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Abstract – In healthcare systems, one of the important actions is related to perishable products such as red 

blood cells (RBCs) units that its consumption management in different periods can contribute greatly to the 

optimality of the system. In this paper, main goal is to enhance the ability of medical community to organize 

the RBCs units’ consumption in way to deliver the unit order timely with a focus on minimizing total costs of 

the system. In each medical center such as hospitals or clinics, decision makers consider a one-day period for 

their policy making about supply and demand of RBCs. Based on the inventory status of the previous day, 

decisions are made for following day. In this paper, we use Markov decision process (MDP) as a sequential 

decision-making approach for blood inventory problem considering red blood cells consumption. The 

proposed MDP model for RBCs consumption management is solved using sequential approximation 

algorithm. We perform a case study for the proposed model using blood consumption data of Zanjan, Iran. 

Results for several blood types are discussed accordingly. In terms of total cost of the system, LIFO-LIFO 

policy is best policy for RBCs consumption among all other policies. In order to analyze the importance of 

some parameters in the model, a sensitivity analysis is done over shortage cost. 
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I. INTRODUCTION  

Collecting, testing, processing and distributing blood products from the donor to the recipient are most important 

processes of blood supply chain network (BSCN). As part of an ordinary medical treatment process, blood products are 

delivered to patients for different kinds of diseases such as organ transplant surgery as well as emergency situations. 

The availability of different blood products is essential in medical centers since it has a direct relationship with life of 

patients and fatality rate that would bring huge costs for the system. With respect to an official report from American 

Red Cross report in 2014, just 10% of eligible people donate blood which far lowers in countries with lower wages 

based on another report from World Health Organization. This shows that the decision-making process to satisfy the 

blood units’ demand in a BSCN is challenging with respect to an increase in donor population and blood units’ demand 

(Seifried et al., 2011). Although blood donation is made as a voluntary activity in most of the countries, blood donation 

is affected by different costs such as testing, segmentation (derivation of different blood products) that involves a series 

of actions related to the storage and distribution. An efficient BSCN must have several important characteristics such
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as the ability to satisfy the demands considering all involved costs and the ability to deliver the blood products at the 

right time considering their expiration date. Thorough several permanent processes for blood collection and with respect 

to many factors such as donation convenience, risky incidents during the donation, incentive facilities and accessibility 

to resources can affect donor’s decision. The balance between supply and demand in the BSCN needs the development 

of number of infrastructures for collection, process, and distribution of blood units.  Decision-making process for 

critical systems such as BSCN is of great significance due to its high complexity and its direct relationship with life of 

human beings of the system. Katsaliaki and Brailsford (2007) stated that over 100 products types are derived out from 

each blood units such as plasma, red blood cells, platelets, etc. Approximately 63% of blood transfusion includes RBCs, 

18% consists of plasma and 14% includes blood platelets (Fanoodi et al., 2019). RBCs are required in the treatment of 

anemia, where platelets are used for cancer diseases, and plasma is utilized for the treatment of burning.  
             

Due to the presence of different supply chain configurations in real-world, different policies in domestic blood 

banks affect several systems, most importantly hospitals as well as blood processes such as collections, processing and 

distribution of multiple demand units. Strategies taken in each healthcare center can be different according to policies 

and regulations in different countries. However, the goal of all healthcare systems in all countries is to supply adequate 

blood products with a focus on minimization of cost and perishability. Moreover, specific factors of blood products 

such as blood types, adaptation and storage time of blood products should be taken into consideration in order to make a 

balance in blood supply and decision processes. There are eight main blood groups as A, B, AB, O+ and O- with a 

specific ratio in each human. Platelets have a life span of 5 days with a minimum useful life, where best-lasting plasma 

has a life span of one year which is highest among all blood types. This shows that all blood products have a specific 

life span and should be used during that time. This denotes that if a blood product is not consumed before its useful life, 

it should be eliminated. 

Optimal management of blood products as a valuable product can have a great contribution to the health of the 

human community. Therefore, the main purpose of this paper is to contribute to the medical and the human community 

by developing a reliable decision-making tool to provide fast and timely blood products at the minimum cost. In this 

study, we developed a MDP model for blood bank inventory problem with a focus on RBCs inventory problem and 

minimizing total costs of the system. 

In section 2, we review the literature of BSCN. MDP Model formulation is presented in next section. Case study and 

computational results are reported and discussed in section 4. Finally, we conclude in section 5.  

II. LITERATURE  

Operations research is one of the frequently used methodology for health problems for the recent two decades 

(Papageorgiou, 1978; Rais and Viana, 2011). Syam and cote (2010) presented a location-allocation mathematical model 

for specialized health systems considering three important factors such as the degree of centralization of services, the 

role of patient retention as a function of distance to a treatment unit and the geographic density of the patient 

population. Recently, Pirabán et al. (2019) did a state-of-art literature review for supply chain management in blood 

industry in terms of proposed models and methods in the literature which are published between 2005 and 2019. 

A. Simulation and MDP  

Pegels and Jelmert 1(970) initially used Markov chain models for blood inventory problems. Their model was aimed 

at two important things; to determine the effects of the issuing policies on average inventory levels which highly 

counted on determining blood shortage probabilities, and on the average age of blood at a certain time. Brodheim et al. 

(1975) proposed Markov chain models for perishable products like blood to obtain shortage rate, the inventory life span 

and approximate amount of outdated products. A shortage-based simulation model was proposed by Rabinowitz (1973) 

for the inventory system of a blood bank to show the influences of several inventory policies. Cohen and Pierskalla 

(1975) presented experimental and mathematical models to do an analysis for management strategies in inventory that 
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can be implemented for a regional blood bank. A simulation model was presented in order to determine outdated 

products as well as blood shortages for cross-matching based on number of parameters such as transfusion information 

of cross-matching blood units (Jagannathan and Sen, 1991). In another similar study, Rytilä and Spens (2006) proposed 

a discrete event simulation model to organize blood transfusion services. Considering production cost and inventory 

management of platelets, Haijema et al. (2007) utilized dynamic programming, MDP, and simulation to model blood 

inventory management problem for a real case study in Holland. With a focus on minimization of outdate rate for blood 

products, Duan and Liao (2013) developed a simulation model for supply chain of platelet. Blake and Hardy (2014) 

presented a simulation model which was focused on investigating demand and supply policies in blood regional 

network in order to optimize number of RBCs orders. Zahraee et al. (2015) used an integrated method consisting of 

dynamic programming and Taguchi method to design a robust blood supply chain using donor-related parameters as 

arrival rate, inventory level and policy used for blood delivery system. Selvakumar et al. (2019) proposed Zonal 

network and pull system models for blood supply chain with a focus on maximizing the availability of blood and 

minimizing wastage of blood at the same time using Arena software. Attari et al. (2019) developed Markov decision 

process to optimize the policy of red blood cell consumption for type A+ for a real case study of Iran. 

Fanoodi et al. (2019) used artificial neural networks and ARIMA models to forecast daily blood platelet demands 

with an aim to decrease the uncertainty in the supply chain of type O+ and A+ for a real case study in Iran. They 

showed the superiority of the proposed artificial neural network by the improvement in prediction of uncertainties in 

daily demands. Dharmaraja et al. (2019) proposed a model to forecast blood demand in blood banks, optimally allocate 

blood units to blood banks with a focus on surplus and shortage amounts and finally select the best path to deliver the 

demands to blood banks for a real case study in India. 

B. Mixed-integer programming  

A robust BSCN was developed by Jabbarzadeh et al. (2014) in disasterous situations which determines blood 

facility location and allocaion of products. In another similar study, a possibilistic MIP was presented to make 

managerial decision in a blood collection system (Zahiri et al., 2015). Osorio et al. (2017) proposed a simulation-

optimization approach to help the decision-making process in blood production planning. Supply chain flow, collection, 

production, storing and distribution are analyzed using discrete-event simulation model. An integer linear programming 

was used to determine the required number of donors, collection methods and production amount. Yousefi Nejad Attari 

et al. (2017) proposed a constrained bi-objective programming model for a BSCN where the model was focused on 

minimization of blood wastage and shortage costs as well as increasing unsatisfied demand of blood products in 

hospitals. Salehi et al. (2017) presented a two-stage robust stochastic model for blood supply chain during a crisis such 

as an earthquake. Dillon et al. (2017) considered a policy-based two-stage stochastic programming model with an aim 

to minimize the operational costs of BSCN like shortage and wastage costs.  Najafi et al. (2017) proposed a bi-objective 

integer programming for blood inventory management with the main focus on minimization of shortage and wastage of 

blood considering the uncertainty in supply and demand of blood units as well as blood transshipment. A chance-

constraint programming approach was applied to address this problem. Samani et al. (2018) developed a two-stage 

stochastic programming for an integrated blood supply chain in disaster relief network. In order to solve the model, they 

proposed a two-stage mixed possibilistic-stochastic programming for minimization of maximum unsatisfied demand, 

perishability and shortage of blood products. Rajendran and Ravindran (2019) proposed an improved stochastic genetic 

algorithm for inventory management of platelets in a blood supply chain considering the uncertainty in demand. Their 

model is focused on the minimization of wastage and shortage of blood product. Özener et al. (2019) presented a 

mixed-integer programming model for blood donation tailoring problem which is focused on finding optimal donation 

schedules to satisfy the demand units completely. The proposed model is based on minimizing holding and wastage 

costs of inventory. A column generation-based heuristic and rule-of-thumb heuristic approach were proposed to solve 

the problem for larger data sets. Hosseini-Motlagh et al. (2019) proposed a bi-objective two-stage stochastic 

programming model for location-allocation and inventory management of red blood cells with an aim to minimize the 

transportation, wastage and holding costs. In order to take the uncertainty of parameters into account, they applied a 

robust optimization method to deal with it. The proposed decision-making frame was performed for a real-life case 
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study in Iran. 

According to Table I, we categorize studies related to BSCN in following research areas: 

  Modeling approaches. Mathematical models for BSCN problems can be using several kinds of variables such 

continuous, integer and binary. Using these variables, several mathematical methods such as linear programming 

(LP), mixed integer programming (MIP), goal programming (GP), bi-objective mathematical programming, 

dynamic programming (DP), Markov decision process (MDP) and multi-criteria decision methods (MCDM). 

   Uncertainty sets. Mathematical models proposed for BSCN problems can be either based on deterministic models 

(M) or uncertain models such as fuzzy set theory (FS), stochastic programming (SP) and robust optimization (RO), 

etc. 

   Time periods. Problems can be formulated in either single or multiple time periods.  

   Objective functions. Proposed mathematical models for BSCN problems can have either single objective function or 

multi-objective functions.  

   Solution approaches. Several solution algorithms are used for BSCN problems in the literature. We categorize these 

approaches as exact methods (E), heuristic and meta-heuristics algorithms (H/MH) and simulation techniques(S). 

   Research scopes. BSCN problems are mostly based on a number of important scopes such as distribution (Dis), 

collection (Co), cross-matching ratio (C/T). 

   Inventory performance analysis. We categorize inventory costs as wastage (Wa), shortage (Sh) and holding (Ho) 

costs. Besides, reliability of donated blood (RDB) and freshness of blood (FB) are other noticeable performance 

measures that can be investigated within inventory systems. 

   Demand points. Mathematical formulations for BSCN problems either have single or multiple demand point. 

   Shortage costs. Shortage costs in BSCN is either based on the patient (D) or not on a patient (ND) 

To best of our knowledge, there were no studies which aimed to optimize the red blood cells consumption policy 

using MDP. Based on Table I, we see that there was only a study that considered the dynamic feature of the blood 

supply chain problem. In real-life problems, demand is not crisp and changes over the time horizon. The best way to 

take into account the probability of demand occurrence in each day is by using dynamic programming methods such as 

MDP.  The findings of the model would help managers at blood transfusion and health centers to efficiently control 

their inventory problems.  

III. PROBLEM DESCRIPTION AND MODEL FORMULATION 

Considering inventory management problem in BSCM, most of the studies are focused on developing tools that can 

enhance their ability to determine optimal blood production and make a balance for blood products and outdate 

products. Two important problems in BSCM are amount order and tools that can help managers in health sector to 

determine them in order to not having excessive or shortage in blood products in m period. Equally important, managers 

take into account situations where unsatisfied demands can be considered for emergency cases. In this paper, we 

develop a mathematical model for an inventory management problem in the storage of hospitals and blood banks. Most 

important issue in BSCM is to come up with a decision-making tool that can analyze inventory risks and try to 

minimize the shortage of blood units as well as outdated products. 

RBCs are categorized mostly based on age of the donor. Each age group is along with the status quo of the systems 

at that time period. Therefore, the number of states in each blood inventory system is equal to the number of products in 
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each dimension which finally becomes extensive when used for real-life large scale data set is. We can illustrate this by 

the example that considers the maximum product life expectancy is 21 days with 35 products in the inventory so that 

there exist 35 states in the inventory system. Hopkins Medical Institute has reported that RBCs which stay more than 21 

days in the inventory bring up issues related to flexibility that would need the re-acquisition of tiny capillaries 

throughout the body, nevertheless, and then RBCs cannot transfer oxygen to where they need it (Frenk et al., 2013). 

MDP is a system that decision maker can take a sequence of decisions over a time horizon which is denoted as 

status. As transition happens and we move from one state to another, statuses change. Best set of alternatives are chosen 

by decision maker in each iteration (stage). The selection of best set of alternatives in each iteration leads to an effect on 

the probability of the next transition and makes a sudden increase or decrease in current and next statuses of the system. 

The outcome in MDP model is calculated by the status of the inventory system at each iteration, previously taken 

decisions, the transition probabilities from one state to another considering different involved parameters. Most 

important problem that a decision maker deals with in MDP, is to select the sequence of activities that happen in the 

system in order to maximize the total profit. In this study, we first aimed to formulate RBCs as a MDP model for a real 

case study in Iran.  

In the next step, in order to take into account, the age of blood products in inventory system, a series of policies for 

order considering optimal inventory time are required.  This also applies for outdated blood products in the inventory 

that should be considered within the inventory system. For this problem, the maximum life span of RBCs is considered 

as m day. A m-dimensional vector is considered to store the information on the number of RBCs in inventory for each 

age group. The set      consists of    that denotes number of RBCs products with r remaining life at the beginning 

of each time period. At the beginning of each time period (day), RBCs production amount is determined. In MDP 

model, it is assumed that production amount that is determined at the beginning of the day does not change through the 

end of the day. At the end of the day, RBCs produced on that day is added to the inventory, and then a new decision is 

made for the next day.  

As we move from day d to day d + 1, a sequence of events happen as follows:  

   RBCs in the inventory are used to satisfy demand at day d and previous days. 

   As old RBCs from inventory are used to satisfy demand at day d, a mismatch cost happens in the system.  

  Considering inventory level, blood bank or hospital faces a shortage cost when inventory level is lower than the 

demand.  

   As a time period finishes, RBCs get one-day-old. 

   Inventory level can be more than demand. 

   At the end of the day, released products are added to the inventory level. 

Abbreviations: RBCs = Red Blood Cells; BSCN = Blood Supply Chain Network; BSCM = Blood Supply Chain 

Management; MDP = Markov Dynamic Programming; MCDM = Multi-Criteria Decision-Making; BNGP = Binary 

Nonlinear Goal Programming; FS = Fuzzy Set; SP = Stochastic Programming; M = Deterministic model; E = Exact 

algorithms; H/MH = Heuristic/Meta-Heuristic; S = Simulation; Dis = Distribution; Co = Collection; C/T  = Cross-

match; Wa = Wastage; Sh = Shortage; Ho = Holding; RDB = Reliability of Donated Blood; FB = Freshness of Blood 
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Table I. Recent BSCM studies 
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A. Notations  

m Maximum life span of RBCs product 

r Remaining product life of RBCs products  

   Number of RBCs with r remaining life 

X System status at the beginning of each day 

Y System status at the end of day 

n Denotes number of days that are repeated 

a Decision in each state with respect to policy I 

I Supply policy  

J Fresh RBCs demands 

K Old demands  

  
 
 Fresh RBCs demand that are met by RBCs with r remaining life and depends on 

(n,X,J,K,I) and demand type 

  
  Old demands that are met by RBCs with r remaining life and depends on (d,X,J,K,I) 

and demand type 

   Number of RBCs that are released for satisfying new RBCs demands  

   Number of RBCs that are released for satisfying old demands 

   Unit holding cost of each product in the inventory at the beginning of each time 

period  

   Unit cost fir outdated products  

   Unit shortage cost for lost orders 

    Unit shortage cost for delayed orders 

  
  Mismatch cost for products with r day-old that failed for demand of young group 

  
     Possible demand probability for other RBCs products   

  
     Possible demand probability for new RBCs 

              
  Probability of transmission from day d to day d+1 

             Direct costs related to each policy at the beginning of each day with respect to type 

of demand, order and inventory status 

         Expected direct cost with respect to policy I, inventory status and d repetition  
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B. MDP model 

The proposed MDP model considers that events happen at a level that is higher orders.  Therefore, production 

amount for demand of day d+1 is considered as a constant parameter. Moreover, RBCs supply amount is determined 

based on demand category of RBCs products. Using notation, a MDP model is developed for number of outdated 

RBCs, shortage and mismatch as following:  

   In order to calculate the number of outdated RBCs that would be disposed out of inventory at the end of the time 

period, we can use the following equation:      
 

   
  

   We calculate the shortage amount for RBCs as:                

   Mismatch amount is calculated based on: ∑   
    

    

Only uncertain parameter in the proposed model is related to RBCs demand that is considered within normal 

distribution for fresh and old demands. With respect to defined notations and assumption, the proposed model is 

formulated as follows:  

 

             

{
 
 

 
 
  (     

 
   

 )                             

                                    

                                                          

 ∑   
 
  
  

   
                                    

                     (1) 

 
     

In equation (1), we calculate the total cost including outdated products cost, shortage cost, inventory cost for holding 

blood products and mismatch cost for blood types for each day d. Expected cost for situation (d,x) for each policy I is 

calculated as: 

     

         ∑   
      

                
   

                                                                      (2) 
                 

Next, we calculate the expected cost for each policy I using equation (2). In this equation, we compute the expected 

cost by summing over total cost that we calculate using equation (1) and possible demand for fresh RBCs products. 

A sequential approximation algorithm (SA) is utilized for solving the proposed MDP model for RBCs. Sequential 

approximation can be formulated as equation (3) to obtain: 

         [       ∑           
   

    (          )]                                                     (3) 
              

Termination criteria for the sequential approximation algorithm is based on equation (4). 

         

                                                                                                                          (4) 

IV. CASE STUDY 

Here, we investigated our model for a real-life case study. For this, we used the real data of eleven hospitals and also 

blood transfusion centers of Zanjan Province of Iran. Then, we used our method for several blood groups and analyzed 

the results obtained from each one. At the end, we do a sensitivity analysis for the parameters, shortage cost; holding 

cost and mismatch cost. We reported results in several tables and then discussed the optimal consumption policy of each 

one of the blood groups.  
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In order to solve the value function of MDP, we used sequential approximation algorithm. Sequential algorithms are 

broadly used in many optimization-related research areas. They are mostly for partition and sequential problems like 

MDP where the structure of the model is based on a sequence of decision over an infinite time-horizon. Generally, 

sequential algorithm is used in finding an order in which items are processed, and processing the items sequentially to 

build the solution. Proposed MDP model is solved in an unlimited number of iteration for all x   X so in case problem 

does not meet termination criteria, we terminate the problem when it reaches to iteration 278256 with respect to RAM 

of the personal computer that was used.  

A. Data 

We investigated the proposed methodology for a real-life case study in blood banks of Zanjan, Iran. RBCs that are 

kept between 1-6 degrees are supposed to have maximum life span of 35 days. In this study, we considered RBCs with 

less than 21 days-old and more than 21 days-old up to 35 days-old as fresh RBCs and old RBCs, respectively.  

 

 

 

 

 

 

 

 

 
                  

  Fig. 1. Average demand of different blood types in Zanjan, Iran for one year 

Supply policy: In traditional process of the system, RBCs orders are supplied using FIFO policy which means that 

old RBCs in the inventory are supplied first, and then fresh products would be supplied. In order to analyze different 

supply policy for blood banks, in this study, we aimed to show the way that a combined supply policy can meet fresh 

and old demands. Therefore, we considered three supply policies for RBCs product that are illustrated by details as 

follows:  

(FIFO-FIFO): In this supply policy, inventory level is enough to meet all RBCs demands.  

Table II. Parameter values 

Parameters Value (IRR per day) 
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(LIFO-LIFO): In this supply policy, RBCs demands are satisfied by fresh RBCs in the inventory.  

(LIFO-FIFO): In this combined supply policy, LIFO is used for fresh RBCs and FIFO is used for old RBCs.  

Demand: In order to consider demands for RBCs, we tried to come up with an approximation average for demands from 

previous time periods that are represented in Fig. I. Annual demands are calculated based on normal distribution and are 

considered as   
     and   

     in the MDP model.  

Cost: As shown in Table II, real data are used for different involved costs such as holding cost, outdate product cost, 

shortage cost and mismatch cost.  

Real data are under the influence of many situations that can happen within the system. We decided to use a specific 

scale for parameters in order to deal with the complexity of the problem. In terms of   , we aimed to categorize the data 

into several groups in order to show the status of inventory. Categories for the data include following groups:    

    ,                ,                  ,                                  ,                    and 

                  . Groups    ,    and    are considered for fresh blood units and old bloods are considered 

within other groups. Average demand in normalized scale (in range of 1-35 days) are utilized to determine the storage 

capacity. All of these consideration related to scale of the problem leads to a good situation where the MDP model can 

be solved in a logical CPU time. With respect to three proposed policies, (FIFO-FIFO), (LIFO-FIFO) and (LIFO-

LIFO), we solve MDP with sequential approximation algorithm using MATLAB 2016b software.  

Managers in blood banks and hospitals aim to develop strategies which have lowest possible cost due to the fact that 

cost is a very important parameter in BSCN. This is the reason that many researchers have contributed in BSCN and 

aimed to come up with models that are supposed to minimize costs of the system. Collection cost is one of the 

important cost that is really hard to minimize due to the fact that donors most of the times donate blood in a random 

manner; however, other costs such as production costs, holding costs and mismatch costs, as well as outdate products 

cost can be an interest of many research articles. In order to analyze the costs of the system with details, we considered 

blood into two groups as fresh (young) and old (other). All in all, we can state that total involved costs in BSCN are 

very important and a misleading strategy or decision can cause disastrous consequences for the system since it has a 

direct relation with mortality. This is where MDP can provide a reliable decision-making tool which at each iteration 

tries to come up with a decision that is not independent and is related to a previous decision that is made. 

B. Results 

We solve the proposed MDP model in order to calculate the optimal value of each policy with MATLAB 2016b for 

different blood types using a real data of Zanjan, Iran. As shown in Table III, we presented the results of optimal value 

of each policy and their related costs for O+ type. We considered costs of policies in cumulative form. Table III 

illustrates the fact that there is a noticeable gap among all involved costs. In comparison to all policies, the results 

indicate that (LIFO - FIFO) policy is more effective. In other words, LIFO is suitable for fresh (young) RBCs while 

FIFO works better for old RBCs orders.  

We used the proposed model to investigate the value function, LF, LL and FF costs for other blood groups to 

analyze the difference between them. As shown in Table IV, results for blood group O- show lower value function cost 

which based on Fig. 1 is a consequence of its lower demand in comparison to O+. As same as O+, LIFO-LIFO is the 

best policy; however, LIFO-FIFO policy’s percentage has increased in comparison to O+. Results for blood group A+ 

are represented in Table V where associated costs are reported for the same number of iterations. As Fig. 1, demand for 

A+ is very similar to the demand of the O+ so that their costs are very close to each other. High demand of these two 

groups shows that hospitals should invest most of their budget based LIFO-LIFO policy in order to optimally supply the 

blood units to the patients. LIFO-FIFO policy is not a reliable policy for these two and can let too many drawbacks such 

as shortages.  

Table 2. Cost parameters values 
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Table III. Computations for O+ 

Iteration       LF (%) LL (%) FF (%) LF cost value LL cost value FF cost value 

0 43456546882 0.332 0.332 0.337 64000 64000 65000 

1 24563785937 0.33 0.33 0.338 128000 128000 131000 

2 37153357107 0.33 0.33 0.34 192000 192000 198000 

3 27639759115 0.329 0.329 0.342 256000 256000 266000 

4 23699663650 0.328 0.328 0.343 320000 320000 335000 

5 28997709044 0.327 0.327 0.345 384000 384000 405000 

6 34792152134 0.328 0.328 0.343 448000 448000 469000 

7 25807728284 0.329 0.329 0.342 512000 512000 533000 

8 28354736649 0.329 0.329 0.341 576000 576000 597000 

9 29606354685 0.33 0.33 0.34 640000 640000 661000 

… … ... ... ... ... ... ... 

18919 50259271981 21.46 39.82 38.72 106435162 197495254 205480371 

… … ... ... ... ... ... ... 

278255 1.44739E+11 13.68 44.89 41.43 14784250420 48513523493 44774232085 

278256 1.44518E+11 13.19 45.13 41.68 14254931318 48773696011 45045150670 
                

 Table IV. Computations for O- 

Iteration       LF (%) LL (%) FF (%) LF cost value LL cost value FF cost value 

0 28258846132 0.329 0.329 0.342 51000 51000 53000 

1 24000785937 0.33 0.33 0.34 98000 98000 101000 

2 27255452169 0.314 0.329 0.357 122000 128000 139000 

3 28109239005 0.309 0.319 0.371 155000 160000 186000 

4 25413657358 0.309 0.32 0.371 212000 220000 255000 

5 28997709044 0.319 0.322 0.359 269000 271000 302000 

6 28191180514 0.322 0.322 0.357 308000 308000 342000 

7 28007005201 0.307 0.319 0.374 344000 358000 420000 

8 29535790564 0.324 0.338 0.337 4006000 4176000 4167000 

9 29006444174 0.309 0.315 0.376 440000 449000 536000 

… … … … … ... ... ... 

18919 39999275230 0.302 0.32 0.378 92433177 97882452 115442375 

… … … … … ... ... ... 

278255 1.02669E+11 0.291 0.369 0.339 9884331742 12542523471 11522298434 

278256 1.03089E+11 0.282 0.37 0.349 9884331742 12963783852 12222298434 
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Table V. Computations for A+ 

Iteration       LF (%) LL (%) FF (%) LF cost value LL cost value FF cost value 

0 41283719538 0.332 0.332 0.337 59520 59520 60450 

1 23335596640 0.331 0.331 0.339 119040 119040 121830 

2 35295689252 0.330 0.330 0.340 178560 178560 184140 

3 26257771159 0.329 0.329 0.342 238080 238080 247380 

4 22514680468 0.328 0.328 0.344 297600 297600 311550 

5 27547823592 0.327 0.327 0.345 357120 357120 376650 

6 33052544527 0.328 0.328 0.344 416640 416640 436170 

7 24517341870 0.329 0.329 0.342 476160 476160 495690 

8 26936999817 0.329 0.329 0.341 535680 535680 555210 

9 28126036951 0.330 0.330 0.341 595200 595200 614730 

… … … … … ... ... ... 

18919 47746308382 0.209 0.388 0.403 98984701 183670586 191096745 

… … … … … ... ... ... 

278255 137501584068 0.137 0.449 0.414 13749352891 45117576848 41640035839 

278256 137292034246 0.132 0.451 0.417 13257086126 45359537290 41891990123 
                 

Table VI. Computations for B+ 

Iteration       LF (%) LL (%) FF (%) LF cost value LL cost value FF cost value 

0 34765237506 0.319 0.319 0.361 50560 50560 57200 

1 19651028750 0.318 0.318 0.363 101120 101120 115280 

2 29722685686 0.318 0.318 0.365 151680 151680 174240 

3 22111807292 0.317 0.317 0.367 202240 202240 234080 

4 18959730920 0.316 0.316 0.368 252800 252800 294800 

5 23198167235 0.315 0.315 0.370 303360 303360 356400 

6 27833721707 0.316 0.316 0.368 353920 353920 412720 

7 20646182627 0.316 0.316 0.367 404480 404480 469040 

8 22683789319 0.317 0.317 0.366 455040 455040 525360 

9 23685083748 0.317 0.317 0.365 505600 505600 581680 

… … … … … ... ... ... 

18919 40207417585 0.200 0.371 0.430 84083778 156021251 180822726 

… … … … … ... ... ... 

278255 115790807636 0.131 0.429 0.441 11679557832 38325683559 39401324235 

278256 115614344628 0.126 0.431 0.443 11261395741 38531219849 39639732590 
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Table VI shows the results obtained for blood group B+. Fig. 1 indicates that demand for B+ is somehow consistent 

over a year and its deviations from the average demand are not that much. On the other hand, the demand for this blood 

group is very lower than O+ and A+ which would strongly affect the value function cost and also costs for the three 

policies that we considered in this paper. Another point has to do with the fact that costs for all of the policies are very 

close to each other in LIFO-LIFO and FIFO-FIFO. FIFO-FIFO is slightly better than other policies. Unlike the results 

obtained in the previous tables, FIFO-FIFO policy shows higher efficiency for the supply of B+. As same as other blood 

groups, LIFO-LIFO shows more effectiveness for the AB+ group as well. However, we should mention that due to 

lower demand of AB+ in comparison to other, the value function cost and policies’ cost are way lower than other blood 

groups, especially O+ and A+. 

Table VII. Computations for AB+ 

Iteration       LF (%) LL (%) FF (%) 
LF cost 

value 

LL cost 

value 

FF cost 

value 

0 21293707972 0.332 0.332 0.337 29440 29440 29900 

1 12036255109 0.331 0.331 0.339 58880 58880 60260 

2 18205144982 0.330 0.330 0.340 88320 88320 91080 

3 13543481966 0.329 0.329 0.342 117760 117760 122360 

4 11612835189 0.328 0.328 0.344 147200 147200 154100 

5 14208877432 0.327 0.327 0.345 176640 176640 186300 

6 17048154546 0.328 0.328 0.344 206080 206080 215740 

7 12645786859 0.329 0.329 0.342 235520 235520 245180 

8 13893820958 0.329 0.329 0.341 264960 264960 274620 

9 14507113796 0.330 0.330 0.341 294400 294400 304060 

… … … … … ... ... ... 

18919 24627043271 0.209 0.388 0.403 48960175 90847817 94520971 

… … … … … ... ... ... 

278255 70921869677 0.137 0.449 0.414 6800755193 22316220807 20596146759 

278256 70813786085 0.132 0.451 0.417 6557268406 22435900165 20720769308 

 

C. Sensitivity analysis 

We did a sensitivity analysis for parameters used in our model. We investigated the model for blood group A+ and 

compared value function, LF cost, LL cost and FF cost under the changes in parameters. As shortage cost is a very high 

value in blood supply chain, we did a sensitivity analysis for the value function and policies. Shown in Fig. 2 and Fig. 3, 

we see the new solutions obtained for the value function cost and percentage of policies in a scale of 106. It is 

understandable that they are highly sensitive to the shortage cost as it counts more than other costs in the proposed 

model.  

Fig. 2 illustrates that value function cost is much relied on the shortage cost and as it increases, the value function 

increases as well. By this we can see that with proper blood supply chain management and prevention of shortage 

occurrence, manager can definitely have much lower costs in their system. Fig. 3 shows the changes costs in three 

different policies that we considered in our study. There is not much difference in the ratio in costs of the policies. 

However, as shortage cost increases we see a smooth increase in LIFO-LIFO policy’s cost ratio in comparison to other 
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two. On the other hand, we see a minor decrease in LIFO-FIFO policy’s cost as shortage cost increases in the model. 

This indicates that LIFO-FIFO policy could not act as a reliable policy when we have very high shortage cost.  

 

 

 

 

 

 

 

 

 

 

 

               
 

Fig. 2. Sensitivity analysis of value function for O+ considering shortage cost 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Sensitivity analysis policies for O+ considering shortage cost 
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V. CONCLUSION  

RBCs consumption policy is one interesting and important problems in health systems. Different supply policies 

have different performance with respect to several involved parameters like holding cost, shortage cost, wastage cost 

and mismatches cost. In this study, we analyzed the performance of inventory systems in terms of three supply policies 

(LIFO-LIFO) and (FIFO-FIFO) and (LIFO-FIFO). Results obtained from the model states that (LIFO-LIFO) and (FIFO 

-FIFO) policies are better than (LIFO-FIFO) policy in terms of total costs of the system. Several computational 

experiments were done for different blood groups, and results obtained showed that value function and also costs 

associated with each of the policies are strongly affected by the demand of that blood group. A sensitivity analysis for 

this model and its optimal solutions for different shortage cost values is performed. Decision-making process for blood 

supply policies in terms of the inventory costs such as outdate, shortage, holding and mismatch are main focus of this 

study. A MDP model is formulated for blood supply chain problem in a dynamic environment and solved the value 

function using a sequential approximation algorithm.  

This study can be improved in several ways for future directions. MDP model can be used for other blood products 

such as platelets. Multi-criteria decision methods can be applied for selection of best supply policy in terms of different 

criteria that are involved. MDP can be used for inventory problem of other perishable products such as foods. At the 

end, we think MDP can be a good method to use for other blood blank problems such as blood flow, blood pressure and 

etc.  
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