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Abstract – Every year, natural disasters (e.g., floods and earthquakes) threaten people's lives and finances. 

To cope with the damage of natural disasters, emergency resources (e.g., rescue teams) must be planned 

efficiently. Therefore, designing a decision support model to allocate and schedule rescue teams is necessary 

for the response phase of disaster management. The literature review shows that social aspects of disaster 

management have less been addressed by researchers, whereas this phenomenon must be incorporated into 

decision-making processes. The lack of timely relief implies a loss in people's welfare, which leads to social 

costs called deprivation cost or time. This study proposes a multi-objective mixed-integer programming 

model to assign and schedule the rescue teams considering different rescuers' capabilities, fatigue effects, 

and deprivation time. Due to the NP-Hardness of the proposed model, a hybrid approach based on the Lp-

metric method and meta-heuristic algorithms are applied to solve the given problem. The results show that 

the developed algorithm can obtain high-quality solutions in a reasonable time. 

 

Keywords – Disaster management, Deprivation time, Fatigue effect, Genetic algorithm, Particle swarm 

optimization. 
                                

I. INTRODUCTION 

A natural disaster is a major adverse event resulting from natural processes of the earth that have caused enormous 

harms yearly and threaten many people and infrastructures in the world. The reduction of casualties and economic 

losses is an essential issue in Natural Disaster Management (NDM). Due to the limited ability of the rescue units and 

time pressure, NDM is very complicated, especially when the incidents spread geographically. Hence, rescue teams' 

planning in a response phase of disaster management is one of the most critical emergency operation centers (Karimi 

Movahed et al., 2020; Mohamadi et al., 2020). In the real world, no rescuer can process all types of incidents (i.e., there 

are a specific unit for medical services and another distinct unit for fire stations), so it is necessary capacities of the 

rescuers and required ability of incidents is considered in allocating process, in which this point makes the problem 

harder.   

Recently, an Allocation and Scheduling of Rescue Teams (ASRT) problem is likened to an Unrelated Parallel 

Machines Scheduling (UPMS) problem (Wex et al., 2014). In this regard, rescue teams are considered as machines, and 

incidents are considered as jobs. On the other hand, we can consider relief and traveling times as processing and setup       
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times. Also, if the rescuers are considered salespeople, incidents considered as nodes (i.e., cities), and the sum of 

processing and travel times are considered traveling time, the ASRT problem is similar to the multiple-traveling 

salesman problem (Wex et al., 2014). 

Usually, a population's needs involving a demand for relief services and goods are increased in a critical condition. 

On the other hand, emergency resources have limitations in time, quantity, and ability fields. In this stage, when 

providing humanitarian assistance, there are several difficulties, such as the short time horizon for helping people in 

need and the vast travel distances between distribution centers and the demand points. The situation described above 

may lead to a phenomenon, namely deprivation time. Deprivation time is the period in which the lack of needed goods 

and essential emergency relief leads to a loss in people's welfare (Cotes and Cantillo, 2019). To the best of our 

knowledge, there is no study to consider the mentioned phenomenon in the ASRT problem. 

Regarding the literature, a few studies have dealt with the assignment of the rescue teams in disasters. Falasca et al. 

(2009) proposed a multi-objective model to assist in the assignment of volunteers to tasks. Rolland, Patterson, Ward, 

and Dodin (2010) proposed a decision support model to allocate the incidents to the relief teams and schedules them. 

They applied a hybrid heuristic algorithm based on the neighborhood search and adaptive reasoning technique to solve 

the proposed model. Wex et al. (2014) and Wex et al. (2011, 2012, 2013) studied the disaster management problem in 

the allocation and scheduling approach. They examined the problem under the certainty and uncertainty and solved the 

proposed models by a heuristic method based on Monte Carlo simulation. Rauchecker and Schryen (2018) developed a 

branch-and-price algorithm to handle the relief teams' scheduling in a disaster response problem in a reasonable time. 

Cunha et al. (2018) developed a biased random-key genetic algorithm for the allocation and scheduling of the relief 

teams in the natural disaster. They considered fuzzy processing times for the incidents and showed the proposed 

algorithm could obtain high-quality solutions. Molladavoodi et al. (2018) proposed a mathematical model for a disaster 

relief operation with uncertain demand and developed a hybrid LP-GA to solve the research problem.  

Nayeri et al. (2018a) introduced a fatigue effect in disaster management and proposed a Mixed-Integer 

Programming (MIP) model to design the decision support model for an emergency operation center. They developed a 

hybrid meta-heuristic algorithm to solve the proposed model and showed their algorithm obtained high-quality 

solutions. Nayeri et al. (2018b) developed a goal programming-based decision support model for a multi-objective 

ASRT problem with time-windows for incidents. Santoso et al. (2019) developed a non-linear model for the assignment 

and scheduling of relief teams in a disaster under uncertainty and solved the proposed model with a GRASP algorithm. 

Kumar and Zaveri (2019) used queuing theory to study a resource scheduling problem in post-disaster management. 

Shavarani et al. (2019) proposed a non-linear model and developed three meta-heuristics to solve medical staff 

allocation to operating rooms in a disaster problem. Xu et al. (2019) proposed a Mixed-Integer Non-Linear 

Programming (MINLP) model with a multi-stage construction of rescue teams in disaster management and used an 

accelerated bi-level decomposition algorithm to solve it. Bodaghi et al. (2020) proposed an MIP model to design a 

decision support model for the ASRT problem under uncertainty considering different vehicle types. Zahedi et al. 

(2020) developed a multi-objective decision-making model to determine the optimal routing of vehicles in an 

emergency condition considering dynamic demand. The authors selected a real-case study and applied a genetic 

algorithm to solve the research problem. Wang et al. (2020) studied the allocation of the emergency resource planning 

problem. They proposed a multi-objective programming model and developed a cellular genetic algorithm to solve the 

proposed model. The results showed the efficiency of the developed algorithm. Hu et al. (2016) proposed a bi-objective 

robust optimization model to study emergency resource allocation problems under uncertainty to maximize efficiency 

and fairness under different sources of uncertainties. Then, the authors developed a heuristic-based multi-objective 

particle swarm optimization algorithm to solve the proposed model. Ghasemi et al. (2019) offered a multi-objective 

programming model for investigating location, allocation, and distribution of relief commodities. They applied 

scenario-based programming to tackle uncertainty and used the  -constraint method to solve the research problem. 

Farahani et al. (2020) conducted a review research for investigating humanitarian operations, especially an application 

of operations research. One of the suggestions for future studies that the authors provided, is to incorporate time 
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windows for incident in the mathematical model. 

Table I categorizes some of the related papers and compares them with the current study. As can be seen in this 

table, for the allocation and the scheduling of the rescue teams problem, there are few multi-objective models. Also, in 

this field, a time window for incidents has been less addressed by the researchers. On the other side, deprivation time 

did not investigate by researchers in the allocation and the scheduling of the rescue teams problem. 

Table I. Categorizing some of the essential related studies 

Paper Type of problem 
Mathematical model 

Deprivation 
time 

Time 
windows 

Fatigue 
effect 

Solution 
methodology Single-

objective 
Multi-

objective 

Fiedrich et al., 2000 
Assignment of 

resources 
˟     

Simulated 

Annealing (SA) 

Tamura et al. , 2000 
Disaster decision 

making problem 
˟     

Value function 

under risk 

Rolland et al., 2010 
Allocation and 

scheduling 
˟     Tabu search 

Wex et al., 2014 
Allocation and 

scheduling 
˟     

Monte Carlo-based 

heuristic 
C. Zhang et al., 

2016 
Allocation and 

scheduling 
˟     Heuristic algorithm 

Visheratin et al., 

2017 
Early warning 

systems 
˟     Hybrid algorithm 

S. Zhang et al., 2017 
Allocation and 

scheduling  ˟    
NSGA-II and C-

METRIC 

Cunha et al, 2018 
Allocation and 

scheduling 
˟     GA 

Rauchecker & 

Schryen, 2018 
Allocation and 

scheduling 
˟     Branch & Price 

Nayeri et al., 2018 
Allocation and 

scheduling 
˟    ˟ 

Hybrid 

metaheuristic 

Nayeri et al., 2018 
Allocation and 

scheduling  ˟  ˟  
Multi-choice Goal 

programming 

Sabouhi et al., 2018 
Routing and 

scheduling 
˟     Memetic algorithm 

Santoso et al., 2019 
Allocation and 

scheduling 
˟   ˟  GRASP algorithm 

Kumar et al., 2019 Scheduling ˟     Heuristic algorithm 

Cotes et al., 2019 
Humanitarian 

logistic 
˟  ˟   GAMS 

Xu et al. 2019 
construction of 

rescue units 
˟     PSO 

Bodaghi et al., 2020 
Allocation and 

scheduling 
˟     

Stochastic 

frequency approach 

This research 
Allocation and 

scheduling  ˟ ˟ ˟ ˟ GA-Lp and PSO-Lp 

 

The literature review shows that the ASRT problem has attracted researchers' attention in the last decade. However, 

there are also some research gaps, which are listed below:  

1.  There is no study related to the ASRT problem considering the deprivation time, whereas this is an essential point in 

disaster management. 
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2.  The majority of the related papers proposed a single-objective model, and the multi-objective programming 

approach has less been addressed by researchers in this field. 

3.  Considering time windows as one of the most critical issues in a disaster management problem has less been 

addressed in the related studies. 

 

Due to the above discussions, the main contributions of this research can be summarized as follows: 

1.  To the best of our knowledge, this is the first study incorporating the deprivation time in the ASRT problem. 

2.  This research proposes a multi-objective MIP model to design a decision support model for the response phase of 

disaster management 

3.  This study considers time windows for incidents in the proposed model. 

4.  Because time is a crucial issue in disaster management, a hybrid algorithm is developed to solve the considered 

problem in reasonable computational time in this study. 

 

The remainder of this study is structured as follows. In section II, the presented problem and the mathematical 

model are demonstrated. The solution methodology is described in Section III. Numerical experiments are presented in 

Section IV. Finally, conclusions and future research suggestions are provided in Section V. 

II. MATHEMATICAL MODEL 

In this research, the assigning and scheduling of the rescue teams in a response phase of disaster management are 

investigated. Suppose a condition in which some disasters occur and emergency operation centers should be assigned 

the available rescuers to the incidents. All rescue teams must start the relief operation from the emergency operation 

center and travel between locations of the incidents for processing the corresponding tasks. Since every incident need a 

different ability, and every rescuer has a different capability, each incident should be assigned to a rescue team that can 

do it. On the other side, a fatigue effect is considered in the research problem, and the physical power of the rescue 

teams diminishes after successive operations, their performance is decreased gradually, and it may increase the relief 

time (i.e., processing time). Also, because the relief operations should be started in a specific time interval, we consider 

time windows for the incidents. Fig. 1 shows the schematic of the research problem. 

 

 

 

 

 

 

 

 

 

 

 

              
Fig. 1. Schematic of the research problem 
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Consider a critical condition where n incidents occur and the emergency operation center with m rescue teams 

responsible for relieving incidents. Let    and    denote the severity level and time windows of incident i, respectively. 

   
  shows the required time for traveling between incidents i and j.   

  denotes the processing time (i.e., relief time) of 

the incident i by rescue team k.     
  is a binary parameter that equals one if rescue team k  is capable of relieving 

incident i. Also,   represents the fatigue effect.      
  denotes the actual processing time of the incident (due to the 

fatigue effect), which is scheduled in the r-th position of rescue team k.      
  is the start time of the incident, which is 

scheduled in the r-th position on rescue unit k.     
  shows the travel time of rescue team k for traveling to the location of 

the incident, which is scheduled in position r.    
  and   

  show the deprivation time and completion time of the 

incident i, which is allocated to rescue team k, respectively. Also,      
  is a binary variable, which is equal to 1 if 

incident i is scheduled in the r-th position of rescue team k. Furthermore, we consider one dummy incident was given 

by 0, in addition to n incidents, to show the starting point (depot), and it does not require any processing time and 

destruction factor; however, the rescue team needs a travel time to move from its starting point to the first incident that 

should have relief it. Also, in this research, we calculate the deprivation time using the following formula: 

     

                ( )                 ( )             ( ) (1) 

       
According to Relation (1), in this study, the deprivation time is equal to the difference value between the completion 

time of the incident and the specific time windows of the incident. It should be noted that if the value of the time-

window is greater than the completion time of the incident (deprivation time<0), the deprivation time is set to 0. 

A. Assumptions 

In this research, the following assumptions are considered. 

    The number of relief teams is less than the number of incidents 

    Processing times are not fixed due to the fatigue effect. 

   Each relief team has different capabilities (one relief team can have more than one capability) and each incident 

needs a specific ability to rescue.  

    No interruption is allowed for the relief operations.  

B. Mathematical model 

According to the above definitions, the considered problem can be formulated by: 
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 ‘         
Equation (2) is the first objective function that minimizes the sum of the weighted completion time of the relief 

operation. Relation (3) denotes the second objective function that minimizes the sum of deprivation times. Constraint 

(4) indicates that each incident must be assigned to one of the rescue team's existing positions. Relation (5) guarantees 

that in each position of a rescue team, at most, one incident can be assigned. That's mean in each available position of 

the reduce team, either one incident be allocated, or this position remains empty (no incident assigned). Constraint (6) 

shows that the relief operation begins from the starting point (depot). Relation (7) is the flow balance constraint, which 

indicates that the positions of each relief team must be occupied in ascending order. Relation (8) calculates the actual 

processing time of incident i, which is scheduled in the r-th position of rescue team k due to the fatigue effect. 

Equations (9) to (11) measure the required travel time to go from the location of the incident in position r to incidents in 

position r+1 by rescue team k. Relations (12) and (13) calculate the start and completion times in the relief operation. 

Constraint (14) indicates that rescue team k is only assigned to incident i if rescue team k is capable to serve incident i. 
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deprivation time is calculated in constraint (15). Relation (16) shows the time-windows constraint that indicates relief 

operation of the incident must be started before this corresponding time-window. Finally, constraint (17) shows a range 

of variables. 

Number 2, which exists in Relations (9) and (10), balances these inequalities. To better understanding, we give an 

example below. Let      
  and      

  are equal to 1. Thus, rescue unit 1 should be traveled between the locations of 

incidents 2 and 4 with travel time    
 . Now, we have the following relations. 
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C. Linearization 

Due to Relations (12) and (13), the proposed model is non-linear. To reduce the complexity of the proposed model 

and the computational time, these expressions can be converted to a linear one through Property 1. 

Property 1: Suppose       is the multiplication of two decision variables so that   is a binary variable, and   

is a continuous variable. The following equations can be used to linearize the non-linear terms (Glover & Woolsey, 

1974): 
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The non-linear relation (12) is linearized using this property as follows: 
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 Moreover, the relation (13) is converted to a linear form in the same method. 

III. METHODOLOGY  

This section is devoted to describing the solution method of this research. Based on the literature review, the ASRT 

problem, known as an NP-Hard one (Wex et al., 2014). Hence, the exact method cannot solve this problem in a 

reasonable time. This study develops a hybrid approach based on an Lp-metric method and meta-heuristic algorithms to 

handle this issue. The proposed hybrid algorithm is described below. 

A. Lp-metric method 

This paper applies the Lp-metric method to convert the proposed multi-objective model to a single one (Mirzapour 

Al-E-Hashem et al., 2011). In the mentioned method, the problem segregated into sub-problems that each problem is 

solved with the corresponding objective function separately. The problem is then reformulated as a single-objective 

programming model to minimize normalized differences between each objective function and its optimal value 

(Mirzapour Al-E-Hashem et al., 2011). Suppose that    and    denote the first and second objective functions, 

respectively. On the other side,   
  and   

  are optimal values for the first and second objective function. Under these 

conditions, the Lp-metric method considers the objective function formulated in Relation (27), where   shows the 

weight of the objective function (Mirzapour Al-E-Hashem et al., 2011). 

* *

1 1 2 2
3 * *

1 2

[w . (1 w). ]
Z Z Z Z

Z
Z Z

 
  

  

(27) 

B. Genetic algorithm  

The Genetic Algorithm (GA) introduced by Holland (1975) is a population-based algorithm widely applied to solve 

optimization problems. It starts by generating an initial population (a set of chromosomes). Then, each chromosome's 

fitness function is calculated, and chromosomes with higher fitness values will receive more chances to be selected for 

reproducing the next generation. Afterward, crossover and mutation operators are performed, and a new population is 

created. Then, a new population's fitness function is evaluated, and this loop continues until the stopping criterion is 

met. The structure of a chromosome is designed for this research, as described below: 

Designing an efficient solution representation is essential in running algorithms (Mir & Rezaeian, 2016). In this 

section, we explain the chromosome that is designed in this paper. Our solution representation is divided into two parts. 

Assume there are n incidents and m rescue teams. The first part is composed of incidents symbols, from 1 to n, and the 

second section is composed of m-1 symbols, represented by "#", from 1 to m-1, to divide the relief operations to assign 

the relief teams. For instance, with n incidents and m relief teams, a solution includes (n+m-1) gens (Mir & Rezaeian, 

2016). For example, Fig. 2 depicts an example with three rescue teams and seven incidents. Based on this figure, 

incidents 3 and 5 are allocated to rescue team 1, incidents 4, 2, and 1 are assigned to rescue team 2, and incidents 6 and 

7 are assigned to rescue team 3. 

The crossover operator used in this paper is a single-point crossover that is illustrated in Fig. 3. In this operator, as 

shown in Fig. 3, two parents are randomly selected from the population (i.e., parents 1 and 2) at the outset. Afterward, a 

cut point for parent strings is selected randomly. When a crossover point is determined, all elements before the 

crossover point are copied from the parent 1 to the first segment of the direct offspring 1. The second segment of the 

primary offspring one is made up of copying all elements after the crossover point from parent 2. The primary offspring 

two is made using a similar way. Due to some of the elements in the created offspring being repetitive, which leads to 

generating illegal solutions, the primary offspring must be reformed by applying a modification mechanism. Thus, to 

modify generated offspring, we reconnoiter the location of repeated elements, which appear in direct offspring before 

the crossover point. 
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Also, the mutation operator designed for this research is depicted in Fig. 4. In this operator, the following operations 

are performed. 

    Swap: two genes of a solution are selected, and their positions are substituted. 

    Inversion: two genes of a solution are selected, and the positions of every gens between them are reversed. 

 
     

3 5 # 4 2 1 # 6 7 

         

rescue team 1  rescue team 2  rescue team 3 

 

Fig. 2. Solution representation 

 

    
Cut point 

        
Cut point 

     
                         Parent 1 1 2 3 * 4 5 * 6 7 8 9 

 
3 7 * 9 2 4 5 * 8 6 1 Parent 2 

                         Primary 

offspring 

1 

                       
Primary 

offspring 

2 

1 2 3 * 4 5 6 * 8 6 1 
 

3 7 * 9 2 5 * 6 7 8 9 

                       
                         Final 

offspring 

1 

                       
Final 

offspring 

2 

7 2 3 * 9 4 5 * 8 6 1 
 

3 1 * 4 2 5 * 6 7 8 9 

                                  
Fig. 3. Example of a crossover mechanism 

       
 

initial sol.   1 2 3 * 4 5 * 6 7 8 9 
 

 initial sol.   1 2 3 * 4 5 * 6 7 8 9 

  
                      

   
                      

neighbor    1 2 3 * 7 5 * 6 4 8 9 
 

neighbor    1 2 * 5 4 * 3 6 7 8 9 

      
(a) 

            
(b) 

     
 

   
Fig. 4. Example of the mutation mechanism: (a) swap; (b) inversion 

C. PSO algorithm 

PSO introduced by (Eberhart & Kennedy, 1995) is a standard population-based random search method, which is 

designed to solve the optimization problems. In this algorithm, the position and velocity vectors of the particles are 

updated in each iteration, according to Eqs. (28) and (29). 

(k 1) (k) (k 1)i i ix x v   
            

(28) 

1 1 2 2(k 1) . (k) c . .( x (k)) . .( (k))i i i i iv w v r pbest c r gbest x     
 

      

(29) 



74 Nayeri, S. et.al.  / Solving an Emergency Resource Planning Problem with Deprivation Time by a Hybrid ... 

 

where   ( ) shows the position vector of particle i in the k-th iteration and   ( ) represents the velocity vector of 

particle i in iteration k.        is the best particle i obtained until iteration k, and       is the global best position vector 

among the population in the k-th iteration, which is achieved so far. w shows Inertia weight,    and    denoted 

acceleration coefficients.    and    are random numbers between [0 1]. 

This paper uses a random key (RK) technique to transform a vector in continuous space to one in discrete space. In 

this approach, a position in RK continuous space is converted to discrete space. Every position in RK virtual space is 

indicated by a vector of real numbers, while a vector of integers indicates every position in the problem-solution space.  

In this method, if there are m relief teams and n incidents. We generate n+m-1 random numbers in the interval [0, 

1). Afterward, the random numbers are sorted in ascending order. The position of the sorted numbers considered as a 

solution structure. For example, consider a problem with seven elements, in which Fig. 4 shows an implementation of 

the RK method. The allocation of incidents to the rescue units is similar to the one mentioned for the GA. 

D. Hybrid algorithm 

This section devotes to explain the proposed hybrid algorithm. At first, in the Lp-metric method, the ideal solution 

must be determined as given in Table II. To do this, the values of both objective function are calculated for the initial 

population (or swarm). Here, the value of the first and second objectives represent by f1i and f2i. Then, the best value of 

each objective function in an initial population (or swarm) is determined to utilize in used in GA and PSO as the fitness 

value obtained by the Lp-metric method. For example, the flow diagram of the Lp–GA algorithm is shown in Fig. 6.  

            
0.3 0.75 0.42 0.1 0.68 0.05 0.55 

Random numbers 

       

1 2 3 4 5 6 7 

Position of numbers 

       

0.05 0.1 0.3 0.42 0.55 0.68 0.75 

Sorted random numbers 

       

6 4 1 3 7 5 2 

Sorting based on the position of numbers 

          
Fig. 5. An example of the RK method 

     

As can be seen in Fig. 6, at first, the initial population is generated randomly. Then, the objective functions for each 

solution are measured. The Fmin is calculated by using the previous step results. Afterward, the fitness function related 

to Lp-Metric method is evaluated for solutions. Eventually, if the stopping criterion is satisfied, the algorithm is 

terminated. Otherwise, a new population is generated by applying crossover and mutation operators, and the loop is 

made again. 

IV. COMPUTATIONAL EXPERIMENTS  

This section presents the results obtained by the proposed methods. At first, necessary data is estimated, then 

parameters of the algorithms are tuned, and next, the proposed model is solved using the developed algorithms, and 

obtained results are reported. 
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A. Data generation 

In this study, the problem size is determined by the number of incidents (n), which varies from 6 to 40, and the 

number of rescue units (m), which varies from 2 to 20. According to Wex et al. (2014), the processing times of the 

incidents are generated based on a normal distribution with average value 20 and variance value 10 and the travel time 

has a normal distribution with average value 1 and variance value 0.3.  

Table II. Maximum and minimum values for hybridization of the GA (PSO) and Lp-metric 

Population (swarm) number First objective function Second objective function 

P1 (S1) f11 f21 

P2 (S2) f12 f22 

P3 (S3) f13 f23 

... ... ... 

Pn (Sn) f1n f2n 

fmin f1min f2min 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        
Fig 6. Flow diagram of the Lp-GA algorithm 
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The factor of the destruction of an incident shows the severity level of the incidents, as introduced by the U.S. 

Department of Homeland Security (2008): low (1), guarded (2), elevated (3), high (4), and severe (5) harm. Hence, we 

select a discrete uniform distribution for the severity levels in the interval of      . Capabilities of rescue units are 

created in a zero-one matrix, and the fatigue effect is equal to 0.15. 

B. Parameter setting 

Each meta-heuristic algorithm has some parameters, whose values of these parameters dramatically impact the 

performance of the algorithm. There are various methods to tune the parameters of the algorithms, in which the Taguchi 

method (Taguchi, 1986) is used to caliber the parameters. This approach tune the parameter based on the signal-to-noise 

ratio. In this paper, the maximum iteration (     ), number of population (    ), rate of crossover (  ) and rate of 

mutation (  ) are considered as the GA parameters, and      ,           ,  ,     and    are considered as PSO 

parameters. Table III shows the parameters and their levels for the Taguchi design. The S/N ratio charts obtained by 

implementing the Taguchi method in MINITAB software are given in Fig. 7. In the Taguchi method, whatever the S/N 

ratio is at the highest level, the parameter value is better. Hence, according to this figure, the best value for each 

parameter of the algorithms are given in Table IV. 

C. Report on the results 

In this section, the obtained results are reported and analyzed. Table II shows the results of solving the considered 

problem using the proposed algorithms. In this research, 15 test problems of various sizes are designed, and these 

problems solve with the proposed algorithms. Then, the values of the first objective function, second objective function, 

Lp-metric objective function, and CPU time are reported in Table V. It should be noted that the algorithms run each test 

problem 10 times, and the best value obtained for objective functions is reported. It should be noted that the values for 

the parameters of the algorithms are selected based on some related papers in the literature (e.g., Nayeri et al. (2018a) 

and Mir & Rezaeian (2016)). 

Table III. Parameters and their levels in the GA and PSO algorithms 

Algorithm Parameter 
Level 

1 2 3 

   

MaxIt 300 400 500 

Npop 50 60 70 

Pc 0.6 0.7 0.8 

Pm 0.1 0.2 0.3 

    

MaxIt 300 400 500 

Swarm-Size 50 60 70 

C1 1 1.5 2 

C2 1 1.2 2 

W 0.4 0.9 1.2 
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Table IV. Best values for parameters 

Algorithm Parameter Best level Value 

   

MaxIt 1 300 

Npop 1 50 

Pc 1 0.6 

Pm 1 0.1 

    

MaxIt 1 300 

Swarm-size 2 60 

C1 3 2 

C2 3 2 

W 3 1.2 
       

Table V. Results of the solving algorithms 

TP (m,n) 
GAMS Hybrid GA-Lp  Hybrid PSO-Lp 

FOF SOF CPUT (s) FOF SOF PRE/RPD CPUT (s) FOF SOF PRE/RPD CPUT (s) 

1 (2,6) 1640.8 0 17.3 1640.8 0 0.0 31.2 1640.8 0 0.0 29.8 

2 (3,7) 1758.3 3.1 28.8 1758.3 3.1 0.0 35.5 1758.3 3.1 0.0 30.1 

3 (3,8) 1997.5 8 40.5 1997.5 8 0.0 37.3 1997.5 8 0.0 31.5 

4 (4,8) 1908.1 4.5 57.3 1908.1 4.5 0.0 37.8 1932.7 6.3 1.3 33.5 

5 (5,9) 2275.6 13.2 72.8 2394.8 16.4 5.2 40.2 2402.8 18.5 5.6 35.4 

6 (5,10) 2518.2 20.5 184.1 2605.7 23.2 3.5 45 2695.1 23.2 7.0 41.8 

7 (6,10) 2393.5 15.7 256.5 2500 17.9 4.4 51.8 2577.3 19.3 7.7 46.2 

8 (6,12) 2671.8 21.1 481.6 2818.5 29.5 5.5 66.9 2895.7 33.6 8.4 60.5 

9 (7,12) 2867.1 18.9 657 2976.3 25.2 3.8 72.5 3092.1 25.2 7.8 66.8 

10 (7,15) 3196.5 34.6 903.7 3375.8 42.1 5.6 80.3 3448.5 46.5 7.9 73.3 

11 (10,20) N/A N/A >10000 5108.3 73.8 0.0 145.7 5170.9 81.1 1.2 126.1 

12 (11,20) N/A N/A >10000 4983.1 66.5 0.0 145.8 5038.3 74.8 1.1 129.5 

13 (11,25) N/A N/A >10000 6682.6 87.2 0.0 151.3 6758.5 95.4 1.1 136.7 

14 (12,25) N/A N/A >10000 6437.5 79.8 0.0 158.1 6510.1 88.5 1.1 141.2 

15 (12,30) N/A N/A >10000 7815.9 112.3 0.0 167.2 7955.6 125.1 1.8 150.6 

16 (14,30) N/A N/A >10000 7534.2 92.5 0.0 166.5 7610 100.8 1.0 155.3 

17 (15,30) N/A N/A >10000 7375.6 83.4 0.0 168.3 7452.9 91.2 1.0 153.1 

18 (18,35) N/A N/A >10000 8856.3 100.8 0.0 171.3 8975.2 110.6 1.3 156.8 

19 (19,35) N/A N/A >10000 8275.5 91.4 0.0 178.8 8380.7 101.7 1.3 161.7 

20 (20,40) N/A N/A >10000 9578.4 115.6 0.0 182.4 9688.5 130.2 1.1 163.5 

TP: Test Problem; FOF: First Objective Function; SOF: Second Objective Function; LP: LP-metric objective function; 

CPUT: Computational Time 
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To validate the results obtained by the proposed algorithms, test problems in small sizes (problems 1-10) are solved 

with the exact method (i.e., GAMS software), and the Percentage Relative Error (PRE) is used for examining the 

algorithms. The PRE is computed by: 

100sol sol

sol

ALG OPT
PRE

OPT


 

 
 

(28) 

       

Where,        and        are the optimum value obtained by GAMS software and the objective value obtained by 

each proposed meta-heuristic algorithm, respectively.  

For large-sized test problems (problems 11-20), the solution obtained by algorithms compared using the Relative 

Percentage Deviation (RPD) criteria, which is measured by: 

100sol sol

sol

ALG Best
RPD

Best


 

 
(29)               

The ALGsol is the solution obtained by the algorithm, and the Bestsol is the best solution of all algorithms. 
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(b) PSO           
Fig. 7. Taguchi ratios for the proposed algorithms 
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As shown in Table V, the proposed hybrid algorithms can obtain optimal/near-optimal solutions in a shorter CPU 

time than GAMS software. Fig. 8(a) shows the comparing between GAMS software and the proposed algorithms in 

small-sized test problems. Based on Fig. 8(a), the developed algorithms significantly have better performance than the 

exact method in terms of CPU time. Also, Fig. 8(b) presents the CPU times of the algorithms in solving large-sized 

instances. According to Fig. 8(b), in large-sized instances, the performance of the hybrid PSO-Lp algorithm is better 

performance of the GA-lp in terms of the CPU time metric. 
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(b) Large-sized problems 

 

Fig. 8. Comparing the CPU time of the algorithms 

In association with the quality of solutions, the obtained results are compared in Figs. 9 and 10. Fig. 9 shows that the 

developed algorithms can obtain optimal/near-optimal solutions with low deviation. Moreover, based on Fig. 9(a), in 
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small-sized instances, the hybrid GA-Lp performance is better than another algorithm in terms of solution quality for 

the first objective function. Also, as shown in Fig. 9(b), for the second objective function, the performance of the GA-

Lp algorithm is better than another one. On the other side, an analysis of variance (ANOVA) is applied to evaluate the 

statistical validity of the obtained results according to the RPD criteria. Fig. 10 represents the LSD (least significant 

deviation) diagram for the metaheuristic approaches at the confidence level of 95%. According to Fig. 10, the GA-Lp 

has better performance than PSO-Lp in RPD criteria. 
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Fig. 9. Comparing the quality of solutions (PRE)  
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(a) Second objective function 

 

 

 

 

 

 

 

 

 

 

          
(b) First objective function 

        
Fig. 10. Comparing the quality of solutions (RPD)  

D. Sensitivity analysis 

This section devotes to examine the impact of changing the value of some parameters on both objective functions. 
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the result is illustrated in Fig. 11. As can be seen in this figure, increasing the fatigue effect parameter leads to an 

increase in both objective functions. The results show that a 0.3 increase in the fatigue effect leads to a 41% increase in 

the first objective function and a 38% increase in the second objective function. These points show the significant effect 

of rescuers' physical power inefficiency of the operation relief. 

The test problem was also solved with different values for the traveling time parameter (-20%, -10%, Base Case, 

+10%, and +20%). The sensitivity analysis results are depicted in Fig. 12, which shows that increasing the travel time 

leads to an increase in both objective function values almost linearly. Based on Fig. 12, a 20% decrease in travel time 

from the base case resulted in a 17% improvement in the first objective function and a 27% improvement in the second 

objective function. On the other side, a 20% increase in travel time than the base case leads to a 19% increase in the first 

objective function and a 33% increase in the second objective function. 

 

 

 

 

 

 

 

 

 

 

         
Fig. 11. The sensitivity of the objective function values to the fatigue effect 

 

 

 
 

 

 

 

 

 

 

         
Fig. 12. The sensitivity of the objective functions to the traveling time 
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V. CONCLUSIONS  

This paper addressed the ASRT problem, which played an essential role in the response phase of disaster 

management. The literature showed that the researchers had paid less attention to multi-objective programming models 

and social aspects (e.g., deprivation time) in this research field. In this study, a multi-objective MIP model was 

proposed to minimize the total weighted completion times and the sum of deprivation times. The deprivation time, 

known as one of the social concepts in disaster management problems according to this phenomenon, the lack of timely 

relief, implied a loss in people's welfare. In this paper, to more similarity to the real world, some features like different 

capabilities for rescue teams, different ability to process incidents, fatigue effect, and time windows were considered. 

Then, due to the complexity of the considered problem, two hybrid algorithms based on the Lp-Metric method and 

meta-heuristic algorithms were developed to solve the proposed model in a reasonable time. The results showed that the 

developed algorithms could obtain optimal/near-optimal solutions in a reasonable time. In detail, in terms of CPU time, 

the PSO-Lp algorithm has better performance than GA-Lp. On the other side, the GA-Lp algorithm has better 

performance than PSO-Lp in terms of the quality of the solutions. The sensitivity analyses showed that a 20% decrease 

in travel times could improve the first and the second objective functions by 16% and 27%, respectively. Also, the 

significant impact of the fatigue effect on the objective functions is observed from the results, so that 0.3 increase in the 

fatigue effect resulted in 41%. Eventually, some managerial insights are provided based on the obtained results to 

improve operation relief. We suggested to managers of emergency operations that try to increase the physical power of 

rescuers that leads to improve in the objective function drastically. Also, some strategies are used to reduce the travel 

time that leads to dramatically decrease in the total completion time and deprivation time. 

Suggestions for future studies include considering assignments of the collaborative rescue teams (co-allocation) to 

each incident and considering different modes for travel the rescue teams. Researchers can also be considered 

uncertainty in the research problem and apply robust convex optimization methods, robust fuzzy optimization, to tackle 

uncertainty. Another direction for future research is to investigate the problem under multi-depot mode. 
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