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Abstract — The need to produce products with high reliability is a 

requirement for survival for many industries in today's world, so one of 

the main and important quality characteristics of products is lifetime or 

reliability. The production process must be monitored to produce highly 

reliable products, and in this regard, control charts are one of the most 

important and widely used process monitoring tools. In this study, it is 

assumed that the quality characteristic that is monitored is the lifetime of 

the products, which follows the distribution of Weibull with a variable 

scale parameter and a fixed shape parameter. The purpose is to monitor 

the average lifetime of the products, which is conducted by monitoring 

the Weibull distribution scale parameter. To design a control chart, first, 

the control limits of the chart for different parameters are obtained and 

presented. Relationships and values regarding control limits show that 

the control limit of a one-sided chart is always larger than the control 

limit of a two-sided chart. To evaluate the performance of the proposed 

control chart, the average run length in the out-of-control mode for 

various parameters is presented and sensitivity analysis is performed. 

The computational results show that the one-sided control chart has 

better performance in detecting reduced lifetime compared to the two-

sided control chart. One of the most important parameters that increase 

the performance of the control chart is the number of failures in the 

failure censored life test, as the number of failures increases, the test 

continues for a longer time and therefore it increases the chances of 

detecting the changes. Finally, a practical example is provided to show 

the performance of the proposed control chart. 
 

Keywords: Statistical Process Control, Control chart, lifetime, failure censoring, Weibull 

distribution 

 

1. INTRODUCTION 

With the start of the production era, customers began to compare different goods, which intensified 

competition between manufacturers. As one of the issues always facing human beings, quality control 

is a process or set of processes to check that a product or service meets a specific set of standards and 

responds to customer needs (Kale, 2014). There are three statistical methods for quality control and 
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improvement, one of the most important and powerful of which is the statistical process control, which 

includes seven tools. The most important tools for statistical process control are control charts and the 

Average Run Length (ARL) is one of the most important criteria for evaluating the control charts 

performance (Montgomery, 2020). 

Today, in the industry, products with high reliability are produced and the lifetime or reliability of 

products is considered a main and important quality characteristic. Time and cost are important factors 

in the inspection. Due to the duration and cost of inspection, it is impossible to observe the lifetime of 

all products. Therefore, the concept of lifetime tests has been introduced to minimize inspection costs 

as well as save time. A lifetime test usually involves testing a set of products to see their lifetime (Klyatis 

& Klyatis, 2010). 

Lifetime data have two important features that make it difficult to design a Control chart for lifetime 

monitoring. First, the lifetime data are often followed by non-normal distributions, second, considering 

that the components are designed and produced for a long time, obtaining the lifetime of a component 

requires a high time and cost. To solve this problem, lifetime tests are used. In this research, one and 

two-sided design of the Shewhart control chart has been studied under the censored life test assumption 

(Barlow & Proschan, 1975). 

Censoring is an important and non‐ ignorable fact that may be observed in real‐ life situations. In the 

presence of censored data, the usual statistical process monitoring techniques become less effective 

because they are not designed for handling the situations where censoring occurs. Meanwhile, some 

approaches have been developed to monitor lifetime data, but they do not consider censoring in the 

procedures either. Censored data can be classified as type‐ I, type‐ II, hybrid censoring, progressively 

type‐ I, and progressively type‐ II. Details about censoring can be found in (Meeker & Escobar, 2014). 

Censoring during a reliability test means that the correct failure time is not known due to the long 

duration of the test or cost concerns. Different types of censoring schemes are proposed to conduct 

reliability and life testing. Generally speaking, the censoring schemes can be classified into censoring 

schemes with replacement and censoring schemes without replacement. In this article, the censoring 

schemes without replacement are used. Without Replacement during a censoring schemes means that 

once observing a failure item, it is not replaced by a new one (Pham, 2006). 

Often, the underlying assumption of designing Shewhart control charts is that the quality characteristics 

in question follow a normal distribution. However, if in a process, the desired quality characteristics do 

not follow the normal distribution, the use of a control chart designed to monitor the quality 

characteristics with the normal distribution is incorrect and causes an incorrect warning in the process 

or indicates the change in the process with a delay. Therefore, a late warning about the altered process 

will lead to an increase in non-compliant or defective cases. To solve this problem, control charts must 

be designed with the distribution that models the qualitative characteristic. One of the characteristics 

that often follow non-normal distributions is life, so the normal distribution has limited application in 

life data. The most important distributions used to model quality characteristics in reliability include 

Weibull, exponential, log-normal, Burnham Sanders, Gamma, and Pareto distributions (Birolini, 1994). 

(Rasay & Alinezhad, 2022) develop a novel life test according to the sequential probability ratio test of 

the Bernoulli/binomial distribution, which can be simply, straightforwardly and effectively adapted for 

life testing of different continuous distributions. (Rasay, Naderkhani, & Golmohammadi, 2020) 

Designed variable sampling plans based on the lifetime performance index under failure censoring 

reliability. 

The application of control charts is now widespread in various fields of engineering, management, 

services, biology, healthcare, and finance. (Gharib, Amiri, & Jalilibal, 2021) Designed a multivariate 

exponentially weighted moving average control chart with measurement errors. (Jafarian-Namin, 

Fallahnezhad, Tavakkoli-Moghaddam, & Mirzabaghi, 2019) Examined the Economic-Statistical design 

of acceptance control charts using a robust optimization approach. (Rasay, Fallahnezhad, & 

Zaremehrjerdi, 2019)Considered a two-stage dependent process and defined a qualitative characteristic 

for each stage. Then, at each stage, they monitored the process by control charts. Finally, they presented 

an integrated model for maintenance and statistical quality control. 

In general, the research performed so far has been on the type of control charts and life tests in various 

distributions. For example, (Huang, Yang, Xie, & International, 2017) assumed that the qualitative 
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characteristic follows an exponential distribution. They presented a control chart under the failure 

censoring test and used the mean time to alert (ATS) to evaluate the performance of their proposed 

control chart. (Rao, 2018) studied the design of an NP control chart under the truncated life test when 

the product lifetime follows an Exponentiated half logistic distribution. 

An np quality control chart, under the truncated life test was designed by (Aslam, Khan, & Jun, 2016) 

assuming that the product lifetime follows the Pareto type II distribution. A quantitative control chart 

under the time truncated life test for Weibull distribution is also presented (Khan, Aslam, Khan, & Jun, 

2018). (Shafqat, Hussain, Al-Nasser, & Aslam, 2018) presented a statistical model for the control chart 

and obtained how to design a attribute control chart for different distributions and introduced the 

distribution that performed best. (Rao, 2018) designed a np control chart under the truncated life test 

when the product lifetime follows an exponential half-logistic distribution. (Dickinson, Roberts, 

Driscoll, Woodall, & Vining, 2014) presented a cusum control chart to monitor the lifetime quality 

characteristic and compared his proposed control chart with an ewma control chart. (S. Balamurali & 

Jeyadurga, 2018) researched the economic design of a np control chart to monitor average lifetime 

based on multiple deferred state sampling. 

(Mohammadipour, Farughi, Rasay, & Arkat, 2021) design EWMA control charts under failure 

censoring reliability tests. They assumed the lifetime follows the Weibull distribution with a fixed shape 

parameter and a variable scale parameter. (S Balamurali, Jeyadurga, & Engineering, 2019) designed an 

attribute np control chart to monitor the mean lifetime of type-II Pareto distribution through truncated 

life tests and multiple deferred state sampling. (Gadde, Fulment, Josephat, & Engineering, 2019) 

Assumed that the quality characteristic of lifetime follows the Daugm distribution and then designed 

attribute control charts under truncated life tests. (Goodarzi & Amiri, 2017) used the accelerated failure 

time (AFT) model and two control charts are presented to monitor the quality characteristic in the 

second stage under the censored and non-censored reliability data. 

According to the above mentioned literature, the design and application of a control chart to monitor 

the average lifetime of products under the lifetime tests have become an important issue in the 

application of lifetime tests in industrial engineering. Product lifetime is one of the characteristics that 

its reduction is often considered by the manufacturer. Therefore, in this research, in addition to two-

sided control charts, how to design one-sided control charts is also presented. In this study, we used the 

failure censoring test to obtain the average lifetime of products. we design one-sided and two-sided 

Shewhart control charts under the failure censoring test to monitor the average lifetime of products 

when the lifetime of the Weibull distribution follows the fixed shape parameter and the variable scale 

parameter. 

In this research, to design control charts, first the relationships of control limits are presented and the 

values of these limits are obtained for different parameters. Then, how to get ARL and its relationships 

are also presented. The performance of the proposed control chart will be assessed using ARL in the 

out-of-control state. The tables of ARLs presented for various shift constants and specified parameters. 

Then, based on ARL values in the out-of-control state, sensitivity analysis was performed. Finally, 

applications of the control charts are shown by practical examples. 

2. PROBLEM STATEMENT 

It is assumed that the product lifetime, which is considered its main qualitative characteristic, is X and 

follows the Weibull distribution with a constant shape parameter and an unknown scale parameter. The 

cumulative distribution function X is as follows: 

𝐹𝑥(𝑥) = 1 − 𝑒𝑥𝑝[−(𝑥𝜃)𝑚] (1) 

In the above relation, m is the shape parameter and θ is the scale parameter. The average lifetime of 

Weibull distribution is as follows: 

𝜇 =
Γ (

1
𝑚)

𝜃𝑚
 

(2) 
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According to Equation (2), monitoring the average lifetime in the case where the shape parameter is 

constant will be the same as monitoring the scale parameter. The scale parameter is equal to 𝜃0 when 

the process is in control, and when the process is affected by an assignable cause and gets out of control, 

it will become 𝜃1 = 𝑐𝜃0, which is called a constant c value. The statistics obtained from the failure 

censoring test are as follows: 

𝑉𝑖 = ∑ (
𝑥𝑖

𝜇0
)

𝑚

+ (𝑛 − 𝑟) (
𝑥𝑟

𝜇0
)

𝑚
𝑟

𝑖=1

 (3) 

In the above relation xi is the failure time of component i and the 𝜇0 is equal to the average life 

expectancy and has a fixed and definite value. According to studies by John et al. (Jun, Lee, Lee, & 

Balamurali, 2010), the value of Vi follows the gamma distribution with parameters r and W0, the value 

of W0 is considered as follows: 

𝑊0 = (𝜃0𝜇0)𝑚 = (
Γ(1

𝑚⁄ )

𝑚
)

𝑚

 (4) 

Also, due to the relationship between gamma distribution and chi-square distribution, the value of 2𝑉𝑊0 

follows the chi-square distribution with 2r degree of freedom (Jun et al., 2010). 

3. Designing Shewhart control chart 

In order to design a control chart, it is needed to first determine the control limits of the chart and then 

create a chart. In the next step, sampling will be done to monitor the process and the desired statistics 

will be calculated. In designing a one-sided and two-sided control chart, a one-sided and two-sided 

design has been studied. First, how to design a one-sided control chart and then how to design a two-

sided control chart are presented. 

3.1 One-sided Shewhart control chart 

Suppose only the deterioration or improvement of a qualitative characteristic is considered in a process. 

In this case, one-sided control charts are used. If the deterioration of quality characteristics or reduction 

of lifetime is considered in a process, a lower control limit is used and if improvement of quality 

characteristics or increase of lifetime is considered, upper control limit is used. Lifetime is one of the 

characteristics that its deterioration or reduction is considered. Therefore, if we want to monitor only 

the deterioration of the process or the reduction of life in the one-sided control chart, we use the lower 

control limit. In this case, since we have only one control limit, the α error is as follows: 

𝑃(𝑉𝑖 < 𝐿𝐶𝐿 |𝜃 = 𝜃0) = 𝛼 (5) 

In the above relation, Vi is the same statistic obtained from the lifetime test which is obtained from 

equation (3). Now, according to what has been said about Vi, we can rewrite Equation (5) as follows to 

obtain a lower control limit: 

P(2W0Vi < 2W0 × LCL) = α 

P(χ2r
2 < 2W0 × LCL) = α 

LCL =
χ2r,1−α

2

2W0
 

(6) 

The amount of error β is obtained similarly, except that in this case, the process has changed and the 

scale parameter has become θ1 = cθ0. So in this case, we will use the value W1, instead of W0,  which 

is equal to: 
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𝑊1 = (𝜃1𝜇0)𝑚 = 𝑐𝑚𝑊0 (7) 

Therefore, the β-error relation is obtained as follows: 

𝛽 = 𝑃(𝑉𝑖 > 𝐿𝐶𝐿|𝜃1 = 𝐶𝜃0)  

𝛽 = 1 − 𝑃(𝜒2𝑟
2 < 2𝑐𝑚𝑤0 × 𝐿𝐶𝐿) 

(8) 

Given the β value obtained, the value of ARL1 will be obtained from the following equation: 

𝐴𝑅𝐿1 =
1

1 − (𝑃 (𝑐𝑚 ∗ 𝜒
2𝑟,1−(𝛼

2⁄ )
2  < 𝜒2𝑟

2 < 𝑐𝑚 ∗ 𝜒2𝑟,𝛼 2⁄
2  ))

      
(9) 

3.2. Two-sided Shewhart control chart 

Because the chart in Section 3-1 uses only a lower control limit due to its design, it is not able to report 

process improvements and deteriorations (increase and decrease in life) at the same time. Now suppose 

that the deterioration and improvement of the qualitative characteristic are considered in a process. In 

this case, two-sided control charts are used. Like the one-sided control chart, we use the concept of α 

error to obtain the control limits. The probability of error α is as follows. 

𝛼 = 𝑃(𝑉𝑖 > 𝑈𝐶𝐿|𝜃 = 𝜃0) + 𝑃(𝑉𝑖 < 𝐿𝐶𝐿 |𝜃 = 𝜃0) (10) 

Assuming that half of the α error is above the upper control limit and the other half is below the lower 

control limit, the above relation can be rewritten as follows and the UCL relation can be obtained as a 

one-sided control chart: 

𝑃(𝑉𝑖 > 𝑈𝐶𝐿|𝜃 = 𝜃0) =  
α

2
 

𝑈𝐶𝐿 =
𝜒2𝑟,𝛼 2⁄

2

2𝑊0
 

(11) 

Similarly, Equation (10) will be rewritten as follows and the LCL relation will be obtained: 

𝐿𝐶𝐿 =
𝜒2𝑟,1−(𝛼

2⁄ )
2

2𝑊0
 (12) 

In this case, the error ratio β will be as follows: 

𝛽 = 𝑃(𝐿𝐶𝐿 < 𝑉𝑖 < 𝑈𝐶𝐿 |𝜃1 = 𝐶𝜃0) 

𝛽 = 𝑃(2𝑐𝑚𝑊0 × 𝐿𝐶𝐿 < 2𝑊1𝑉𝑖 < 2𝑐𝑚𝑊0 × 𝑈𝐶𝐿) 
(13) 

The value of ARL1 will also be obtained from Equation (14): 

𝐴𝑅𝐿1 =
1

1 − (𝑃 (𝑐𝑚 ∗ 𝜒
2𝑟,1−(𝛼

2⁄ )
2  < 𝜒2𝑟

2 < 𝑐𝑚 ∗ 𝜒2𝑟,𝛼 2⁄
2  ))

 
(14) 

4- Computational results and analysis 
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In this section, we will first obtain the control limits of these two graphs for different parameters and 

then the process of changing the control limits for these parameters will be analyzed. Next, ARL1 is 

used to evaluate the performance of the proposed control charts. The changes trend of ARL1 for different 

parameters is then discussed and analyzed. As an example in Table (1), the lower control limit values 

for m = 0.5,1 and the ARL0=200,370 and the different values of r are shown. 

Table 1. The LCL limits of the one-sided control charts for different parameters 

m =1 

ARL0=370 

r 1 2 3 4 5 6 

LCL 0.003 0.08 0.31 0.65 1.08 1.57 

ARL0=200 

LCL 0.005 0.10 0.33 0.67 1.07 1.53 
 

m=0.5 

ARL0= 370 

r 1 2 3 4 5 6 

LCL 0.001 0.053 0.191 0.398 0.657 0.955 

ARL0= 200 

LCL 0.003 0.073 0.238 0.475 0.762 1.086 
 

By examining the table (1), the following results can be achieved: 

 By increasing the r value, the LCL value also increases. 

 By increasing the ARL0 value, the LCL value decreases. 

 By increasing the m value, the value of LCL also increases and this trend is true for different 

values of r and ARL0. 

Table (2) also shows the values of the control limits of the two-sided control chart as well as the one-

sided control chart for different parameters m = 0.5,1 and the values of ARL0 = 200,370 and different 

values of r. 

The following results can be achieved by examining the control limits of the two-sided Shewhart control 

chart, which is reported as an example in the table above: 

Table 2. The control limits of the twe_sided control charts for different parameters 

m=1  

ARL0=370  

r 1 2 3 4 5 6 

UCL 7.703 10.37 12.67 14.78 16.77 18.69 

LCL 0.001 0.061 0.246 0.542 0.923 1.369 

ARL0=200  

UCL 6.985 9.574 11.80 13.85 15.80 17.67 

LCL 0.002 0.084 0.307 0.643 1.065 1.551  

m=0.5 

ARL0=370  

r 1 2 3 4 5 6 

UCL 4.672 6.2934 7.685 8.966 10.17 11.33 

LCL 0.001 0.0374 0.149 0.329 0.559 0.830 

ARL0=200  

UCL 4.236 5.806 7.159 8.405 9.585 10.71 

LCL 0.001 0.0512 0.186 0.390 0.646 0.940  
 By increasing the r value, the values of the control limits also increase. 

 By increasing the ARL0 value, UCL values also increase and LCL values decrease. 

 Similar to one-sided control chart, as the value of m increases, the control limits also increases. 

After obtaining the control limits, ARL1 is used to evaluate the performance of the proposed control 

charts. To obtain ARL1, first the β error values are obtained for different parameters and then the values 

of ARL1 are obtained. The parameters affecting the value of ARL1 in the Shewhart control chart are the 

shape parameter (m), in-control average run length (ARL0), the number of failures in the failure 

censoring test (r) and the change constant (c). The trend of ARL1 changes in one-sided and two-sided 

control charts for different parameters is exactly the same. These trends are shown as an example for a 

two-sided control chart, and the analyses are presented based on charts derived from ARL1 values. 

For example, ARL1 values for different parameter values for one-sided and two-sided control charts are 

shown in the tables 3,4. 
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Table 3. The ARL 1 of the one-sided control charts for different parameters 

m=1 

ARL0=370 

r 1 2 3 4 5 6 

c ARL1 

1 370.37 370.37 370.37 370.37 370.37 370.37 

1.1 336.75 307.62 283.89 264.40 248.02 233.97 

1.2 308.73 259.78 223.08 195.10 173.10 155.30 

1.3 285.02 222.46 178.99 148.02 125.06 107.44 

1.4 264.69 192.77 146.19 114.99 93.06 77.00 

1.5 247.08 168.76 121.25 91.17 71.02 56.88 

1.6 231.67 149.07 101.91 73.57 55.41 43.14 

1.7 218.07 132.70 86.66 60.30 44.08 33.48 

1.8 205.98 118.96 74.47 50.11 35.67 26.52 

1.9 195.17 107.30 64.58 42.16 29.31 21.39 

2 185.44 97.32 56.47 35.86 24.41 17.54 

2.5 148.45 63.84 31.90 18.21 11.52 7.88 

3 123.79 45.44 20.35 10.86 6.62 4.47 
 

m=1.5 

ARL0=200 

r 1 2 3 4 5 6 

c ARL1 

1 200.00 200.00 200.00 200.00 200.00 200.00 

1.1 173.42 151.85 135.32 122.36 111.87 103.15 

1.2 152.27 118.25 95.20 78.95 66.96 57.78 

1.3 135.10 94.08 69.22 53.29 42.45 34.71 

1.4 120.93 76.22 51.76 37.38 28.27 22.14 

1.5 109.09 62.74 39.67 27.12 19.65 14.89 

1.6 99.07 52.35 31.06 20.26 14.18 10.48 

1.7 90.51 44.22 24.78 15.53 10.58 7.67 

1.8 83.11 37.76 20.10 12.19 8.13 5.83 

1.9 76.68 32.55 16.56 9.76 6.41 4.57 

2 71.03 28.30 13.83 7.97 5.18 3.69 

2.5 50.97 15.62 6.62 3.62 2.37 1.77 

3 38.90 9.82 3.88 2.17 1.52 1.24 
 

Table 4. The ARL 1 of the two-sided control charts for different parameters 

m=2.5 

ARL0=370 

r 1 2 3 4 5 6 

c ARL1 

0.2 1.13 1.01 1.00 1.00 1.00 1.00 

0.4 1.95 1.29 1.11 1.04 1.02 1.01 

0.6 6.30 3.43 2.40 1.89 1.60 1.41 

0.8 42.48 26.45 18.86 14.41 11.51 9.49 

1 370.37 370.37 370.37 370.37 370.37 370.37 

1.2 463.30 302.67 206.32 147.58 109.88 84.48 

1.4 319.67 144.24 72.95 41.28 25.58 17.02 

1.6 229.10 76.39 30.87 15.04 8.51 5.40 

1.8 170.79 44.05 15.10 6.80 3.79 2.48 

2 131.36 27.21 8.34 3.69 2.16 1.53 

2.5 75.41 10.30 2.87 1.48 1.12 1.03 

3 47.99 5.00 1.56 1.07 1.01 1.00 
 

m=2 

ARL0=200 

r 1 2 3 4 5 6 

c ARL1 

0.2 1.27 1.05 1.01 1.00 1.00 1.00 

0.4 2.61 1.61 1.29 1.14 1.07 1.04 

0.6 8.58 4.85 3.39 2.63 2.17 1.86 

0.8 43.08 29.69 22.53 17.99 14.86 12.58 

1 200.00 200.00 200.00 200.00 200.00 200.00 

1.2 264.75 193.44 144.71 112.00 89.23 72.79 

1.4 204.00 109.00 63.97 40.91 27.97 20.15 

1.6 156.55 65.76 32.20 18.10 11.31 7.68 

1.8 123.80 42.40 18.07 9.35 5.61 3.77 

2 100.38 28.83 11.07 5.48 3.29 2.27 

2.5 64.42 13.12 4.38 2.21 1.48 1.20 

3 44.89 7.18 2.37 1.37 1.10 1.02 
 

 

 

 

 According to Figure (1), as r increases, the value of ARL1 decreases. The reason for this trend 

is that the higher the number of failures in the failure censoring test, the longer the test time and 

the more information is collected. 
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 As can be seen in Figure (2), the values of ARL1 decrease by decreasing the value of ARL0. 

The reason for this trend, as explained in the one-sided control chart, is that in a two-sided 

control chart, the lower the ARL0 value, the closer the control limits will be. This allows the 

control chart to detect the change sooner if there is a change in the process. 

 

 
Figure 2. ARL 1 of the two_sided control charts for various values of ARL 0 

 As the trend of Figure (1) shows, the relationship between ARL1 and the change constant (c) is 

such that with increasing constant change value up to c = 1, the ARL1 trend is upward and from 

c = 1 onwards, the trend will be downward. The reason for this trend is that the greater the 

amount of change in a process, the greater the probability of detecting that change and the lower 

the probability of type II error, and consequently the lower the value of ARL1. 

 By increasing the value of the parameter in Figure (2), the changes in ARL1 are as follows. The 

reason for this trend is that as the shape parameter increases, the amount of type II error 

decreases and ARL1 will have a decreasing trend. This trend is shown in Figure (3). 
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Figure 3. ARL 1 of the two_sided control chart for various values of m 

Now, the ARL1 in one-sided and two-sided control charts are compared. A one-sided control chart 

monitors the process from one direction because it has only one control limit. However, due to having 

two control limits, the two-sided control chart can to monitor the process from both sides. For this 

reason, the ARL1 curve of the two-sided chart has skewness and one-sided control charts have no 

skewness towards ARL1 and have a uniform decreasing or increasing trend, which is also shown in 

Figure (4). 

 

 
Figure 4. ARL 1 for one-sided and two-sided control chart for various values of c 

On the other hand, in a one-sided control chart, the ARL1 values are always lower than the ARL1 values 

in the two-sided control chart. Because there is only one control limit in a one-sided control chart, it is 

assumed that the α error exists on only one side, and therefore, the LCL one-sided control chart is larger 

than the LCL two-sided control chart. This causes the one-sided control chart to detect the deviation 

sooner if there is a deviation in the process. 

5. Designing a control chart in a practical example 

In this section, the actual data of a Korean car manufacturer is used to design control charts. The data 

are about the operating time of a part of the machine until the breakdown in a period of one month, 

which follows the Weibull distribution with the shape parameter m = 2.5 and the scale parameter θ0 =
1. It is assumed that ARL 0 = 370 and failure number(r) = 3. The values of Vi are reported in Table 

(5) (Aslam & Jun, 2015). 
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Table 5. The V(i) statistical values for real data 

sample 1 2 3 4 5 6 7 8 9 10 11 

V(i) 8.2600 9.6870 3.2270 3.7560 5.1410 1.3090 2.9770 5.9220 3.4210 4.7180 4.5950 

sample 12 13 14 15 16 17 18 19 20 21 22 

V(i) 7.9940 9.7640 5.3940 2.4050 3.8080 3.8600 1.6550 1.1080 3.1160 4.2380 3.1210 

sample 23 24 25 26 27 28 29 30 31 32 33 

V(i) 7.1010 5.5620 6.4440 4.1890 3.4480 7.2690 4.6650 0.6960 1.9340 2.9680 5.0930 

sample 34 35 36 37 38 39 40 41 42 43 44 

V(i) 5.3030 10.2320 4.6860 3.2180 2.6830 4.6460 10.5180 2.5220 1.1100 4.0510 8.8780 

sample 45 46 47 48 49 50  
    

V(i) 3.2530 2.0900 5.2360 1.3630 4.5920 3.1770      

 
The process is monitored with a two-sided Shewhart control chart. Figure (5), which is related to the 

Shewhart control chart, shows that the process is in control and no factors have caused the process to 

deviate. 

 
Figure 5. The Shewhart control chart proposed for real data 

 
5. Conclusion 

One of the most important and widely used control charts is the Shewhart control charts. The main 

quality characteristic in reliability is the product lifetime. Reducing lifetime is an important issue in 

reliability. Therefore, in this study, in addition to two-sided control charts, one-sided control charts that 

monitor lifetime reduction are presented. In this research, the failure censored test without replacement 

has been used to obtain the statistical. next, the relationships control limits, α and β errors and ARL1                       

are presented. Then the trend of changes in ARL and control limits for different values of effective 

parameters are presented and analyzed. The effective parameters in the Shewhart control charts are the 

number of failures, the shape parameter, the change constant, and the average run length of the in-

control state. According to the results, the one-sided Shewhart control chart performs better than the 

two-sided control chart in detecting reduced lifetime. It is recommended to use one-sided control charts 

in industries that only reduce lifetime is considered. In one-sided and two-sided control charts, by 

increasing each of the values r, m, and decreasing ARL0 , the performance of the control chart increases. 

One of the most important parameters to increase the performance of the control chart is the number of 

failures of the lifetime test, and the more it is considered, the faster the chart reports the change in the 
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process. The control charts presented in this research can be used to monitor the production process of 

products in industries whose product lifetime is long, such as mechanical components, electrical and 

electronics components. Designing CUSUM-Shewhart control charts for hybrid censoring life tests or 

other censoring life tests is a promising directions for future studies. 
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