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Abstract – One of the most attractive topics for industry and researchers in industrial engineering is the 

integration of decisions in the supply chain. There are some advantages in the integrated decisions compared 

to different decisions, such as decreasing the cost of distribution and On-Time delivery. An integrated 

production scheduling and distribution problem is discussed in this study. The main contribution of this paper 

is to study this problem from a multi-agent viewpoint. In this case, each agent has a set of customers with 

their jobs, and each agent has a specific objective. Here, a two-agent problem is discussed in which the first 

agent objective is the minimization of the total tardiness for jobs of the first agent and the second agent 

objective is to minimize the total cost of the distribution. For this problem, a mixed-integer linear 

programming formulation is developed. Due to the complexity of the original problem and its specific 

structure, a combinatorial Benders decomposition approach decomposes it to the master problem and sub-

problem. It means some modifications have been applied to the classic version of Benders method. The 

results show the excellent performance of the algorithm in comparison with another exact method . 
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I. INTRODUCTION 

There are numerous decisions in the supply chain to be taken, such as inventory management, logistics, production 

scheduling, distribution decisions, etc. Two latter decisions are discussed in this paper. Both of these decisions are made 

at the operational planning level. Heretofore, in the supply chain, each member of the supply chain tries to plan and 

schedule their jobs and maximize its profit, regardless of other members. Nevertheless, nowadays, the coordination and 

integration of decisions among each supply chain member are critical. In recent years several papers are addressed this 

problem, such as Chandra and Fisher (1994), Chen and Vairaktarakis (2005), Lei et al. (2006), and Bard and Nananukul 

(2009). In these papers, they are shown that the integrated scheduling and distribution decisions can considerably 

reduce operations costs and improve customer satisfaction by On-Time delivery. 

Various distribution strategies are introduced in the literature, such as vehicle routing and cross-docking. A key 

point in these strategies is the aggregation of products called the batch delivery method. In this approach, multiple jobs 

from one or different customers, after processing, are allocated to a batch or a vehicle, and then they are transferred to 

the customers. Batch delivery, in comparison to individual delivery, considerably reduces the costs of transportation.      

http://jqepo.shahed.ac.ir/
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According to Cheng and Kahlbacher (1993), the batch delivery problem concerns scheduling some jobs on certain 

machines or factories that are supposed to consolidate and dispatch to several downstream factories or customers in 

batch by vehicles. Various objectives are considered for this problem. The main objective is the scheduling criteria such 

as makespan, total tardiness, and so on. However, distribution cost is another essential objective that is used in papers 

with distribution consideration. Moreover, total tardiness of jobs and total distribution cost, which are considered in this 

study, are conflicting if both of them are considered in a problem simultaneously. Since to reduce the distribution cost, 

the number of batches has to be minimized that, in turn, requires filling the capacity of each vehicle. 

On the other hand, this can increase the total tardiness and costs of warehousing and customer dissatisfaction. 

Hence, a balance between distribution costs and scheduling criteria is required. It is also possible to send jobs to 

multiple customers by a vehicle, so routing decisions can be applied among customers. 

Researchers in the scheduling field try to get closer to their problems with real-world problems. One of the most 

recent of these assumptions is considering multiple agents for a scheduling problem. In classical multi-criteria 

scheduling problems, it is assumed that all jobs are scheduled based on one or more objective(s). For example, Li et al. 

(2016) discussed a multi-objective integrated production and distribution scheduling problem: distribution cost and the 

total customer waiting time. However, in real problems, maybe multiple sets of jobs exist with their objective(s) called 

the multi-agent scheduling problem. In Multi-Agent Scheduling, instead of a single set of jobs with a common goal or 

goals, several groups of jobs have a distinct objective. One agent owns each of these job groups. Now, given the 

available facilities in the workplace, the jobs must be processed on shared machines to satisfy each working group 

(agents)' objectives. In fact, in multi-agent scheduling problems, each agent uses common resources according to its 

objective and compete with each other to achieve these resources. In recent years, many studies have been studied in 

this field. The pioneer of this field is Baker and Cole Smith (2003) and Agnetis et al. (2004), which in their papers, the 

multi-agent scheduling problem had been introduced.  

From a structural point of view, multi-agent problems are divided into four categories: Competing agent, Interfering 

set, Multi-criteria, and Non-disjoint Sets. In the first case, the agents have no typical job, and each job belongs to only 

one agent. In the second case, job sets are nested so that a set may be the subset of other sets. For example, in a two-

agent case, a set is a subset of the entire jobs. The third is the classic multi-criteria scheduling problem, in which all jobs 

have the same objectives.  Finally, the fourth case is the general case, in which each job can belong to one or more sets. 

Also, there are three common approaches to solve multi-agent scheduling problems. The Constrained optimization 

problem is a widely used method in which one objective is minimized, and the other ones are bounded. In the linear 

combination method, all objectives are combined linearly and become a single-objective problem. Finally, in the Pareto 

optimization approach, the goal is to find the whole set of strict Pareto optimal solutions (Agnetis et al. (2014)). 

Here, a scheduling and distribution integration problem is studied, and the routing decisions among customers are 

considered. To give an example, in the real world, consider a supply chain where customers from different locations 

send orders to Supply chain management.  Supply chain management tries to schedule jobs and to plan for distribution 

jobs over a short period. The production policy is based on MTO. Another innovation in this study is studying the 

problem from the multi-agent view. The first agent is some customers whose objective is to minimize the total 

tardiness, and the second agent's objective is to minimize total distribution costs for all jobs. In this study, the multi-

agent problem is referred to interfering jobs case, and a constrained optimization approach is used to deal with this 

problem. That is, total distribution cost is considered as objective and total tardiness of the first agent jobs is bounded. A 

mixed-integer programming model is proposed for the problem. Due to the complicated structure of the problem, a 

modified Benders decomposition is used to solve the model. Due to the complexity of the original problem structure, 

the original problem turns to the master problem and sub-problem, and then in the iterative procedure, solutions are 

found.  

The rest of the paper is as follows: Section II reviews papers related to the proposed problem and how to solve it. In 

Section III, the problem is described in detail, and then the problem is formulated. In Section IV, a modified Benders 
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algorithm is presented to solve the problem. Computational results of the paper used to evaluate the efficiency of the 

proposed algorithm are reported in Section V. Conclusions and some suggestions for future research are stated in the 

last section. 

II. RELATED WORK 

In recent years, there are several published papers in the fields of integrated scheduling and distribution, batch 

delivery problem, and the multi-agent scheduling, which are reviewed in this section. One of the most attractive topic in 

these years is the integration of production scheduling and distribution decisions, that is our main concern in this study. 

Chandra and Fisher (1997) investigate the coordination of production and distribution planning problems and compare 

two cases of the separated and integrated decision. In this paper, a factory with multiple products is addressed, which in 

the distribution part, vehicles with unlimited capacity and split delivery are considered. They show that the operation 

cost could be reduced from 3% to 20% in the integrated case. Also, some other papers such as Chen and Vairaktarakis 

(2005) and Pundoor and Chen (2005) are published to investigate the profit of using the optimal integrated production-

distribution schedule compared to the separated decisions. 

In recent years, He et al. (2019) studied integrated production and distribution operations with multiple plants, 

multiple order sizes, and multiple transportation modes in the commit-to-delivery business mode, aiming to minimize 

the total cost production and distribution. They develop a memetic algorithm for this problem. Gosh and Mondal (2018) 

discussed a case study of integrated production-distribution planning in the dairy industry. A mixed-integer linear 

programming (MILP) model is developed to maximize the overall profit contribution of the business. The MILP is 

solved by using CPLEX software. Kesem and Bektas (2019) discuss an integrated production and outbound distribution 

scheduling problem along with time windows in a supply chain. The machine setting in the supply chain is based on a 

parallel machine. Marandi and Fatemi Ghomi (2019) proposed an integrated production and distribution scheduling 

problem in a multi-factory supply chain. They developed an improved Imperialist Competitive Algorithm (ICA) along 

with a local search based on the simulated annealing algorithm.  In Ji et al. (2019), an MILP formulation is developed 

for an integrated model for the production-inventory-distribution problem in an interconnected open global logistics 

network. 

Different authors consider different objective functions for the integrated scheduling and distribution problem. For 

example, in some papers, the tradeoff between the cost of transportation and the customer satisfaction performance 

measure are considered such as Hall and Potts (2003), Hall and Potts (2005), Chen and Vairaktarakis (2005), Wang and 

Lee (2005), Li and Vairaktarakis (2007) and Pundoor and Chen (2005). On the other hand, in some papers, the tradeoff 

between the cost of transportation and total inventory cost is addressed, such as Herrmann and Lee (1993), Lee and 

Chen (2001), Geismar et al. (2008), and Li et al. (2005). Also, some papers study customer service levels regarding 

vehicle availability constraints (e.g., Stecke and Zhao (2007) and Pundoor and Chen (2009)). Some paper investigates 

the effect of integration for time-sensitive products. In Garcia and Lozano (2005) and Garcia and Lozano (2004), a 

perishable product such as ready-mix concrete is described, and industrial adhesive materials are used in Geismar et al. 

(2008) and Armstrong et al. (2008). Here, we consider total distribution cost & total tardiness as objective functions. 

One of the issues we cover in this study is the batch delivery in the distribution part. For the first time, Cheng and 

Kahlbacher (1993) defined each batch delivery date to the distribution system as equals the time it takes to complete the 

last job in the batch. They used a branch and bound approach and provided lower and upper bounds for this problem. 

Cheng et al. (1996) discussed single machine scheduling with batch delivery so that the total number of batches and 

earliness penalty are minimized. Hall and Potts (2003), as one of the most cited articles on batch delivery, address 

scheduling jobs on a single machine, with batch delivery consideration and different objectives, such as total flow time, 

maximum tardiness, and the number of tardy jobs. They developed a dynamic programming algorithm to minimize 

these objectives, as well as distribution costs. A problem with some jobs on a parallel machine and then the batch 

delivery approach is discussed in Wang and Cheng (2003), such that the total flow time and delivery costs are reduced. 

They have shown that the complexity class of the problem is NP-complete even for two machines, and a dynamic 
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programming algorithm is used to solve the problem. Selvarajah et al. (2013) focus on the single machine scheduling 

problem with batch delivery and release times such that the sum of weighted flow times and delivery costs are 

minimized, and then an approximation algorithm is presented for in equal weight case. They also provide a 

metaheuristic method for the general problem. In Yin et al. (2013), a single-machine scheduling problem is 

investigated, and batch delivery with an assignable common due date and controllable processing times is addressed. 

Recently, a rule-based meta-heuristics is developed for unrelated parallel machine scheduling and batch delivery by Joo 

and Kim (2017) to minimize the makespan of the whole process. 

In this study, a multi-agent viewpoint on the integrated scheduling and distribution problem is introduced. The 

multi-agent scheduling problems are reviewed and categorized by Perez-Gonzalez and Framinan (2014). A framework 

for future research is shown for this problem and solution approaches. They discuss applications of the multi-agent 

scheduling, which is related to the supply chain scheduling, such that the total cost of production and distribution is 

minimized, and customers compete to achieve supply chain resources. Agnetis et al. (2004) present some examples of 

different multi-agent scheduling cases with a constrained optimization approach. In the two-agent case, a branch and 

bound algorithm and Lagrangian relaxation for the single machine scheduling problem are developed by Agnetis et al. 

(2009). The objectives are minimizing the weighted total completion time of the first agent jobs, and the second agent 

objective, as the form of upper bound, is the cost function of the second agents' jobs. Rohmer and Billaut (2015) 

investigate the problem of integrated scheduling and distribution in the two-agent case. The first agent is a factory with 

a flow-shop environment, and another is the 3PL distributor. The factory problem involves minimizing inventory costs, 

equipment, and tardiness penalties, and in the 3PL problem, the objective is minimizing the costs of route and delays 

that have to be paid to the manufacturer. Qi Tan et al. (2011) developed an ACO algorithm for a two-agent single 

machine scheduling problem with a makespan objective function for both agents. Yin et al. (2016) present a two-agent 

single-machine scheduling model for the batch delivery problem, and a constrained optimization approach is used to 

solve the problem. Complexity is discussed, and a polynomial-time algorithm is developed to solve the problem. Lin et 

al. (2017) developed a particle swarm optimization to solve the multi-facility customer order scheduling problem, and 

Yin et al. (2015) used a honey-bees optimization algorithm to solve a two-agent single-machine scheduling problem 

with ready times. 

Some research gaps have been found by reviewing the literature. Most of the papers in the batch delivery literature 

focus on direct shipping of products to customers. Little work has been done on the case of multi-customer and 

distribution strategies such as vehicle routing or cross-docking. Additionally, no paper has a multi-agent perspective on 

this problem. Contributions of this study are summarized as follows: 

   Develop a mathematical formulation for the batch delivery problem 

   Consider the problem in the case of multiple customers along with routing decisions between customers 

   Present a multi-agent view of the problem 

   Develop a Benders decomposition approach to achieve optimal solutions 

III. PROBLEM DESCRIPTION 

Suppose that a supply chain that receives customers' orders at the beginning of the planning horizon and after 

processing jobs, must be distributed among customers who are in different geographic locations. Each job has a 

predetermined due date, and jobs have to be consolidated for delivery. It means several jobs form a batch for 

distribution by a vehicle. There are routing decisions among customers. At first, the sequence of jobs in the supply 

chain should be specified. Then, each job has to be assigned to a vehicle. Finally, the order of jobs for delivery to 

customers has to be determined. This is a multi-agent problem with interfering jobs set. So, the total distribution cost 

has to be minimized, and the total tardiness of the first agent’s jobs is bounded. 
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A. Assumptions 

A set of assumptions fully describes each problem. Assumptions of this study are as follows: 

   In the scheduling part, the preemption is not allowed 

   All jobs are available at the beginning of the planning horizon 

   There is no set-up time before processing, and loading and unloading times are included in shipping time 

   Processing machines and vehicles are always available at the factory 

   The batches, or vehicles, are have limited capacity 

   The fleet is homogeneous and sufficient vehicles are available 

B. Notation 

In this section, we introduce the notation used in this paper: 

Sets 

          Set of jobs or customers                     

        Set of vehicles                                          

Parameters:       

     n Total number of jobs or customers 

     M    A positive big number 

   Processing time of job i 

   Due date of job i 

   Size of job i 

    Transportation time between customers ith and jth 

    Transportation time between customer ith and the factory 

    Cost of transportation between customers ith and jth 

    Cost of transportation between customer ith and the factory 

     FC Fixed cost of each vehicle transportation 

     Q Vehicle capacity 

     δ The upper bound of total tardiness, determined by the first agent 
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Decision variables 

            Equals 1 if job j processed immediately after job i and equals 0 otherwise 

  
          Equals 1 if job j is assigned to the kth batch (vehicle) and equals 0 otherwise 

   
         Equals 1 if vehicle k transfer job j immediately after job i and equals 0 otherwise 

          Completion time of the job j            

         Completion time of the batch k (equal to departure time of vehicle k) 

           Tardiness of the job  

           Delivery time of job j       

C. Mathematical formulation 

Two dummy jobs 0 and n+1 are introduced with zero processing times and due dates for determining the first and 

the last job of the sequence. Also, two customers and n+1 are introduced with zero transportation cost, which zero 

customer is the factory, and n+1 customer means returning to the manufacturing site.  Now, the problem formulation 

described as bellows: 

-   This set of constraints, determine the sequence of jobs in the factory and the first and last jobs of the sequence. It 

means a job is either the first job or the last job in the factory for processing. Otherwise, there is a job before, and a job 

after it is for processing.  
        

∑   

 

   
   

                  (1) 

 

∑    

   

   
   

               (2) 

     
         

 
(3) 

 
                

             (4) 

   

-   Assignment of jobs to vehicles or batches is shown as follows: 
 

∑   
 

 

   
         

 
           (5) 

    

-   The following constraints refer to the sequence of customer deliveries. It means a job is either the first job or the last 

job in the delivery vehicle. Otherwise, there is a job before, and a job after it is for delivery: 
  

∑    
 

 

   
   

   
                                   (6) 
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∑     
 

   

   
   

   
                                        (7) 

       
               (8) 

    
      

                   (9) 

   
-    This equation sets the balance of arrival and departure of each customer node in the vehicle routing problem; (i.e., 

for a customer, such as h, once the vehicle is entered and once is exited) 

∑   
 

 

   
   

 ∑    
 

   

   
   

                (10) 

   

-    Capacity limits for vehicles are shown as bellows:  

(It means the sum of jobs allocated to a vehicle should not be greater than the capacity of the Q. The final term states 

that if it is not assigned any job to the vehicle, the vehicle capacity will be zero.) 

∑     
 

 

   
   ∑   

 

 

   

            (11) 

   
 

-    Calculation of  the completion times of jobs and vehicles are: 

       (     )            (12) 

          (     )               (13) 

        (    
 )                    (14) 

   

-    Calculation of delivery times (Also, is a sub-tour elimination constraint) 

            (     
 )                    (15) 

           (     
 )                              (16) 

   

-    Jobs tardiness constraints are calculated as follows: 

                    (17) 

                (18) 

   

-    the objective function for the  jobs of the first agent has been bounded: 

∑   

 

         

   (19) 
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-    integrality and non-negativity constraints 
     

(20) 
       

      
              

                

   

-    The objective function is as follows: 
    

     ∑∑∑       
 

 

   

 

   

 

   

 ∑∑          
 

 

   

 

   

 ∑∑        
 

 

   

 

   

    ∑∑     
 

 

   

 

   

 (21) 

  

The first term refers to transportation costs between customers. The second and third terms refer to transportation 

costs between the factory and the first customers in each vehicle and between the last customers in each vehicle and the 

factory. The last term refers to the fixed cost of transportation of each vehicle. 

IV. DECOMPOSITION APPROACH 

A. Classic Benders decomposition 

It is often tough to solve a problem with an exact method because there is more than one decision simultaneously, 

such as the position of the machine and allocation of jobs, allocation of jobs to vehicles, and routing decisions. Each of 

these decision-making cases may not be complicated by itself, but considering all of them simultaneously in one 

problem is not easy. An innovative method is the decomposition approach and can be useful in such a problem. In this 

method, the problem is decomposed into two or more problems (assumed to be independent), and each one is solved 

separately; then, a method for coordinating and combining these partial solutions is used to reach the optimal solution. 

In the decomposition approach, sub-problem (which are generally linear and straightforward problems) are solved in 

each iteration with different parameters, and the information obtained from them is used in the master problem. The 

output of the master model is the input parameters of the sub-problems. In each repetition, after solving the sub-

problems and obtaining their output, we decide on the optimality of the original problem or continue the iteration of the 

algorithm. 

Benders proposed the Benders decomposition algorithm in 1962 for MIP and IP problems based on the idea of 

problem decomposition and cutting plane. Benders decomposition is a well-known approach that is used when dealing 

with hard variables. In the Benders approach, based on dual theory, we divide the primary optimization problem into 

two problems: the master problem and the sub-problem. First, we find a solution to the master problem, which is the 

same as the original problem without constraints or very few constraints. Then, by using the master problem solution, 

we run the sub-problem that remains a benchmark for the fulfillment of the constraints. If the constraints are met, the 

solution is optimal. Otherwise, we add the constraints that have the most severe violations with the help of the Benders 

optimality and feasibility Cut, and we will repeat this procedure to satisfy all constraints. Usually, this method does not 

require solving the sub-problem, but its dual problem (DSP) is used. 

The termination condition of the algorithm is based on the optimality gap, which is calculated as |         |   . 

After solving the master model, we can calculate the lower bound for the minimization problem. At each step, we have 

               . Namely, by using the master model solution, the objective function value represents the lower 

bound. After solving the DSP model, one can also calculate the upper limit in the Minimization problem. At each step, 

we have                ̅    Namely, having the master problem solution ( ̅ ) and the objective function of the DSP 

problem, the value of     , plus the expression value, contains the problematic variable ( ̅ )  shows the upper limit. 
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B. Structure of the problem 

An appropriate applying decomposition approach needs to discover the problem structure. So, the original problem 

is decomposed into a master problem and sub-problem. Here, variables   and   are the master problem variables, and 

variable   is the sub-problem variables, and all of them are binary variables. The objective function of the master 

problem is the same as the original problem. The sub-problem has not objective function, and so it is a feasibility 

problem. In this study, the scheduling problem is considered the sub-problem because it is less complicated than the 

routing problem. But this problem has integer variables. So, in this case, it is not possible to implement the classic 

Benders method since the duality theory used for linear problems is not applicable to the integer problems. Therefore, 

we combine the general framework of classical Benders decomposition, but in the cut generation phase, we use a 

combinatorial Benders cut, which will be described in the next section. Also, some adjustments are conducted regarding 

the structure of the problem under study. There is also an approach to deal with big-M constraint. The sub-problem is as 

follows: 

∑   

 

   
   

   

     

              

∑    

   

   
   

               

          

                             

       (     )            

          (     )               

        (   ̅ 
 )                    

            (   ̅   
 )                    

 

           (   ̅  
 )                              

 

                    
 

                
 

∑   

 

         

   

 

  
    

                  
                
      

where  ̅ 
  and  ̅  

 
 are the fixed values obtained from the optimal solution of the master problem? In the Benders 

decomposition approach, using Big-M constraint is not desirable. Thus, the value of M must be in the smallest possible 

of value. So, we choose these values for Big-M constraints: 
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    For constraints (14) , (15) and (16),    ∑   
 
    

    For constraints (17) and (18),    ∑   
 
    ∑ ∑    

 
   

 
           

The master problem is as follows: 

     ∑∑∑       
 

 

   

 

   

 

   

 ∑∑          
 

 

   

 

   

 ∑∑        
 

 

   

 

   

    ∑∑     
 

 

   

 

   

 

∑   
 

 

   
         

 
            

∑    
 

 

    
   

   
  

     

                                  

∑     
 

   

   
   

   
                               

       
                

    
      

                    

∑   
 

 

   

 ∑    
 

   

   

   

     

                

∑     
 

 

   
   ∑   

 

 

   

             

        

  
      

        

C. Combinatorial Benders cuts(CBCs) 

Codato and Fischetti (2006) present a version of Benders decomposition which is used for problems whose objective 

function is only contains had variables and has a linear sub-problem problem. This approach aims to reduce the 

complexity of the master problem by reducing the number of integer variables. The complexity of the master problem is 

reduced, and the complexity of the sub-problem is increased. Therefore, rather than having a master problem defined 

over the full set of integer variables, the new decomposition approach formulates a master problem defined over a 

subset of the integer variables. In contrast, the remaining integer variables are transferred to the sub-problem. In what 

follows, we present a general description of combinatorial Benders decomposition for mixed integer programming 

(MIP) problems with the following structure: 

[  ]                         

                            

                                 , 

                                   

                                               

Where   is the complex variable, in contrast to classical Benders decomposition, in which the sub-problems are 

linear programs, combinatorial Benders decomposition leaves some of the integer variables in the sub-problem, leading 

to a MIP sub-problem. For fixed  ̅ variables, the original problem leads to the sub-problem: 
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[  ]            ̅                

                                      ̅    

                                   

                                    
    

and the master problem is: 

[  ]                             

                                  , 

                                          

Suppose that    , which is the objective function of the original problem, include only complicated or master 

problem variables. In this case, like our discussed problem, there is no objective function for the sub-problem, and this 

problem turns to the feasibility problem. Therefore, the sub-problem role is only checking the feasibility or infeasibility 

of the master problem solution. In the feasibility problem, if Y is the solution space and    , all points in the     

are feasible and optimum. 

At first, the Master problem has to be solved. If the master problem is infeasible, the original problem is also 

infeasible and otherwise, if the master problem is feasible, let  ̅ as an optimum solution of the master problem in 

iteration   and put it in the sub-problem. Now, if      ̅   is feasible, then   ̅   ̅   is the optimum solution to the 

original problem. But if  ̅  turns the      ̅   to the infeasible problem, the    is also infeasible, and the following 

feasibility cut has to be added to the master problem. 

∑   

      
   

 ∑       

      
   

   

        

This cut is called Combinatorial Benders' cut (CBC), and it causes to change at least one of the components of   ̅ . 

One or more CBCs of this type are generated in correspondence with a given infeasible  ̅ , and added to the master 

problem. On the other hand, if the      ̅   is feasible; the following optimality cut has to be added to the master 

problem. 

 ( ∑   

      
   

 ∑       

      
   

)       

                 

where    is the objective function of the optimal solution in the iteration    In each iteration, after adding the 

combinatorial Benders' cut or optimality cut to the master problem, a new iteration is formed, and again, the steps are 

repeated by solving the master problem. So, the master problem is as follows: 

 [  ]                         
    

          ( ∑   

      
   

 ∑       

      
   

)                          

        

             ∑   

      
   

 ∑       

      
   

                                 

       
                                    
    

where   and   are the optimality cut and the combinatorial Benders' cut. In Fig. (1), the structure of the solution 

approach is depicted. 
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Fig. 1. Flowchart of the solution approach 

V. PERFORMANCE EVALUATION 

In this section, the performance of the Benders decomposition method is evaluated based on problem instances. This 

method is implemented in CPLEX 12.6 and runs on a PC with a 2.53 GHz Intel(R) Dual-Core(TM) CPU and 4GB of 

RAM. 

The performance of algorithms is compared with the typical branch and cut method used in CPLEX solver. The 

branch and the cut algorithm is a combination of two methods of branch and bound and cutting plane, which is widely 

used to solve integer linear programming. The difference between the branch and the bound method and the branch and 

cut method is that in the branch and the bound after the relaxed linear problem is solved, and the branching procedure 

begins when conditions are met. Nevertheless, after the relaxed linear problem is solved in the branch and cut, the cuts 

are added, and when we cannot add more cut the relaxed problem, then the branching begins. 

A set of random data are generated to evaluate the efficiency of the method. Also, other related data is given by the 

discrete uniform distributions as follows:     [        ]      [    ]          [        ] and     [
 ̅  ̅

 
     

   ̅   ̅ ]. Fixed delivery cost equals to 200, and vehicle capacity is 20. The comparison results of the two methods are 

reported in Table I and II. To be effective, an upper limit of 300 minutes is considered for all problem instances, and if 

the problem does not meet the termination conditions, the solution process is interrupted by the user. 

In Table I, the proposed method is compared with the solution of CPLEX solver in different 

sizes of the problem. The number of binary variables, the number of constraints, running time (CPU time), the lower 

bound of the objective function of the original problem, and the difference between objective functions of two methods 

are reported in this table. The termination condition for the algorithm is 3 percent GAP, which is calculated as follows:  

       
                         

            
 

The Diff column shows the difference between objective functions (lower bounds) of two methods and is calculated 

as follows: 

        
|   

           
     |
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The number of variables and constraints are calculated based on            and            , 

respectively. In terms of CPU time, the proposed Benders algorithm is faster than CPLEX typical solver. This 

difference between average running times is 13% in our results. As can be seen, in the last five instances in the branch 

and cut method, the termination condition of the algorithm has not been met and interrupted by the user in 300 minutes. 

However, in the case of the proposed method, the last three problem instances do not have been able to meet the 

termination condition. The percentage of difference in the objective function of the two methods has been reported in 

the last column of the table. This difference is especially significant in large sizes. Note that this criterion is calculated 

based on the percentage of relative difference, and the numerical value of this difference is obtained by subtracting the 

values of the objective function from two methods. The results show that the proposed method is superior to CPLEX 

solver solutions. 

 Table I - Comparison of CPLEX solutions and Proposed Benders algorithm 

Number of jobs Number of 
variables 

Number of 
constraints 

CPLEX Proposed Benders 

diff(%) Running 
time(min) Lower bound Running 

time(min) Lower bound 

6 85 130 0.41 1765.48 0.38 1765.48 0.00 

9 181 274 0.88 2383.40 0.74 2468.44 3.57 

12 313 472 1.26 3248.48 1.14 3350.96 3.15 

15 481 724 1.49 4276.05 1.27 4413.70 3.22 

18 685 1030 2.09 4653.53 1.86 4789.32 2.92 

21 925 1390 3.22 5499.47 2.96 5636.36 2.49 

24 1201 1804 4.45 6489.97 4.09 6771.68 4.34 

27 1513 2272 5.88 7117.16 5.00 7291.32 2.45 

30 1861 2794 7.33 8462.07 6.30 8914.80 5.35 

34 2381 3574 9.41 10055.89 8.19 10407.52 3.50 

38 2965 4450 14.57 11961.91 13.26 12480.72 4.34 

42 3613 5422 22.65 13089.02 19.93 13403.52 2.40 

46 4325 6490 30.91 14935.96 27.20 15261.28 2.18 

50 5101 7654 38.01 16403.23 33.45 16654.80 1.53 

55 6161 9244 46.63 17997.41 41.03 18211.60 1.19 

60 7321 10984 56.12 20281.17 46.58 20868.50 2.90 

65 8581 12874 62.25 21328.66 52.91 21955.35 2.94 

70 9941 14914 71.33 25139.74 59.20 25482.20 1.36 

75 11401 17104 84.52 26393.93 74.38 26753.10 1.36 

80 12961 19444 98.39 28041.85 82.65 28281.80 0.86 

90 16381 24574 110.91 29130.42 94.27 29456.36 1.12 

100 20201 30304 123.62 30366.26 111.26 30838.40 1.55 

110 24421 36634 139.58 34956.50 120.04 35483.30 1.51 

120 29041 43564 153.09 38630.80 127.06 39328.91 1.81 

140 39481 59224 169.12 44493.59 150.52 45250.73 1.70 

160 51521 77284 186.71 49152.01 171.77 49864.40 1.45 
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Continue Table II - Comparison of CPLEX solutions and Proposed Benders algorithm 

Number of jobs Number of 
variables 

Number of 
constraints 

CPLEX Proposed Benders 
diff(%) Running 

time(min) Lower bound Running 
time(min) Lower bound 

180 65161 97744 204.65 51567.16 176.00 52358.11 1.53 

200 80401 120604 229.25 53043.06 201.74 54103.60 2.00 

250 125501 188254 255.98 58064.19 217.58 59072.67 1.74 

300 180601 270904 289.41 129586.14 269.15 132156.35 1.98 

350 245701 368554 300.00 176388.09 265.78 179651.03 1.85 

400 320801 481204 300.00 221669.33 300.00 225317.61 1.65 

450 405901 608854 300.00 265910.24 300.00 269862.92 1.49 

500 501001 751504 300.00 325141.56 300.00 329798.66 1.43 

Average 
 

121.47 
 

107.46 
  

 

 

In table II, the number of iterations and gap value of solutions from the proposed Benders method are reported. In 

this case, we use 25 minutes time limit as a termination condition. Hence, any solution that reaches the optimal value at 

this time will result in a zero value of gap. In comparison with CPLEX solver, the proposed Benders algorithm has been 

used 33% fewer iterations. Also, the gap of the Benders method for all problem instances is reported in this table. As 

shown in this table, some initial problems reach optimal solutions. The percentage of the GAP is increased when the 

size of problems gets larger. 

Table III - Results of Proposed Benders algorithm 

Proposed Benders 

Number of jobs Number of iteration GAP Number of jobs Number of iteration GAP 

6 6 0.00 70 44 0.02 

9 7 0.00 75 46 0.03 

12 9 0.00 80 48 0.03 

15 12 0.00 90 51 0.01 

18 13 0.00 100 53 0.03 

21 16 0.01 110 55 0.01 

24 20 0.02 120 58 0.02 

27 21 0.01 140 60 0.03 

30 23 0.02 160 62 0.04 

34 26 0.02 180 64 0.03 

38 28 0.01 200 67 0.03 

42 30 0.02 250 69 0.04 

46 32 0.03 300 71 0.02 

50 35 0.02 350 74 0.03 

55 37 0.02 400 76 0.04 

60 39 0.01 450 78 0.04 

65 42 0.03 500 80 0.03 
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Fig. 2. Convergence of lower bound and upper bound 

 

 

 

 

 

 

 

 

       
Fig. 3. GAP comparison 

In Fig. (2), the convergence of lower bound and upper bound for problem instance n=21 is reported. As can be seen, 

the GAP between upper and lower bounds is reached to 1 percent in 16 iterations after 30 minutes.  Also, in Fig. (3), the 

GAP between the two methods is compared. When the size of the problem is grown, the GAP value increases for both 

methods. But the proposed method outperforms the CPLEX method on most of the problems. 

In this section, two T-paired tests with a 95% confidence level are performed to illustrate the performance of two 

algorithms for different instance problems based on the objective function and running times. We conduct this test for 

problems 6 to 300 jobs. Table II and IV provide results of tests for objective values and running times, respectively. As 

shown in these tables, p is less than 0.5, which indicates that the mean values of objective functions and running times 

for two methods are significantly different. 

Table III - Estimation for Paired Difference for objective functions 

Mean StDev SE Mean 95% CI for μ_difference 

885 1210 208 (462, 1307) 

T-Value P-Value 
  

4.26 0.033 
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Table IV - Estimation for Paired Difference for Running times 

Mean StDev SE Mean 95% CI for μ_difference 

10.07 10.56 1.93 (6.13, 14.02) 

T-Value P-Value 
  

5.23 0.007 
  

VI. CONCLUSION 

An integrated production scheduling and distribution problem is described in this paper. Several papers are 

published in the literature to integrate decisions in the supply chain regarding numerous objectives such as scheduling 

criteria, cost of operation, customer satisfaction, and so on. In this study, a supply chain with several customers in 

different locations are considered. Customers place orders at the beginning of the planning horizon and determine their 

due date for each job. Supply chain management receives these orders and tries to schedule these jobs. After completion 

of processing jobs, they must be distributed among customers in batch by vehicles. So a processing sequence, 

assignment of jobs to vehicles, and determining the order of delivery among customers have to be determined. A multi-

agent point of view is added to the problem in which two sets of customers (as two agents) have their jobs with a 

specific objective. At first, a mathematical formulation is developed for this problem. Due to the complexity and 

structure of the problem and the typical solver's inability, such as CPLEX, a Bender's decomposition approach is 

presented in solving this problem. It means the problem is decomposed to the master problem and sub-problem. The 

problem structure is special due to the lack of objective function and the existing integer variable in the sub-problem. 

Hence, a combinatorial Benders cut is used to deal with this case. The performance of the algorithm is compared with 

the solution of CPLEX solver in different sizes of the problem. The results show that the proposed algorithm 

outperforms the branch and cut method used in the CPLEX solver.  

There are many research directions for future research. First of all, investigating other scheduling criteria such as 

makespan or total flow time is considerable. Also, different assumptions can be added to the problem, for example, 

considering release time or set-up time in scheduling part or limited vehicle and the multi-trip vehicle in the routing 

part. Other exact approaches or meta-heuristic methods can be the right direction for future research. 
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