Gargari et al. (2007). This algorithm

14

is proposed to solve optimization problems and has been gradually developed by various researchers to

solve scheduling problems. For example, Zandieh et al. (2017) developed an improved Imperialist

competitive algorithm for flexible job shop scheduling problem. Ahmadizar et al. (2019) developed an

Imperialist competitive algorithm for unrelated parallel machine scheduling problem.

The Imperialist competitive algorithm starts with the initial population of solutions, each called a

country. Some of the best countries are selected as imperialists and the rest of the population is allocated

to these imperialists as colonies. The total power of an empire depends on the imperialist and its

colonies. Each imperialist will gradually try to attract its colonies to itself, which will lead the search to

the good areas of the solution space. Also, the occurrence of a revolution in a colony can cause changes

in it, which can lead to the search for new areas of solution space. Over time, if a colony achieves a

better position (according to the objective function of the problem) than its imperialist, it will replace

it. After the formation of the early empires, Imperialist competitive algorithm for the possession of each

other's colonies begins amongst them; in each iteration of the algorithm, a competition is formed

between the empires to seize the weakest colony of the weakest empire. Any empire that fails to increase

its power will gradually lose its colonies during the competition and eventually will be eliminated. This

process continues until all the empires fall and only one empire remains with control over the rest of

the countries. Since reaching such a state can be very time-consuming, an upper bound for the number

of iterations of the proposed algorithm is also considered as a stop condition; if the number of iterations

reaches a certain value, the algorithm terminates. In the following section, the various components of

the proposed algorithm are examined.

A. Solution representation

Solution representation is the first and most important step in the development of metaheuristic

algorithms. Thus, for the proposed algorithm, an effective solution representation with efficient and

greedy decoding methodology is adopted in order to reduce the search space. We use the job-based

encoding for this problem to represent a solution, i.e., a sequence of the execution order of the job on

the machines. For a problem with n job, this representation gives a sequence of n elements in which

each job appears exactly one time. Due to the no-wait constraint in the problem and the method of

performing and sequencing operations, the first operation of a job starts when all subsequent operations

belonging to that job continue without any interruption. For this reason, all operations of a job can be

joined together and considered as an operation that is processed at specific intervals and on

predetermined machines without any interruption. After processing one job, the next job is processed.

Therefore, the length of the solution vector is equal to the sum of the total jobs (n), and the location of

the jobs inside the solution vector is the order of their processing on the machines. For example, Fig.1

shows the solution for a problem with four jobs, where each job consists of some operations.

 15

1 4 2 3

Fig. 1. An encoded solution for a problem with four jobs

To calculate the value of the objective function of a solution, it must first be decoded. In the literature

related to job shop scheduling problems, various approaches to decoding have been proposed. In this

research, the decryption algorithm which is developed by Brizuela et al. (2001) for problems with no-

wait constraint has been used to decode the problem under study. The steps of the decryption algorithm

are as follows:

Step 1: An idle times list is provided for each machine, and at the beginning of the schedule when no

job is started, each machine is completely idle except periods that are assigned for maintenance

activities.

Step 2: The operations of the first unprocessed job in the solution representation should be processed

respectively.

Step 3: The list of machine idle times is updated.

Step 4: If the processing of all jobs is finished, the algorithm stops; otherwise it returns to step 2.

Due to the objective function of the problem, it is clear that according to a greedy approach, the jobs

should be processed as soon as possible to minimize total tardiness. To better illustrate the decoding

approach, consider a solution which is shown in Fig. 1 with 4 jobs and 3 stages. It is remarkable that

processing each job may not require machines of all stages. The processing route for each job is shown

in Fig.2 and jobs processing time on machines are presented in Table 2.

Machines also become unavailable once every 5-time units due to preventive maintenance and repair

activities. The length of the unavailability period for each machine is two-time units. In the beginning,

the list of machines' idle times is presented in Table 3. According to the encoded solution in Fig.1, at

first, job 1 must be processed, therefore job 1 is scheduled according to the timetable in Fig.3. After

scheduling for job 1, the machines' idle times are updated as in Table 4.

Fig. 2. Jobs processing routes

Processing route Job

Stage 1 Stage 3 1

Stage 2 Stage 3 2

Stage 2 Stage 1 3 Stage 3

Stage 3

Stage 2 4

16

TABLE 2. JOBS PROCESSING TIMES

Jobs

Stage 1 Stage 2 Stage 3

𝑀1 𝑀2 𝑀2
′ 𝑀3

1 3 - - 2

2 - 1 1 2

3 3 1 2 1

4 - 3 2 3

TABLE 3. MACHINES IDLE TIMES LIST IN THE BEGINNING

Idle time Machine

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀1

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀2

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀2
′

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀3

Fig. 3. Timetable for job 1 according to presented encoded solution

𝑀1

M
ac

h
in

es

𝑀2

 1 3 4 5 7 8 10 11 12 14 16 18 19

𝑀2
′

𝑀3

Time

1

1

 17

TABLE 4. MACHINES IDLE TIMES LIST AFTER SCHEDULING JOB 1

Idle time Machine

[3,5] ∪ [7,12] ∪ [14,19] + … 𝑀1

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀2

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀2
′

[0,3] ∪ [7,12] ∪ [14,19] + … 𝑀3

After updating the idle times' list, it should be examined when the processing of job 4 should start so

that all its operations can be processed in a row on different required machines without interruption.

Job 4 is scheduled according to the timetable in Fig.4. After scheduling for jobs 1 and 4, the machines'

idle times are updated as in Table 5.

After updating the idle times' list, it should be examined when the processing of job 2 should start so

that all its operations can be processed in a row on different required machines without interruption.

Job 2 is scheduled according to the timetable in Fig.5. After scheduling for jobs 1, 4 and 2, the machines'

idle times are updated as in Table 6.

After updating the idle times' list, it should be examined when the processing of job 3 should start so

that all its operations can be processed in a row on different required machines without interruption.

Job 3 is scheduled according to the timetable in Fig.6.

Fig. 4. Timetable for job 1 and 4 according to presented encoded solution

𝑀1

M
ac

h
in

es

𝑀2

 1 3 4 5 7 8 10 11 12 14 16 18 19

𝑀2
′

𝑀3 4

Time

1

4

1

18

TABLE 5. MACHINES IDLE TIMES LIST AFTER SCHEDULING JOBS 1 AND 4

Idle time Machine

[3,5] ∪ [7,12] ∪ [14,19] + … 𝑀1

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀2

[0,3] ∪ [7,12] ∪ [14,19] + … 𝑀2
′

[7,12] ∪ [14,19] + … 𝑀3

Fig. 5. Timetable for jobs 1, 4 and 2 according to presented encoded solution

TABLE 6. MACHINES IDLE TIMES LIST AFTER SCHEDULING JOBS 1, 4 AND 2

Idle time Machine

[3,5] ∪ [7,12] ∪ [14,19] + … 𝑀1

[0,5] ∪ [7,12] ∪ [14,19] + … 𝑀2

[0,3] ∪ [8,12] ∪ [14,19] + … 𝑀2
′

[7,8] ∪ [10,12] [14,19] + … 𝑀3

𝑀1

M
ac

h
in

es

𝑀2

 1 3 4 5 7 8 10 11 12 14 16 18 19

𝑀2
′

𝑀3 4

Time

1

4

1

2

2

 19

Fig. 6. Timetable for all jobs according to presented encoded solution

As shown in Fig.6, due to the no-wait constraint and the machines availability constraint, job 3 cannot

start earlier than time unit 7. As the processing of all jobs is completed, the decoding algorithm is

stopped and the timetable in Fig.6 is selected as the final timetable of the encrypted solution in Fig.1.

B. Formation of initial Empires

At first, the initial population has been produced then, the Nimp number of the best members is selected

as the imperialist. To assign the rest of the members to the imperialists, the normalized value of each

imperialist's objective function is first calculated as follows:

f́(imp) = fmax − f(imp) (71)

Where f (imp) is the value of the imperialist objective function for imp and fmax is the maximum

value of the objective function among the imperialists. Note that normalization is done because

minimizing the objective function of the problem is intended; Now, minimizing f (imp) is equivalent to

maximizing f ́ (imp). Then, the relative power of each imperialist is calculated as follows and the

colonized countries are distributed among the imperialists based on equation 72.

pw(imp) =
f́(imp)

∑ f́(τ)
Nimp

τ=1

⁄ (72)

 ↓ ↓
4 6 7 2 5 3 1 :Imperialist

6 2 4 7 1 5 3 :Colony

 7 2 5 (:a)

 4 7 2 5 1 (:b)

6 4 7 2 5 1 3 :Assimilated

Fig. 7. Assimilation process

𝑀1

M
ac

h
in

es

𝑀2

 1 3 4 5 7 8 10 11 12 14 16 18 19

𝑀2
′

𝑀3 4

Time

1

4

1

2

2

3

3

3

20

 ↓ ↓

4 6 7 2 5 3 1 :Colony

4 3 7 2 5 6 1 : after revolution

Fig. 8. Revolution process

C. Assimilation operator

According to what is called the assimilation policy, each imperialist tends its colonies towards it from

different social and political dimensions to gradually cause their evolution. In the proposed algorithm,

an operator is used to execute the assimilation policy. To illustrate this operator, consider an example

with 7 jobs. First, two cells are randomly selected and the numbers between them are copied from the

imperialist to the assimilated colony (Fig.7 (a)). Then, the numbers that existed in the initial colony

between the two selected cells and were not copied, are copied into the assimilated colony after

matching the numbers that occupied their place. In other words, the number 1 is copied in place of

number 5 and the number 4 is copied in place of number 2. Finally, the remaining numbers of the

assimilated colony are allocated like the order of the initial colony (Fig.7 (b)).

D. Revolution operator

In some cases, a social-political revolution can suddenly change the characteristics of a country. In

the proposed Imperialist competitive algorithm, the revolution is modeled by moving a colony to a

new random position and due to the diversity of the search path, prevents it from falling into the trap

of local optimal. In the proposed algorithm, after the assimilation process, a revolution occurs in each

colony with a probability of Prev (which is called the revolution rate). The operator of the revolution

is that two cells are randomly selected and their jobs are moved together (Fig.8).

E. Imperialist competitive

Empires compete for possession of each other's colonies and increase their power. Imperialist

competition gradually increases the power of stronger empires and decreases the power of weaker

empires. If an empire fails to increase its power, it will eventually be eliminated from the competition.

To compete in each iteration of the algorithm, the total power of each empire in proportion to the power

of the imperialist and its colonies is calculated as follows:

Tf(imp) = f(imp) + αfavg
col (imp) (73)

Where favg
col (imp) is the average objective function value of the colonies in the imp empire and α is

also a number between zero and one. Since in most implementations, α equal to 0.05 has led to favorable

 21

results, the same value has been used in this study. The normalized value of the total power of each

empire is then calculated as follows:

Tf ′(imp) = Tfmax − Tf(imp) (74)

Where Tfmax is the total power of the weakest empire. Finally, the probability of taking over the

weakest colony of the weakest empire by each imp empire is calculated as follows:

Ppos(imp) =
Tf ′(imp)

∑ Tf ′(τ)
Nimp

τ=1

⁄ (75)

Thus, the weakest colony of the weakest empire will not necessarily be seized by the strongest

empire, but the stronger empires will compete with more chances. Fig.9 shows the flowchart of the

Imperialist competitive algorithm.

V. COMPUTATIONAL RESULT

In this study, the mathematical model is solved with GAMS software and the CPLEX solver is used.

In this software, the maximum solution time for each instance is 7200 seconds and if the optimal

solution is obtained during this period, it is reported. On the other hand, the ICA and its components

are coded in the Python programming language and performed all the computational experiments on a

Laptop with an Intel RCoreTMi7-4600U CPU clocked at 2.10 GHz with 8GB of memory operating

under the Windows 10 operating system. To adjust the parameters of the ICA, different values were

considered for each parameter, and then, by solving some numerical problems in the initial experiments,

the appropriate values were selected as described in Table 7 for use in subsequent experiments.

TABLE 7. PARAMETERS OF THE ICA

ICA

Parameter Adjusted value

Population size 10 × n

Max Number of iterations 100

Number of initial empires 0. 3 × n

Revolution rate 0.4

𝛼 0.05

In the Table 7, n indicates the number of jobs that is used to determine the population size of the

algorithm. In this research, the initial population is generated randomly and due to the random nature

22

of the proposed algorithm, each of the generated problems has been solved 5 times by the ICA and the

minimum, average and maximum values of the objective function for obtained solutions have been

reported. Also, to facilitate the comparison of the results, the following relative percentage deviation

has been used to measure the value of the objective function of each solution (sol) for a given problem:

RPD = (
f(sol) − f(solbest)

f(solbest)
) × 100 (76)

solbest is the best solution for that problem among the obtained solutions. The RPD indicator

compares each solution with the best solution obtained for that problem and declares their difference as

a percentage; the lower the value of this indicator, the better the quality of the solution.

As shown in Table 8, the results obtained from solving different sizes of the problem are reported, in

which the RPD values for the problems that the mathematical model was able to find the optimal

solution are bolded. In all instances presented in Table 8, the processing of each job requires exactly

one machine from each stage. In small instances (problems with a maximum of 7 jobs) Gams software

can provide an optimal solution in a reasonable time and ICA also shows high efficiency and provides

the optimal solution every 5 times. In large instances, since the Gams software loses its efficiency, the

ICA does very well and provides a suitable solution in a reasonable time. In other words, in large

instances of the problem, the Gams software cannot find the optimal solution, and present solution that

has low quality in comparison with the solution provided by the ICA. This difference in quality of the

solutions becomes more visible in large instances which is completely obvious in the instance 22 , 23

and 24. The weakness of Gams software becomes more obvious when it cannot find a solution in cases

that have more than 25 jobs. The solution obtained from the ICA is reliable because it provided the

optimal solution in small instances every 5 times such as exact method. The remarkable point of ICA

is the low deviation of its presented solutions for each instance and this confirms the convergence of

the algorithm. In general, according to the results, it can be claimed that the proposed ICA performs

well and can obtain good solutions in an acceptable time, especially for large instances of the problem.

 23

Fig. 9. Imperialist competitive algorithm flowchart

Start

Initialize the empires

Is imperialist
changed?

No

Yes

Move the colonies toward

their relevant imperialist

Revolve some colonies

Exchange the positions of the
colony and its imperialist

Compute the total cost

of all empires

Imperialist competition

Is there an empire

with no colonies?

Yes

Eliminate this empire

No

Update the cost of each empire

Is the

condition

satisfied?

No

End

Yes

24

TABLE 8. COMPARISON RESULTS OF THE MATHEMATICAL MODEL AND ICA

ICA GAMS

No. stages No. job Instance
Run time (s)

Output (RPD)

Run time(s) Output (RPD)

Max Avg Min

61 0 0 0 2231 0 5 5 1

70 0 0 0 2768 0 7 5 2

68 0 0 0 3952 0 9 5 3

86 0 0 0 4721 0 5 6 4

79 0 0 0 5147 0 7 6 5

91 0 0 0 5772 0 9 6 6

104 0 0 0 6692 0 5 7 7

113 0 0 0 7083 0 7 7 8

129 0 0 0 7200 0 9 7 9

122 0 0 0 7200 0 5 8 10

149 0 0 0 7200 0.04 7 8 11

167 0.04 0.01 0 7200 0.07 9 8 12

160 0.04 0.02 0 7200 0.15 5 9 13

173 0.05 0.02 0 7200 0.23 7 9 14

209 0.08 0.05 0 7200 0.26 9 9 15

196 0.15 0.06 0 7200 0.37 5 10 16

245 0.10 0.05 0 7200 0.41 7 10 17

231 0.12 0.08 0 7200 0.38 9 10 18

416 0.52 0.36 0 7200 1.17 5 15 19

452 0.63 0.35 0 7200 1.74 7 15 20

478 0.84 0.51 0 7200 1.98 9 15 21

610 1.38 0.78 0 7200 3.25 5 20 22

592 1.65 0.94 0 7200 4.18 7 20 23

640 1.86 1.27 0 7200 4.71 9 20 24

795 1.93 1.54 0 7200 - 5 25 25

846 2.39 1.64 0 7200 - 7 25 26

817 2.28 1.47 0 7200 - 9 25 27

923 2.86 1.84 0 7200 - 5 30 28

992 2.53 1.54 0 7200 - 7 30 29

1031 2.70 1.73 0 7200 - 9 30 30

368.1 0.74 0.47 0 6558 0.78 Average

 25

VI. CONCLUSION AND FUTURE RESEARCH

In this work, the no-wait flexible job shop scheduling problem with machines availability constraint

for periodic maintenance activities and machines processing capability to minimize the sum of weighted

tardiness has been formulated. Duo to its combinatorial complexity, the Imperialist competitive

algorithm (ICA) is developed. The ICA as well as GAMS software presented good performance in

solving small instances. In addition, the proposed ICA was able to solve large instances (which involve

hundreds of operations) and show good performance according to quality and run time factors. The

application of the considered problem is in the production of perishable products where delay during

production can be very destructive and often production process is undertaken without any delay. In

such production environments, it is common to consider periodic machines maintenance activities to

prevent machine failure, and for this reason, these conditions have been considered in this research.

For future research, the possibility of waiting during production process due to machine failure can

be considered by allowing interruption during operations processing time. In addition, due to the

discrete solution space of the problem, heuristic algorithms based on neighborhood search can be used.

REFERENCES

Ahmadian, M. M., Salehipour, A., & Cheng, T. C. E. (2020). A meta-heuristic to solve the just-in-time job-shop scheduling

problem. European Journal of Operational Research.

Ahmadizar, F., Mahdavi, K., & Arkat, J. (2019). Unrelated parallel machine scheduling with processing constraints and

sequence dependent setup times. Advances in Industrial Engineering, 53(1), 495–507.

Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by

imperialistic competition. 2007 IEEE Congress on Evolutionary Computation, 4661–4667. IEEE.

Benttaleb, M., Hnaien, F., & Yalaoui, F. (2018). Two-machine job shop problem under availability constraints on one

machine: Makespan minimization. Computers & Industrial Engineering, 117, 138–151.

Boyer, V., Vallikavungal, J., Rodríguez, X. C., & Salazar-Aguilar, M. A. (2021). The generalized flexible job shop

scheduling problem. Computers & Industrial Engineering, 160, 107542.

Brizuela, C. A., Zhao, Y., & Sannomiya, N. (2001). No-wait and blocking job-shops: Challenging problems for GA’s. 2001

IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.

No. 01CH37236), 4, 2349–2354. IEEE.

Bürgy, R., & Bülbül, K. (2018). The job shop scheduling problem with convex costs. European Journal of Operational

Research, 268(1), 82–100.

Caldeira, R. H., & Gnanavelbabu, A. (2019). Solving the flexible job shop scheduling problem using an improved Jaya

algorithm. Computers & Industrial Engineering, 137, 106064.

Dai, M., Tang, D., Giret, A., & Salido, M. A. (2019). Multi-objective optimization for energy-efficient flexible job shop

scheduling problem with transportation constraints. Robotics and Computer-Integrated Manufacturing, 59, 143–157.

Defersha, F. M., & Rooyani, D. (2020). An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem

with sequence dependent attached/detached setup, machine release date and lag-time. Computers & Industrial Engineering,

147, 106605.

El Khoukhi, F., Boukachour, J., & Alaoui, A. E. H. (2017). The “Dual-Ants Colony”: A novel hybrid approach for the

flexible job shop scheduling problem with preventive maintenance. Computers & Industrial Engineering, 106, 236–255.

26

Fan, H., & Su, R. (2022). Mathematical Modelling and Heuristic Approaches to Job-shop Scheduling Problem with

Conveyor-based Continuous Flow Transporters. Computers & Operations Research, 148, 105998.

Fattahi, P., Messi Bidgoli, M., & Samouei, P. (2018). An improved Tabu search algorithm for job shop scheduling problem

trough hybrid solution representations. Journal of Quality Engineering and Production Optimization, 3(1), 13–26.

Gao, Jie, Gen, M., & Sun, L. (2006). Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm.

Journal of Intelligent Manufacturing, 17(4), 493–507.

Gao, Jinsheng, Zhu, X., Bai, K., & Zhang, R. (2021). New controllable processing time scheduling with subcontracting

strategy for no-wait job shop problem. International Journal of Production Research, 1–21.

García-León, A. A., Dauzère-Pérès, S., & Mati, Y. (2019). An efficient Pareto approach for solving the multi-objective

flexible job-shop scheduling problem with regular criteria. Computers & Operations Research, 108, 187–200.

Li, J., Deng, J., Li, C., Han, Y., Tian, J., Zhang, B., & Wang, C. (2020). An improved Jaya algorithm for solving the flexible

job shop scheduling problem with transportation and setup times. Knowledge-Based Systems, 106032.

Li, X., Yang, X., Zhao, Y., Teng, Y., & Dong, Y. (2020). Metaheuristic for Solving Multi-Objective Job Shop Scheduling

Problem in a Robotic Cell. IEEE Access, 8, 147015–147028.

Lu, C., Li, X., Gao, L., Liao, W., & Yi, J. (2017). An effective multi-objective discrete virus optimization algorithm for

flexible job-shop scheduling problem with controllable processing times. Computers & Industrial Engineering, 104, 156–

174.

Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research, 8(2), 219–223.

Miyata, H. H., Nagano, M. S., & Gupta, J. N. D. (2019). Integrating preventive maintenance activities to the no-wait flow

shop scheduling problem with dependent-sequence setup times and makespan minimization. Computers & Industrial

Engineering, 135, 79–104.

Nohair, L., El Adraoui, A., & Namir, A. (2022). Solving Non-Delay Job-Shop Scheduling Problems by a new matrix

heuristic. Procedia Computer Science, 198, 410–416.

Ozolins, A. (2020). A new exact algorithm for no-wait job shop problem to minimize makespan. Operational Research,

20(4), 2333–2363.

Samarghandi, H. (2019). Solving the no-wait job shop scheduling problem with due date constraints: A problem

transformation approach. Computers & Industrial Engineering, 136, 635–662.

Samarghandi, H., & Firouzi Jahantigh, F. (2019). Comparing Mixed-Integer and Constraint Programming for the No-Wait

Flow Shop Problem with Due Date Constraints. Journal of Quality Engineering and Production Optimization, 4(1), 17–24.

Shen, L., Dauzère-Pérès, S., & Neufeld, J. S. (2018). Solving the flexible job shop scheduling problem with sequence-

dependent setup times. European Journal of Operational Research, 265(2), 503–516.

Tamssaouet, K., Dauzère-Pérès, S., & Yugma, C. (2018). Metaheuristics for the job-shop scheduling problem with machine

availability constraints. Computers & Industrial Engineering, 125, 1–8.

Valenzuela-Alcaraz, V. M., Cosío-León, M. A., Romero-Ocaño, A. D., & Brizuela, C. A. (2022). A cooperative

coevolutionary algorithm approach to the no-wait job shop scheduling problem. Expert Systems with Applications, 194,

116498.

Weng, W., Chen, J., Zheng, M., & Fujimura, S. (2022). Realtime scheduling heuristics for just-in-time production in large-

scale flexible job shops. Journal of Manufacturing Systems, 63, 64–77.

Winklehner, P., & Hauder, V. A. (2022). Flexible job-shop scheduling with release dates, deadlines and sequence dependent

setup times: a real-world case. Procedia Computer Science, 200, 1654–1663.

Wu, X., Shen, X., & Li, C. (2019). The flexible job-shop scheduling problem considering deterioration effect and energy

consumption simultaneously. Computers & Industrial Engineering, 135, 1004–1024.

Yazdani, M., Aleti, A., Khalili, S. M., & Jolai, F. (2017). Optimizing the sum of maximum earliness and tardiness of the job

shop scheduling problem. Computers & Industrial Engineering, 107, 12–24.

 27

Ying, K.-C., & Lin, S.-W. (2020). Solving no-wait job-shop scheduling problems using a multi-start simulated annealing

with bi-directional shift timetabling algorithm. Computers & Industrial Engineering, 146, 106615.

Zandieh, M., Khatami, A. R., & Rahmati, S. H. A. (2017). Flexible job shop scheduling under condition-based maintenance:

Improved version of Imperialist competitive algorithm. Applied Soft Computing, 58, 449–464.

Zhang, G., Hu, Y., Sun, J., & Zhang, W. (2020). An improved genetic algorithm for the flexible job shop scheduling

problem with multiple time constraints. Swarm and Evolutionary Computation, 54, 100664.

Zhang, G., Sun, J., Lu, X., & Zhang, H. (2020). An improved memetic algorithm for the flexible job shop scheduling

problem with transportation times. Measurement and Control, 0020294020948094.

Zhang, S. J., Gu, X. S., & Zhou, F. N. (2020). An improved discrete migrating birds optimization algorithm for the no-wait

flow shop scheduling problem. IEEE Access.

Zhu, N., Zhao, F., Wang, L., Ding, R., & Xu, T. (2022). A discrete learning fruit fly algorithm based on knowledge for the

distributed no-wait flow shop scheduling with due windows. Expert Systems with Applications, 198, 116921.

Zhu, Z., & Zhou, X. (2020a). An efficient evolutionary grey wolf optimizer for multi-objective flexible job shop scheduling

problem with hierarchical job precedence constraints. Computers & Industrial Engineering, 140, 106280.

Zhu, Z., & Zhou, X. (2020b). Flexible job-shop scheduling problem with job precedence constraints and interval grey

processing time. Computers & Industrial Engineering, 106781.

