Determining Economic Order Quantity (EOQ) with Increase in a Known Price under Uncertainty through Parametric Non-Linear Programming Approach

Javad Taheri-Tolgari¹ and Abolfazal Mirzazadeh* ²

¹ PhD Candidate, Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran (std_j.taheri@khu.ac.ir)
² Professor, Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran

*Corresponding Author: Abolfazal Mirzazadeh (E-mail address: mirzazadeh@khu.ac.ir)

Abstract—Constant unit procurement cost is one of the main assumptions in the classic inventory control policies. In the realistic world and practice, suppliers sometimes face increase in the price of a known item. In this paper, an inventory model for items with a known one-time-only price increase under fuzzy environment is presented by employing trapezoidal fuzzy numbers to find the optimal solution. We developed three different policies on the basis of methods such as α-cuts, for defuzzification of internal parameters before solving the model, and Vujosevic, for difuzzification of the external parameters after solving it. In the first policy, we integrated α-cuts method and Parametric Non-Linear Programming (PNLP) problems to attain the Membership Functions (MFs) of external variables in the primary model for achieving the optimal solution. These variables were reached by internal parameters through two-phase maximum/minimum non-linear programming problems and the external variables were approximate fuzzy numbers. Under the other two policies, we used defuzzification techniques of Centroid of Gravity (COG), Signed Distance (SD), and the Maximum Degree of Membership (MDOM) to attain crisp numbers. The optimal order policies by the three methods were compared and numerical computations showed that the efficiency of the first method (i.e., the presented one) was considerably better than that of the other two methods. In fact, the first method selected the optimal and attractive strategies by allocating membership functions to different α-cuts and provided the Decision Maker (DM) with great information to decide and select the best strategies. The methods were validated by a numerical example. The main aim of this model was determining the special ordering range and net costs saving quantity (involving ordering, holding, and purchasing costs). The time of ordering for positive net costs saving was calculated.

Keywords—α-cuts, Fuzzy theory, Parametric non-Linear programming (PNLP), Special order, Zadeh’s extension principle.

I. INTRODUCTION AND LITERATURE REVIEW

Offering incentives by a supplier to consumers in order for encouraging them to procure a more substantial lot size than the usual one with one-time-offer support is a common practice and frequent suggestion (Cárdenas-Barrón et al., 2010a). There are several reasons and facts in a process of manufacturing why a producer might opt to offer consumers a brief discount, e.g., increasing cash flow, decreasing inventory levels of the products and goods, boosting and improving market share, and simply trying to retain and maintain customers. Experts have been developing lot-sizing inventory models (EOQ/EPQ) for inventory management since the “Economic Order Quantity (EOQ)” inventory model management was introduced in 1913. Sometimes, as a permanent increase in brief discount, “one-time-only (OTO)” discount in the unit purchase cost of an item is announced by a supplier. On the other hand, the consumer can lower the
total purchase cost by assigning a major-specific order quantity. The presented study aims to extend the EOQ-type model with a special price discount under fuzzy environment constraint by considering parametric non-linear programming approach. Before explaining the inventory system in detail, a brief literature review will be presented in the following.

An inventory model different from that of Naddor (1966) was studied by Brown (1967). An EOQ system per increase in buying cost by considering a finite planning horizon was investigated by Lev and Soyster (1979). Another EOQ in which at least one of the demands or cost parameters would vary in the future was presented by Lev et al. (1981). In this system, any variation in the prices had a direct influence on the consuming rate. An inventory lot size system with periods of increase in buying cost, which followed a probability function, was studied by Lev et al. (1981). Another paper was presented by Brown (1982) which illustrated no significant difference between the proposed models. A lot sizing model via an anticipated procurement increase was supposed by Yanasse (1990) for determining the optimal order quantity. An Economic Production Quantity (EPQ) system with price increase was developed by Tersine (1996) in which there were shortages and a constant fraction of the items produced by the manufacturer would be defective. More recently, a profit-maximizing inventory model was investigated by Arceuls et al. (2001). They took into account both delay in payments and discount price with price-dependent demand. This permitted passing a portion of the benefit from the buyer to the consumers, which induced a higher demand. Ghosh (2003) developed two different EOQ models with backlogging by considering an announced price increase. Afterwards, a study was carried out by Arceuls et al. (2003), which took into account perishable products in the inventory model management and made promotion in profit maximization for the buyer. The theories of Zadeh’s extension principle and α-cuts for the process of constructing the MF of a structure was applied by Huang (2006) by considering paired NLP models. Also, combining the theories of Zadeh’s extension principle and α-cuts in the queuing system to construct membership functions was previously proposed by Chen (2005). An economic order system with price discount to find the optimum strategies for different situations was developed by Sarker and Al Kindi (2006). The applicability of a developed integration of interval and fuzzy programming was investigated by Qin et al. (2007). They addressed uncertainties in the right/upper and left/lower-hand sides of the nonlinear models. A Mixed-Integer Nonlinear-Programming (MINLP) method, which constructed the MF of the objective value of a queuing problem with fuzzy trapezoidal arrival rates, was proposed by Chen (2007). They applied the α-cuts concept and Zadeh’s extension principle approach. This topic was first introduced by Naddor (1966). An EOQ-type model for a buyer who operated an inventory policy was improved by Cárdenas-Barrón et al. (2010a) with planned linear backorders. In this model, the supplier offered a temporary fixed-percentage discount for determining the optimal policies.

A discussion of the Max-Cut problem with fuzzy coefficients and a designed Genetic Algorithm (GA) were presented by Wang and Wang (2010) by combining fuzzy simulation techniques formulated for the general fuzzy Max-Cut problem. Cárdenas-Barrón et al. (2010b) investigated an inventory strategy operation for the buyer based on an EOQ system in which planned backorders as temporary fixed-percentage discounts were offered by the supplier. An inventory model with imperfect quality items was developed by Hsu and Yu (2011) under an announced price increase. Defective items were classified by a full screening procedure. Hu et al. (2011) considered two EPQs with fuzzy defective rate (LR-fuzzy number) based on different separating rates. Moreover, Model-I was developed with a classifying rate lower than the production rate and model-II with a classifying rate greater than the production rate. Besides, a signed distance and a sample algebraic method were utilized to find the optimal production quantity so that the total cost per unit time for the manufacturer in the fuzzy sense had a minimum value. Liu and Zheng (2012) expanded the classical EOQ management (or EOQ inventory system) with imperfect products, inspection errors, and shortages back-ordered. The classifying process of the items contained two types of errors in the inspection process. First, the defective item might be screened and defined as non-defective and second, the non-defective item might be screened and defined as defective. A triangular fuzzy number was considered for the fraction of defective items. Profit maximization function for the classical inventory system by considering backorder under promotional effort was studied by De and Sana (2013). They considered the output variables in the fuzzy mode. Mahata and Goswami (2013) proposed an inventory model for imperfect items and shortages (backorder) by employing two types of fuzzy numbers. The input parameters were triangular and trapezoidal in fuzzy
environments. EOQ management (or EOQ inventory system) with price increase by considering two scenarios, namely the time of occurs of the increase and partial backordering, was presented by Taleizadeh and Pentico (2013). The managerial issues of a multi-period manufacturing system with capacity constraints for the plant with its own multiple delivery/shop systems and several producers were studied by De and Sana (2014). The system was run in several periods and it used triangular intuitionistic fuzzy numbers. Jana et al. (2014) proposed some multiple-product inventory management systems in a planning horizon in the stochastic fuzzy mode by considering time value of money, inflation, shortages, partial backlogging, fuzzy-deterioration items, and budget constraints. Samal and Pratihar (2014) studied an EOQ system for minimizing inventory cost, that is, holding cost of inventory system management under fuzzy environment. A fuzzy lot-sizing problem by incorporating human learning into a fuzzy EOQ-type system was proposed by Kazemi et al. (2015). An EPQ-type inventory system by considering deteriorating items under fuzzy environment and multiple markets for the supply chain system was investigated by Das et al. (2015). An aggregation linear assignment method and fuzzy arithmetic for multiple-attribute group decision making inventory classification were studied by Baykasoglu et al. (2016). Investigation into optimization of a Vendor-Managed-Inventory (VMI) system with a discount using fuzzy demand and shortage by a hybrid imperialist competitive algorithm was carried out by Sadeghi et al. (2016).

The EOQ inventory system with backorder under fuzzy mode was developed by De and Mahata (2017). Mojaveri and Moghimi (2017) considered one supplier and one retailer to perform a multi-product business under VMI approach with uncertain demand. Dey (2017) suggested single-buyer single-vendor inventory system with defects under a mixed environment with randomness and fuzziness. Taleizadeh et al. (2017) provided an inventory model for a selling system with probabilistic replenishment intervals and partial backordering. An inventory system with defects was studied wherein shortages were permitted under fuzzy environment by Kumar (2018). An inventory system with deteriorating products and permissible delay in payments under fuzzy mode was studied by Shaikh et al. (2018). An EPQ-type system with defects, inspection errors (Types 1 and 2), partial backlogging, and preventive maintenance under uncertainty was developed by Taheri-Tolgari et al. (2018). A fuzzy EOQ system for a high-technology product under trial-repeat procurement demand criterion was surveyed by Chanda et al. (2018).

An uncertain inventory system with shortage via graded mean/GM integration value was proposed by Saranya an Varadarajan (2018). A fuzzy geometric programming problem by considering decision variables, the right-hand sides, and the constraint coefficients as fuzzy numbers was presented by Bharani (2018). A Lagrangian relaxation for a fuzzy random EPQ system with redundancy allocation and shortages was studied by Sadeghi et al. (2018). Both fuzzy and crisp EOQ systems with proportionate discount and defects were studied by Patro et al. (2019). Rani et al. (2019) investigated a fuzzy Green Supply Chain (GSC) including collection of reverse logistics, waste products, remanufacturing, and deterioration products. Garai et al. (2019) proposed a multi-objective inventory system with both holding cost and stock-dependent demand rate under fuzzy random mode.

This main aim of this study is to achieve optimal special order inventory considering known price increase by parametric non-linear programming. An inventory model for items with a known one-time-only price increase under fuzzy environments is considered by employing trapezoidal fuzzy numbers to find out the optimal solution procedure. Shortages are not considered. The paper is organized as follows: the next section presents definition of the problem and assumptions in a crisp state. In section III, the proposed solution procedure is given. Section IV presents the fuzzy mathematical inventory model. In Section V, the proposed parametric nonlinear programs approach is developed. Section VI gives the solution procedure for the fuzzy model. A numerical example is presented in Section VII. Finally, conclusions are made in Section VIII. In order to highlight the contributions of this research, Table I provides a complete literature review in the field of research.

Table I. Characteristics of the most recent and related published models

<table>
<thead>
<tr>
<th>Reference(s)</th>
<th>System type</th>
<th>Defuzzification method</th>
<th>Model input</th>
<th>Model output</th>
<th>Solution procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cárdenas-Barrón et al. (2010a)</td>
<td>EOQ-type</td>
<td></td>
<td>Crisp</td>
<td>Crisp</td>
<td>Derivative</td>
</tr>
<tr>
<td>Hu et al. (2011)</td>
<td>EPQ-type</td>
<td>✓</td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Algebraic method</td>
</tr>
<tr>
<td>Taleizadeh & Pentico (2013)</td>
<td>EOQ-type</td>
<td></td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Derivative</td>
</tr>
<tr>
<td>Dey (2017)</td>
<td>EPQ-type</td>
<td>✓</td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Derivative</td>
</tr>
<tr>
<td>Mojaveri & Moghimi (2017)</td>
<td>EPQ-type</td>
<td>✓</td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Particle swarm optimization</td>
</tr>
<tr>
<td>De & Mahata (2017)</td>
<td>EOQ-type</td>
<td>✓</td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Derivative</td>
</tr>
<tr>
<td>Sadeghi et al. (2018)</td>
<td>EPQ-type</td>
<td>✓</td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Meta-heuristics</td>
</tr>
<tr>
<td>Bharani (2018)</td>
<td>EPQ-type</td>
<td></td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Geometric programming</td>
</tr>
<tr>
<td>Saranya & Varadarajan (2018)</td>
<td>EOQ-type</td>
<td>✓</td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Derivative</td>
</tr>
<tr>
<td>Chanda et al. (2018)</td>
<td>EOQ-type</td>
<td>✓</td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Derivative</td>
</tr>
<tr>
<td>Taheri-Tolgari et al. (2018)</td>
<td>EPQ-type</td>
<td>✓ ✓</td>
<td>Fuzzy</td>
<td>Fuzzy-crisp</td>
<td>Karush-Kuhn-Tucker</td>
</tr>
<tr>
<td>Shaikh et al. (2018)</td>
<td>EOQ-type</td>
<td>✓ ✓</td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Particle swarm optimization</td>
</tr>
<tr>
<td>Kumar (2018)</td>
<td>EOQ-type</td>
<td>✓ ✓</td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Derivative</td>
</tr>
<tr>
<td>Rani et al. (2019)</td>
<td>EPQ-type</td>
<td>✓ ✓</td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Derivative</td>
</tr>
<tr>
<td>Patro et al. (2019)</td>
<td>EOQ-type</td>
<td>✓ ✓</td>
<td>Fuzzy</td>
<td>Crisp</td>
<td>Derivative</td>
</tr>
<tr>
<td>Proposed model</td>
<td>EOQ-type</td>
<td>✓ ✓ ✓</td>
<td>Fuzzy</td>
<td>Fuzzy-crisp</td>
<td>Parametric nonlinear programming</td>
</tr>
</tbody>
</table>

* COG: Centroid of gravity
* SD: Signed distance
* MDOM: Maximum degree of membership

II. PROBLEM DEFINITION AND ASSUMPTIONS IN THE CRISP STATE

In a production and inventory control system with one-time special order option, it should be decided whether or not a special order will be made. Consider a condition in which a distributor, supplier, manufacture, or buyer states that a price or procurement increase for an item will take place at or before the next scheduled ordering time of the buyer. A logical response is to order additional special items to take advantage of the lower price or procurement prior to or at the regular replenishment time. Hence, the Decision Maker (DM) should decide whether to place a special order quantity or not; and if yes, they should determine the quantity of the special order. If the unit price or procurement of an item is $u_1 u_1$ at a specific time, then the unit cost before that special time will still be $u_0 u_0$ ($u_1 > u_0$). Therefore, the buyer or purchaser either orders a special quantity Q to take advantage of the lower price or ignores this prospect and uses EOQ for all the future orders. If a special order quantity is to be placed, then the buyer or purchaser manager should determine the optimal value of Q and the lot size of the next order, after which all future orders will be of the size EOQ. Our assumptions are basically similar to those of Tersine (1994), but improved to reflect that the buyer or purchaser is interested in taking
advantage of the current lower price before it increases rather than buying at a sale price. The assumptions of the proposed model are as follows:

Assumptions:
- Holding costs are applied to average inventory;
- The model is for only one product and the planning horizon is one year;
- Shortages are not allowed;
- All orders placed after time t^* will be at the new higher cost per unit.

The parameters used in this model are as follows:

Parameters:

- u_0: Current unit purchase cost of an item before t^*;
- u_1: Unit purchase cost after the increase in price after t^*;
- t_f: Latest time of order before increase in item price;
- t_p: Moment of increase in item price;
- C: Fixed order cost;
- D: Demand quantity for product per period;
- t_b: Moment of a one-time special inventory cycle at the current price;
- t_a: Moment of finishing the latest order;
- h_c: Inventory fixed carrying cost per unit per time unit;
- i: Inventory carrying cost rate (percent per period).

The decision variables in this model are as follows:

Decision variables:

- Q: Quantity of a one-time special order at the current price.

![Figure 1. EOQ model with increased price and no shortage.](image-url)
When the one-time-only discount occurs at \(t^* \), the manufacturer or buyer system has two options: placing a special order quantity of \(Q \) units at the original equipment manufacturer or taking no action, i.e., adopting the original normal manufacturing policy. If the manufacturer manager chooses to place a special order quantity, they will resume the original manufacturing policy after the ordered products are depleted. The optimum decision depends on whether they can achieve profits from the special order policy. The optimal ordering quantity \(Q \) should be determined by maximizing the cost saving incurred by the policy, which can be expressed as follows. The behavior of the inventory level over time is illustrated in Fig. (1). In the figure, we have:

\[
\begin{align*}
 t_a &= t^* + \frac{IP(t^*)}{D} \\
 t_b &= t_a + \frac{Q}{D}
\end{align*}
\]

According to the above description of the model and Fig. (1), the Net Saving (NS) by the special order policy is given by:

\[
NS = Q(u_1 - u_0) + \sqrt{2C.D.(h_c + i_u_1)(t_b - t_a)} - (h_c + i_u_0)\left(\frac{QIP(t^*)}{D} + \frac{Q^2}{2D}\right)C
\]

\[
S_{ABCD} = S_{ABED} + S_{DEC} = Q\left(t_a + \frac{Q}{D}\right)
\]

\[
Q^* = \frac{(u_1 - u_0)D}{uc + u_1u_0} + u_1 + u_2, \quad \sqrt{\frac{2CD}{uc + u_1u_0}} - IP(t^*)
\]

III. SOLUTION PROCEDURE FOR THE CRISP MODEL

Step 1. Determine \(Q^* \) considering \(t^* = t_p \), and replace it with \(Q_p \) by Eq. (5);

Step 2. Determine \(Q^* \) considering \(t^* = t_f \), and replace it with \(Q_f \) by Eq. (5);

Step 3. Calculate the net saving for \(t^* = t_p \), and replace it with \(NS_p \) by Eq. (3);

Step 4. Calculate the net saving for \(t^* = t_p \), and replace it with \(NS_p \) by Eq. (3);

Step 5. If \(\max\{NS_f + C, NS_p\} > 0 \), go to Step 4. Otherwise, do not order the special quantity when an increase in the purchasing price occurs;

Step 6. If \(NS_f + C \leq NS_p \), special quantity is ordered in \(t_p \); otherwise, it is in \(t_f \).

IV. FUZZY MATHEMATICAL INVENTORY MODEL

The basic parameters, variables, and conditions involved in reality or practice are cost vectors and demand vectors. These vectors are flexible in nature. Consequently, to improve the practice model, we will fuzzify the parameters as follows.

A. Basic fuzzy calculus (cf. Zimmermann (2011))

We consider the so called \(\alpha \)-cuts for the definition of fuzzy numbers.
Definition 1. If \(X \) is a collection of objects denoted universally by \(x \), then a fuzzy set \(F \) in \(X \) is a set of ordered pairs \(\tilde{F} = \{ (x, \mu_F(x)) \mid x \in X \} \) and \(\mu_F(x) \) is called the membership function or grade of membership of \(x \) in \(\tilde{F} \), which maps \(X \) onto the membership space.

Definition 2. A continuous fuzzy number or interval \(\mu_I \) is any pair \((\mu^-, \mu^+)\) of functions \(\mu^\pm : [0,1] \to \mathbb{R}^+\) satisfying the following conditions:
- \(\mu^- : \alpha \to \mu^-_\alpha \in \mathbb{R}^+ \) is a bounded monotonic increasing (non-decreasing) continuous function, \(\forall \alpha \in [0,1] \).
- \(\mu^+ : \alpha \to \mu^+_\alpha \in \mathbb{R}^+ \) is a bounded monotonic decreasing (non-increasing) continuous function, \(\forall \alpha \in [0,1] \).
- \(\mu^-_\alpha \leq \mu^+_\alpha, \alpha \in [0,1] \); if \(\mu^-_\alpha \leq \mu^+_\alpha \), we have a fuzzy interval and if \(\mu^-_\alpha \leq \mu^+_\alpha \), we have a fuzzy number. \(\mu_\alpha = [\mu^-_\alpha, \mu^+_\alpha] \) explicitly denotes the \(\alpha \)-cuts of \(\mu \).

Definition 3. Addition: \((\mu + \rho)_{\alpha} = (\mu^- + \rho^-_\alpha, \mu^+ + \rho^+_\alpha), \alpha \in [0,1] \).

Definition 4. Scalar multiplication: for any real \(m \), \((m\mu)_{\alpha} = [\min(m\mu^-_\alpha, m\mu^+_\alpha), \max(m\mu^-_\alpha, m\mu^+_\alpha)], \alpha \in [0,1] \).

Definition 5. Subtraction: \((\mu - \rho)_{\alpha} = (\mu^- - \rho^-_\alpha, \mu^+ - \rho^+_\alpha), \alpha \in [0,1] \).

Definition 6. Multiplication: \((\mu\rho)_{\alpha} = [(\mu\rho)^-_\alpha, (\mu\rho)^+_\alpha] = \max(\mu^-_\alpha\rho^-_\alpha, \mu^+_\alpha\rho^-_\alpha, \mu^-_\alpha\rho^+_\alpha, \mu^+_\alpha\rho^+_\alpha)], \alpha \in [0,1] \).

Definition 7. Division: If \(0 \) does not belong to \((\rho^-_\alpha, \rho^+_\alpha)\), then \(\forall \alpha \in [0,1] \) and we have: \((\mu/\rho)_{\alpha} = [(\mu/\rho)^-_\alpha, (\mu/\rho)^+_\alpha] = \min\left(\frac{\mu^-_\alpha}{\rho^-_\alpha}, \frac{\mu^-_\alpha}{\rho^+_\alpha}, \frac{\mu^+_\alpha}{\rho^-_\alpha}, \frac{\mu^+_\alpha}{\rho^+_\alpha}\right), \max\left(\frac{\mu^-_\alpha}{\rho^-_\alpha}, \frac{\mu^-_\alpha}{\rho^+_\alpha}, \frac{\mu^+_\alpha}{\rho^-_\alpha}, \frac{\mu^+_\alpha}{\rho^+_\alpha}\right)\).

Definition 8. Zadeh’s extension principle: \(\mu_p(\lambda;x) = \sup_{x \in X, y \in Y} \min(\mu_\lambda(x), \mu_p(y)) \mid z = p(x, y) \).

Throughout, we use the following variables and parameters in order to simplify the treatment of the fuzzy special order inventory model.

B. Fuzzification by trapezoidal fuzzy numbers

In this sub-section, we use the concepts of fuzzy set and Zadeh’s extension principle to extend the crisp model in presented in Section II by fuzzifying the following parameters:

- \(\tilde{u}_0 = \{ (u_0, \mu_{\tilde{u}_0}(x)) \mid x \in X \} \): Fuzzy unit purchase cost of an item before \(T^* \);
- \(\tilde{u}_1 = \{ (u_1, \mu_{\tilde{u}_1}(y)) \mid y \in Y \} \): Fuzzy unit purchase cost after the increase in price after \(T^* \);
- \(\tilde{b} = \{ (b, \mu_{\tilde{b}}(u)) \mid u \in U \} \): Fuzzy demand quantity of product per period;
- \(\tilde{h}_c = \{ (h_c, \mu_{\tilde{h}_c}(v)) \mid v \in V \} \): Fuzzy inventory fixed carrying cost per unit per time unit;
- \(\tilde{i} = \{ (i, \mu_{\tilde{i}}(z)) \mid z \in Z \} \): Fuzzy inventory carrying cost rate (percent per period);
- \(\tilde{c} = \{ (c, \mu_{\tilde{c}}(w)) \mid w \in W \} \): Fuzzy fixed order cost;
- \(\tilde{c}_p = \{ (c_p, \mu_{\tilde{c}_p}(j)) \mid j \in J \} \): Fuzzy moment time for increase in price item.

By the extension principle, the membership of the fuzzy net saving function is given by
\[\mu_\mathbb{E}(NS) = \sup_{\sigma} \min \{ \mu_{\bar{a}_0}(x), \mu_{\bar{a}_1}(y), \mu_{\bar{b}}(u), \mu_{\bar{c}_0}(v), \mu_{\bar{c}}(w) \} | NS = Q \cdot (u_1 \cdot u_0) + \sqrt{2} \cdot C.D. \cdot (h_c + i \cdot u_1) \cdot (t_{b'} \cdot t_{a}) \cdot (h_c + i \cdot u_0) \cdot \left(\frac{Q \cdot p(v)}{p_0} + \frac{Q^2}{z_0} \right) \cdot C \].

(6)

with \(\sigma = \{ x \in X, y \in Y, u \in U, v \in V, z \in Z, w \in W | x > 0, y > 0, u > 0, v > 0, z > 0, w > 0 \} \).

MF in Eq. (6) is not in the usual form for concrete use. Therefore, it very hard to imagine or determine its shape. Therefore, in this paper, we approach the problem using a mathematical programming technique. Parametric Nonlinear Programs (NLPs) are established to find the \(\alpha \)-cuts of \(NS(\bar{u}_0, \bar{u}_1, \bar{h}_c, \bar{D}, \bar{i}, \bar{C}) \) based on the extension principle.

V. PARAMETRIC NONLINEAR PROGRAMS APPROACH

One approach to creating the MF \(\mu_{NS(\bar{a}_0, \bar{a}_1, \bar{h}_c, \bar{D}, \bar{i}, \bar{C})} \) is to derive the \(\alpha \)-cuts of \(\mu_{NS(\bar{a}_0, \bar{a}_1, \bar{h}_c, \bar{D}, \bar{i}, \bar{C})} \). Therefore, the \(\alpha \)-cuts or \(\alpha \)-level sets of \(\bar{u}_0, \bar{u}_1, \bar{h}_c, \bar{D}, \bar{i}, \bar{C} \) are defined as follows:

\[u_0(\alpha) = \{ x \in X | \mu_{\bar{a}_0}(x) \geq \alpha \} \quad (7) \]

\[u_1(\alpha) = \{ y \in Y | \mu_{\bar{a}_1}(y) \geq \alpha \} \quad (8) \]

\[D(\alpha) = \{ u \in U | \mu_0(u) \geq \alpha \} \quad (9) \]

\[h_c(\alpha) = \{ v \in V | \mu_{\bar{h}_c}(v) \geq \alpha \} \quad (10) \]

\[i(\alpha) = \{ z \in Z | \mu_{\bar{i}}(z) \geq \alpha \} \quad (11) \]

\[C(\alpha) = \{ w \in W | \mu_{\bar{C}}(w) \geq \alpha \} \quad (12) \]

The \(\alpha \)-level sets of \(\bar{u}_0, \bar{u}_1, \bar{h}_c, \bar{D}, \bar{i}, \bar{C} \) defined in (7)-(12) are crisp intervals which can be expressed in another forms:

\[u_0(\alpha) = [\min_{x \in X} \{ x | \mu_{\bar{a}_0}(x) \geq \alpha \}, \max_{x \in X} \{ x | \mu_{\bar{a}_0}(x) \geq \alpha \}] \quad (13) \]

\[u_1(\alpha) = [\min_{y \in Y} \{ y | \mu_{\bar{a}_1}(y) \geq \alpha \}, \max_{y \in Y} \{ y | \mu_{\bar{a}_1}(y) \geq \alpha \}] \quad (14) \]

\[D(\alpha) = [\min_{u \in U} \{ u | \mu_0(u) \geq \alpha \}, \max_{u \in U} \{ u | \mu_0(u) \geq \alpha \}] \quad (15) \]

\[h_c(\alpha) = [\min_{v \in V} \{ v | \mu_{\bar{h}_c}(v) \geq \alpha \}, \max_{v \in V} \{ v | \mu_{\bar{h}_c}(v) \geq \alpha \}] \quad (16) \]

\[C(\alpha) = [\min_{w \in W} \{ w | \mu_{\bar{C}}(w) \geq \alpha \}, \max_{w \in W} \{ w | \mu_{\bar{C}}(w) \geq \alpha \}] \quad (17) \]

\[i(\alpha) = [\min_{z \in Z} \{ z | \mu_{\bar{i}}(z) \geq \alpha \}, \max_{z \in Z} \{ z | \mu_{\bar{i}}(z) \geq \alpha \}] \quad (18) \]

To derive the MF \(\mu_{NS(\bar{a}_0, \bar{a}_1, \bar{h}_c, \bar{D}, \bar{i}, \bar{C})}(\theta) \), we need at least one of the following to satisfy \(\mu_{NS(\bar{a}_0, \bar{a}_1, \bar{h}_c, \bar{D}, \bar{i}, \bar{C})}(\theta) = \alpha \).

\[\{ \mu_{\bar{a}_0}(x) = \alpha, \mu_{\bar{a}_1}(y) = \alpha, \mu_{\bar{b}}(u) = \alpha, \mu_{\bar{c}_0}(v) = \alpha, \mu_{\bar{c}}(w) = \alpha \} \quad (19) \]

\[\{ \mu_{\bar{a}_0}(x) \geq \alpha, \mu_{\bar{a}_1}(y) = \alpha, \mu_{\bar{b}}(u) \geq \alpha, \mu_{\bar{c}_0}(v) \geq \alpha, \mu_{\bar{c}}(w) \geq \alpha \} \quad (20) \]
\[\mu_{\alpha}(x) \geq \alpha, \mu_{\alpha}(y) \geq \alpha, \mu_{\alpha}(u) = \alpha, \mu_{\alpha}(v) \geq \alpha, \mu_{\alpha}(z) \geq \alpha, \mu_{\alpha}(w) \geq \alpha \]

(21)

\[\mu_{\alpha}(x) \geq \alpha, \mu_{\alpha}(y) \geq \alpha, \mu_{\alpha}(u) \geq \alpha, \mu_{\alpha}(v) = \alpha, \mu_{\alpha}(z) \geq \alpha, \mu_{\alpha}(w) \geq \alpha \]

(22)

\[\mu_{\alpha}(x) \geq \alpha, \mu_{\alpha}(y) \geq \alpha, \mu_{\alpha}(u) \geq \alpha, \mu_{\alpha}(v) \geq \alpha, \mu_{\alpha}(z) = \alpha, \mu_{\alpha}(w) \geq \alpha \]

(23)

\[\mu_{\alpha}(x) \geq \alpha, \mu_{\alpha}(y) \geq \alpha, \mu_{\alpha}(u) \geq \alpha, \mu_{\alpha}(v) \geq \alpha, \mu_{\alpha}(z) \geq \alpha, \mu_{\alpha}(w) = \alpha \]

(24)

Clearly, the membership function of NS(\(\bar{u}, \bar{v}, \bar{C} \cup \bar{D} \cup \bar{E})\) defined in the extension principle is also parameterized by \(\alpha\). Accordingly, we can use its \(\alpha\)-cut to construct its membership function. This can be accomplished via parametric NLP techniques. The NLP to determine the lower and upper bounds of the \(\alpha\)-cut of variables are:

\[
E^L_\alpha = \min_{\sigma \in K} \sqrt{\frac{2}{w^u - z^x}} \quad E^U_\alpha = \max_{\sigma \in K} \sqrt{\frac{2}{w^u - z^x}}
\]

(25)

where \(\sigma = w \in [w^u, w^u], u \in [u^u, u^u], v \in [v^u, v^u], z \in [z^u, z^u], x \in [x^u, x^u]\).

If both \(E^L_\alpha\) and \(E^U_\alpha\) are invertible with respect to \(\alpha\), a left shape function \(L(EQ_{u_0}) = (E^L_\alpha)^{-1}\) and a right shape function \(U(EQ_{u_0}) = (E^U_\alpha)^{-1}\) can be extracted, from which the membership function \(\mu_{E}(EQ_{u_0})\) is constructed:

\[
\mu_{E}(EQ_{u_0}) = \begin{cases}
L(EQ_{u_0}), & EQ_{u_01} \leq EQ_{u_0} \leq EQ_{u_02} \\
1, & EQ_{u_02} \\
U(EQ_{u_0}), & EQ_{u_02} \leq EQ_{u_0} \leq EQ_{u_03}
\end{cases}
\]

(26)

In most cases, the values of \(E^L_\alpha\) and \(E^U_\alpha\) cannot be determined analytically. Therefore, a closed-form membership function for \(EQ_{u_0}\) cannot be obtained. However, the numerical solutions for \(E^L_\alpha\) and \(E^U_\alpha\) at different possibility levels can be collected to approximate the shapes of \(L(EQ_{u_0}) = (E^L_\alpha)^{-1}\) and \(U(EQ_{u_0}) = (E^U_\alpha)^{-1}\). That is, the set of intervals \([[E^L_\alpha E^U_\alpha] \in [\alpha \in [0,1]]\) shows the shape of \(\mu_{E}\), although the exact function is not known explicitly.

Similarly, for \(t_a\), we have:

\[
F^L_a = \min_{\sigma \in K} \frac{q}{u}, F^U_a = \max_{\sigma \in K} \frac{q}{u}
\]

(27)

where \(q \in [q^u, q^u], u \in [u^u, u^u]\).

\[
\mu_{F}(t_a) = \begin{cases}
L(t_a), & t_{a1} \leq t_a \leq t_{a2} \\
1, & t_{a2} \\
U(t_a), & t_{a2} \leq t_a \leq t_{a3}
\end{cases}
\]

(28)

Likewise, for \(t\), we have:

\[
G^L_a = \min_{\sigma \in K} \sqrt{\frac{2}{w^u - z^x}}, G^U_a = \max_{\sigma \in K} \sqrt{\frac{2}{w^u - z^x}}
\]

(29)

where \(\sigma = w \in [w^u, w^u], u \in [u^u, u^u], v \in [v^u, v^u], z \in [z^u, z^u], x \in [x^u, x^u]\).

Therefore, the time interval between orders is the following:
\(t_m, t + t_m, t + z, t_m \ldots \)

(30)

Thus, we have:

\[
t_f = \max_{m}(t_a + m.t) \leq t_p, \quad \forall m = 0, 1, 2, \ldots
\]

(31)

Using the above calculation values for \(IP(t_p) \) and \(IP(t_f) \), we have:

\[
I^l_\alpha = \min_{\sigma \in R} \left(\frac{2.w.u}{v + z.x} - (j - k), u \right), I^u_\alpha = \max_{\sigma \in R} \left(\frac{2.w.u}{v + z.x} - (j - k), u \right)
\]

(32)

Therefore, we have \(\sigma = w \in [w_{1, v, w_{1, u}^a}], u \in [u_{1, v, u_{1, a}^u}], v \in [v_{1, v, v_{1, a}^u}], z \in [z_{1, v, z_{1, a}^u}], x \in [x_{1, v, x_{1, a}^u}], j \in [j_{1, v, j_{1, a}^u}], k \in [k_{1, v, k_{1, a}^u}] \).

Fig. (1) clearly shows that \(IP(t_f) \) is equal to \(EOQ_{u_0} \).

Thus, the values of the membership functions \(Q_p \) and \(Q_f \) are obtained below. First, we determine the membership function \(Q_p \) as follows:

\[
H^l_\alpha = \min_{\sigma \in R} \left(\frac{(y.x)u}{v + z.x} + \frac{v + z.y}{v + z.x} \cdot \frac{2.w.u}{v + z.x} - (j - k), u \right),
\]

\[
H^u_\alpha = \max_{\sigma \in R} \left(\frac{(y.x)u}{v + z.x} + \frac{v + z.y}{v + z.x} \cdot \frac{2.w.u}{v + z.x} - (j - k), u \right)
\]

(33)

Therefore, \(\sigma = w \in [w_{1, v, w_{1, u}^a}], u \in [u_{1, v, u_{1, a}^u}], v \in [v_{1, v, v_{1, a}^u}], z \in [z_{1, v, z_{1, a}^u}], x \in [x_{1, v, x_{1, a}^u}], j \in [j_{1, v, j_{1, a}^u}], k \in [k_{1, v, k_{1, a}^u}] \). Then, we calculate \(Q_f \) as follows:

\[
I^l_\alpha = \min_{\sigma \in R} \left(\frac{w_{1, v, w_{1, u}^a}}{v + z.x} + \frac{v + z.y}{v + z.x} \cdot \frac{2.w.u}{v + z.x} \cdot \frac{2.w.u}{v + z.x} \cdot (j - k), u \right),
\]

\[
I^u_\alpha = \max_{\sigma \in R} \left(\frac{w_{1, v, w_{1, u}^a}}{v + z.x} + \frac{v + z.y}{v + z.x} \cdot \frac{2.w.u}{v + z.x} \cdot \frac{2.w.u}{v + z.x} \cdot (j - k), u \right)
\]

(34)

Hence, \(\sigma = w \in [w_{1, v, w_{1, u}^a}], u \in [u_{1, v, u_{1, a}^u}], v \in [v_{1, v, v_{1, a}^u}], z \in [z_{1, v, z_{1, a}^u}], x \in [x_{1, v, x_{1, a}^u}] \).

Faintly, the membership functions of net saving in two modes of \(t_p \) and \(t_f \) are obtained. First, we determine the membership function \(NS_p \) as follows:

\[
P^l_\alpha = \min_{\sigma \in R} \left(Q_p(\sigma, x) + \sqrt{2.w.u.(v + z.y)} \cdot \frac{w_{1, v, w_{1, u}^a}}{v + z.x} \cdot \frac{v + z.y}{v + z.x} \cdot \frac{2.w.u}{v + z.x} - (j - k), u \right) + \frac{1}{2} \cdot \left(\frac{(y.x)u^{1/2}}{v + z.x} + \frac{v + z.y}{v + z.x} \cdot \frac{2.w.u}{v + z.x} - \left(\frac{(y.x)u^{1/2}}{v + z.x} + \frac{v + z.y}{v + z.x} \cdot \frac{2.w.u}{v + z.x} - (j - k), u \right)^2 \right),
\]

(35)
\[
P_{a}^{u} = \max_{\alpha \in R} \left(Q_{p}^{u} (y-x) + \sqrt{2} w_{u} (v+z) \left(\frac{v+x}{v+z} \sqrt{2 w_{u}^{1/2} v+z} \right) + j-k \right) \left(v+z \right).
\]

Accordingly, \(w \in [w_{1}^{u}, w_{2}^{u}] \), \(u \in [u_{1}^{u}, u_{2}^{u}] \), \(v \in [v_{1}^{u}, v_{2}^{u}] \), \(z \in [z_{1}^{u}, z_{2}^{u}] \), \(x \in [x_{1}^{u}, x_{2}^{u}] \), \(j \in [j_{1}^{u}, j_{2}^{u}] \), \(k \in [k_{1}^{u}, k_{2}^{u}] \) and \(y \in [y_{1}^{u}, y_{2}^{u}] \). Then, similarly, we determine the membership function \(NS_{\alpha} \) as follows:

\[
M_{a}^{u} = \min \left(\frac{y-x}{v+z} + \frac{z}{v+z}, \frac{w_{u}}{v+z} \left(y-x \right) + \sqrt{2 w_{u} (v+z)} \left(\frac{v+x}{v+z} \sqrt{2 w_{u}^{1/2} v+z} \right) \right) - W,
\]

\[
M_{a}^{u} = \max \left(\frac{y-x}{v+z} + \frac{z}{v+z}, \frac{w_{u}}{v+z} \left(y-x \right) + \sqrt{2 w_{u} (v+z)} \left(\frac{v+x}{v+z} \sqrt{2 w_{u}^{1/2} v+z} \right) \right) - W
\]

Accordingly, \(w \in [w_{1}^{u}, w_{2}^{u}] \), \(u \in [u_{1}^{u}, u_{2}^{u}] \), \(v \in [v_{1}^{u}, v_{2}^{u}] \), \(z \in [z_{1}^{u}, z_{2}^{u}] \), \(x \in [x_{1}^{u}, x_{2}^{u}] \), \(j \in [j_{1}^{u}, j_{2}^{u}] \), \(k \in [k_{1}^{u}, k_{2}^{u}] \) and \(y \in [y_{1}^{u}, y_{2}^{u}] \).

VI. SOLUTION PROCEDURE

A. The first approach to solving the model

Step 1. For parameter \(\alpha \), from zero to one with steps of 0.1, repeat Steps 2 through 14.

Step 2. Calculate the following parameters.

\[
\begin{align*}
x_{1}^{u} &= (x_{2} - x_{1}) \cdot \alpha + x_{1} ; \quad x_{2}^{u} = x_{4} - (x_{4} - x_{3}) \cdot \alpha \\
y_{1}^{u} &= (y_{2} - y_{1}) \cdot \alpha + y_{1} ; \quad y_{2}^{u} = y_{4} - (y_{4} - y_{3}) \cdot \alpha \\
u_{1}^{u} &= (u_{2} - u_{1}) \cdot \alpha + u_{1} ; \quad u_{2}^{u} = u_{4} - (u_{4} - u_{3}) \cdot \alpha \\
v_{1}^{u} &= (v_{2} - v_{1}) \cdot \alpha + v_{1} ; \quad v_{2}^{u} = v_{4} - (v_{4} - v_{3}) \cdot \alpha \\
z_{1}^{u} &= (z_{2} - z_{1}) \cdot \alpha + z_{1} ; \quad z_{2}^{u} = z_{4} - (z_{4} - z_{3}) \cdot \alpha \\
w_{1}^{u} &= (w_{2} - w_{1}) \cdot \alpha + w_{1} ; \quad w_{2}^{u} = w_{4} - (w_{4} - w_{3}) \cdot \alpha \\
c_{1}^{u} &= (q_{2} - q_{1}) \cdot \alpha \cdot q_{1} ; \quad c_{2}^{u} = q_{4} - (q_{4} - q_{3}) \cdot \alpha \\
j_{1}^{u} &= (j_{2} - j_{1}) \cdot \alpha + j_{1} ; \quad j_{2}^{u} = j_{4} - (j_{4} - j_{3}) \cdot \alpha
\end{align*}
\]

Step 3. Repeat Steps 3 to 14 for \(w_{a}^{u} \) to \(w_{a}^{u} \);

Step 4. Repeat Steps 3 to 14 for \(u_{a}^{1} \) to \(u_{a}^{u} \);

Step 5. Repeat Steps 3 to 14 for \(v_{a}^{u} \) to \(v_{a}^{u} \);

Step 6. Repeat Steps 3 to 14 for \(z_{a}^{1} \) to \(z_{a}^{u} \);

Step 7. Repeat Steps 3 to 14 for \(y_{a}^{1} \) to \(y_{a}^{u} \);

Step 8. Repeat Steps 3 to 14 for \(q_{a}^{1} \) to \(q_{a}^{u} \);
Step 9. Repeat Steps 3 to 14 for j_{a}^{1} to j_{a}^{u}.

Step 10. Repeat Steps 3 to 14 for x_{a}^{1} to x_{a}^{u}.

Step 11. Calculate the following values.

$E_{a}^{l} = \text{arg}(\min E(w, u, v, z, x))$

$E_{a}^{u} = \text{arg}(\max E(w, u, v, z, x))$

$G_{a}^{l} = \text{arg}(\min G(w, u, v, z, x))$

$G_{a}^{u} = \text{arg}(\max G(w, u, v, z, x))$

$F_{a}^{l} = \text{arg}(\min F(q, u))$

$F_{a}^{u} = \text{arg}(\max F(q, u))$

$[k_{a}^{1}, k_{a}^{u}] = \max \{[F_{a}^{l}, F_{a}^{u}] + m, [G_{a}^{l}, G_{a}^{u}]\} \leq [j_{a}^{1}, j_{a}^{u}]$

$I_{a}^{l} = \text{arg}(\min I(w, u, v, z, x, j, k))$

$I_{a}^{u} = \text{arg}(\max I(w, u, v, z, x, j, k))$

$H_{a}^{l} = \text{arg}(\min H(w, u, v, z, x, y))$

$H_{a}^{u} = \text{arg}(\max H(w, u, v, z, x, y))$

$L_{a}^{l} = \text{arg}(\min L(w, u, v, z, x, y, j, k))$

$L_{a}^{u} = \text{arg}(\max L(w, u, v, z, x, y, j, k))$

$P_{a}^{l} = \text{arg}(\min P(w, u, v, z, x, y, j, k))$

$P_{a}^{u} = \text{arg}(\max P(w, u, v, z, x, y, j, k))$

$M_{a}^{l} = \text{arg}(\min M(w, u, v, z, x, y))$

$M_{a}^{u} = \text{arg}(\max M(w, u, v, z, x, y))$

Step 12. Calculate upper and lower bound variable sets by repeating Step 11.

Step 13. If the following equation is satisfied, go to Step 14. Otherwise, a special order is not issued.

$max\{[M_{a}^{l}, M_{a}^{u}] + [w_{a}^{l}, w_{a}^{u}], [P_{a}^{l}, P_{a}^{u}]\] > 0 \text{ or } [M_{a}^{l}, M_{a}^{u}] + [w_{a}^{l}, w_{a}^{u}] \text{ or } [P_{a}^{l}, P_{a}^{u}] > 0.$

Step 14. If the following equation is satisfied, then the specific order in time t_{p} will be issued. Otherwise, it is issued in time t_{f}.

$[M_{a}^{l}, M_{a}^{u}] + [w_{a}^{l}, w_{a}^{u}] \leq [P_{a}^{l}, P_{a}^{u}]$.

Step 15. Stop.

B. The second approach to solving the model

This approach was developed by Vujošević et al. (1996). First, defuzzification is done by one of the methods of fuzzy input parameters to get into the crisp state. Finally, the problem is solved with crisp values. In fact, the crisp model is analyzed.

C. The third approach to solving the model

In this approach, the output parameters converted by one of the methods are difuzzified to crisp numbers. In this method, the final answer is a crisp number and the discussion on the different α-levels of the membership function parameters is not needed. The output of the model is converted to the crisp mode using defuzzification methods.
VII. NUMERICAL EXAMPLE

In this section, to illustrate the suggested fuzzy models numerically, the following example is considered (planning horizon is one year and ss denotes system inventory level at the beginning of the period). According to the definition of the input parameters of the model in Sections II and IV, the input parameters of the model presented in Table II are shown as trapezoidal fuzzy numbers.

Table II. Values of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fuzzy trapezoidal value</th>
<th>Parameter</th>
<th>Fuzzy trapezoidal value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>[200,235,260,275]</td>
<td>u_1</td>
<td>[240,248,263,270]</td>
</tr>
<tr>
<td>h_c</td>
<td>[1.1,1.7,2.2,2.5]</td>
<td>s</td>
<td>[115,121,128,130]</td>
</tr>
<tr>
<td>i</td>
<td>[0.003,0.008,0.012,0.015]</td>
<td>t_p</td>
<td>[2.5,2.8,3.2]</td>
</tr>
<tr>
<td>C</td>
<td>[1700,1850,2050,2100]</td>
<td>u_0</td>
<td>[180,188,205,210]</td>
</tr>
</tbody>
</table>

The results for the α-cut input parameters are summarized in the following tables. Now, using the procedure in subsection A of the previous section, we calculate output parameters of the model. The results for these parameters are shown in Tables V to VIII. According to the data in Tables V to VIII, the membership function for each parameter is presented in Fig. (2). It is observed that the membership function parameters are triangular fuzzy numbers. The parameters in the figure are in the highest range for $\alpha = 0$. Therefore, the minimum and maximum values of the parameters are not lower or higher with other values of α, respectively. Therefore, by using this method, the decision maker at each level of alpha cut can determine the optimal policy.

Table III. The α-cuts of the input parameters for 11 α values

<table>
<thead>
<tr>
<th>α</th>
<th>f^l_a</th>
<th>j^l_a</th>
<th>j^u_a</th>
<th>z^l_a</th>
<th>z^u_a</th>
<th>w^l_a</th>
<th>w^u_a</th>
<th>y^l_a</th>
<th>y^u_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.5</td>
<td>3.2</td>
<td>0.003</td>
<td>0.015</td>
<td>1700</td>
<td>2100</td>
<td>240</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>2.53</td>
<td>3.18</td>
<td>0.0035</td>
<td>0.0147</td>
<td>1715</td>
<td>2095</td>
<td>240.8</td>
<td>269.3</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>2.56</td>
<td>3.16</td>
<td>0.004</td>
<td>0.0144</td>
<td>1730</td>
<td>2090</td>
<td>241.6</td>
<td>268.6</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>2.59</td>
<td>3.14</td>
<td>0.0045</td>
<td>0.0141</td>
<td>1745</td>
<td>2085</td>
<td>242.4</td>
<td>267.9</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>2.62</td>
<td>3.12</td>
<td>0.005</td>
<td>0.0138</td>
<td>1760</td>
<td>2080</td>
<td>243.2</td>
<td>267.2</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>2.65</td>
<td>3.1</td>
<td>0.0055</td>
<td>0.0135</td>
<td>1775</td>
<td>2075</td>
<td>244</td>
<td>266.5</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>2.68</td>
<td>3.08</td>
<td>0.006</td>
<td>0.0132</td>
<td>1790</td>
<td>2070</td>
<td>244.8</td>
<td>265.8</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>2.71</td>
<td>3.06</td>
<td>0.0065</td>
<td>0.0129</td>
<td>1805</td>
<td>2065</td>
<td>245.6</td>
<td>265.1</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>2.74</td>
<td>3.04</td>
<td>0.007</td>
<td>0.0126</td>
<td>1820</td>
<td>2060</td>
<td>246.4</td>
<td>264.4</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>2.77</td>
<td>3.02</td>
<td>0.0075</td>
<td>0.0123</td>
<td>1835</td>
<td>2055</td>
<td>247.2</td>
<td>263.7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.8</td>
<td>3</td>
<td>0.008</td>
<td>0.012</td>
<td>1850</td>
<td>2050</td>
<td>248</td>
<td>263</td>
<td></td>
</tr>
</tbody>
</table>
Table IV. The \(\alpha \)-cuts of the input parameters for 11 \(\alpha \) values

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(x^L_\alpha)</th>
<th>(x^U_\alpha)</th>
<th>(v^L_\alpha)</th>
<th>(v^U_\alpha)</th>
<th>(q^U_\alpha)</th>
<th>(q^L_\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>180</td>
<td>210</td>
<td>1.1</td>
<td>2.5</td>
<td>200</td>
<td>275</td>
</tr>
<tr>
<td>0.1</td>
<td>180.8</td>
<td>209.5</td>
<td>1.16</td>
<td>2.47</td>
<td>203.5</td>
<td>273.5</td>
</tr>
<tr>
<td>0.2</td>
<td>181.6</td>
<td>209</td>
<td>1.22</td>
<td>2.44</td>
<td>207</td>
<td>272</td>
</tr>
<tr>
<td>0.3</td>
<td>182.4</td>
<td>208.5</td>
<td>1.28</td>
<td>2.41</td>
<td>210.5</td>
<td>270.5</td>
</tr>
<tr>
<td>0.4</td>
<td>183.2</td>
<td>208</td>
<td>1.34</td>
<td>2.38</td>
<td>214</td>
<td>269</td>
</tr>
<tr>
<td>0.5</td>
<td>184</td>
<td>207.5</td>
<td>1.4</td>
<td>2.35</td>
<td>217.5</td>
<td>267.5</td>
</tr>
<tr>
<td>0.6</td>
<td>184.8</td>
<td>207</td>
<td>1.46</td>
<td>2.32</td>
<td>221</td>
<td>266</td>
</tr>
<tr>
<td>0.7</td>
<td>185.6</td>
<td>206.5</td>
<td>1.52</td>
<td>2.29</td>
<td>224.5</td>
<td>264.5</td>
</tr>
<tr>
<td>0.8</td>
<td>186.4</td>
<td>206</td>
<td>1.58</td>
<td>2.26</td>
<td>228</td>
<td>263</td>
</tr>
<tr>
<td>0.9</td>
<td>187.2</td>
<td>205.5</td>
<td>1.64</td>
<td>2.23</td>
<td>231.5</td>
<td>261.5</td>
</tr>
<tr>
<td>1</td>
<td>188</td>
<td>205</td>
<td>1.7</td>
<td>2.2</td>
<td>235</td>
<td>260</td>
</tr>
</tbody>
</table>

Table V. Optimized values obtained by the procedure in Section VI.A for trapezoidal membership function distributions

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(E^L_\alpha) (EOQ)</th>
<th>(E^U_\alpha) (EOQ)</th>
<th>(F^L_\alpha (t_a))</th>
<th>(F^U_\alpha (t_a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>374.662</td>
<td>627.922</td>
<td>0.522</td>
<td>0.591</td>
</tr>
<tr>
<td>0.1</td>
<td>380.137</td>
<td>612.051</td>
<td>0.534</td>
<td>0.569</td>
</tr>
<tr>
<td>0.2</td>
<td>390.325</td>
<td>594.489</td>
<td>0.535</td>
<td>0.57</td>
</tr>
<tr>
<td>0.3</td>
<td>396.64</td>
<td>578.197</td>
<td>0.536</td>
<td>0.571</td>
</tr>
<tr>
<td>0.4</td>
<td>415.486</td>
<td>563.022</td>
<td>0.537</td>
<td>0.572</td>
</tr>
<tr>
<td>0.5</td>
<td>424.631</td>
<td>548.842</td>
<td>0.538</td>
<td>0.573</td>
</tr>
<tr>
<td>0.6</td>
<td>436.461</td>
<td>529.752</td>
<td>0.552</td>
<td>0.552</td>
</tr>
<tr>
<td>0.7</td>
<td>446.861</td>
<td>517.403</td>
<td>0.553</td>
<td>0.553</td>
</tr>
<tr>
<td>0.8</td>
<td>450.828</td>
<td>505.762</td>
<td>0.554</td>
<td>0.554</td>
</tr>
<tr>
<td>0.9</td>
<td>459.343</td>
<td>494.761</td>
<td>0.555</td>
<td>0.555</td>
</tr>
<tr>
<td>1</td>
<td>464.342</td>
<td>484.342</td>
<td>0.556</td>
<td>0.556</td>
</tr>
</tbody>
</table>

Table VI. Optimized values obtained by the procedure in Section VI.A for trapezoidal membership function distributions

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(G^L_\alpha (t))</th>
<th>(G^U_\alpha (t))</th>
<th>(I^L_\alpha (IP(t_p)))</th>
<th>(I^U_\alpha (IP(t_p)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.533</td>
<td>0.591</td>
<td>2.232</td>
<td>3.382</td>
</tr>
<tr>
<td>0.1</td>
<td>0.534</td>
<td>0.585</td>
<td>2.26</td>
<td>3.269</td>
</tr>
<tr>
<td>0.2</td>
<td>0.535</td>
<td>0.58</td>
<td>2.286</td>
<td>3.185</td>
</tr>
<tr>
<td>0.3</td>
<td>0.536</td>
<td>0.576</td>
<td>2.326</td>
<td>3.108</td>
</tr>
<tr>
<td>0.4</td>
<td>0.537</td>
<td>0.573</td>
<td>2.365</td>
<td>3.036</td>
</tr>
<tr>
<td>0.5</td>
<td>0.539</td>
<td>0.57</td>
<td>2.406</td>
<td>2.968</td>
</tr>
<tr>
<td>0.6</td>
<td>0.542</td>
<td>0.566</td>
<td>2.423</td>
<td>2.882</td>
</tr>
<tr>
<td>0.7</td>
<td>0.544</td>
<td>0.562</td>
<td>2.466</td>
<td>2.823</td>
</tr>
<tr>
<td>0.8</td>
<td>0.546</td>
<td>0.559</td>
<td>2.505</td>
<td>2.767</td>
</tr>
<tr>
<td>0.9</td>
<td>0.55</td>
<td>0.557</td>
<td>2.573</td>
<td>2.714</td>
</tr>
<tr>
<td>1</td>
<td>0.556</td>
<td>0.556</td>
<td>2.664</td>
<td>2.664</td>
</tr>
</tbody>
</table>
Table VII. Optimized values obtained by the procedure in Section VI.A for trapezoidal membership function distributions

<table>
<thead>
<tr>
<th>α</th>
<th>$H_u^I(Q_p)$</th>
<th>$H_u^W(Q_p)$</th>
<th>$L_u^I(Q_f)$</th>
<th>$L_u^W(Q_f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.254</td>
<td>305.622</td>
<td>24.75</td>
<td>80.929</td>
</tr>
<tr>
<td>0.1</td>
<td>3.381</td>
<td>270.926</td>
<td>30.888</td>
<td>78.043</td>
</tr>
<tr>
<td>0.2</td>
<td>7.339</td>
<td>251.839</td>
<td>33.525</td>
<td>69.478</td>
</tr>
<tr>
<td>0.3</td>
<td>18.896</td>
<td>226.62</td>
<td>37.141</td>
<td>65.571</td>
</tr>
<tr>
<td>0.4</td>
<td>29.954</td>
<td>205.198</td>
<td>38.744</td>
<td>63.345</td>
</tr>
<tr>
<td>0.5</td>
<td>43.591</td>
<td>193.528</td>
<td>39.338</td>
<td>60.154</td>
</tr>
<tr>
<td>0.6</td>
<td>65.609</td>
<td>185.354</td>
<td>40.909</td>
<td>55.354</td>
</tr>
<tr>
<td>0.7</td>
<td>85.695</td>
<td>171.486</td>
<td>41.967</td>
<td>52.407</td>
</tr>
<tr>
<td>0.8</td>
<td>99.268</td>
<td>149.268</td>
<td>44.057</td>
<td>51.057</td>
</tr>
<tr>
<td>0.9</td>
<td>112.347</td>
<td>132.347</td>
<td>47.179</td>
<td>50.179</td>
</tr>
<tr>
<td>1</td>
<td>124.991</td>
<td>124.991</td>
<td>49.333</td>
<td>49.333</td>
</tr>
</tbody>
</table>

Table VIII. Optimized values obtained by the procedure in Section VI.A for trapezoidal membership function distributions

<table>
<thead>
<tr>
<th>α</th>
<th>$P_u^I(NS_p)$</th>
<th>$P_u^W(NS_p)$</th>
<th>$M_u^I(NS_f)$</th>
<th>$M_u^W(NS_f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-4571.88</td>
<td>17962.36</td>
<td>-513.28</td>
<td>3411.47</td>
</tr>
<tr>
<td>0.1</td>
<td>-3838.53</td>
<td>15479.24</td>
<td>-443.60</td>
<td>2987.02</td>
</tr>
<tr>
<td>0.2</td>
<td>-3003.12</td>
<td>14329.04</td>
<td>-331.36</td>
<td>2724.74</td>
</tr>
<tr>
<td>0.3</td>
<td>-2386.48</td>
<td>13134.44</td>
<td>-290.17</td>
<td>2488.00</td>
</tr>
<tr>
<td>0.4</td>
<td>-1843.32</td>
<td>12046.41</td>
<td>-180.69</td>
<td>2250.28</td>
</tr>
<tr>
<td>0.5</td>
<td>-1110.05</td>
<td>11332.96</td>
<td>-105.67</td>
<td>2111.95</td>
</tr>
<tr>
<td>0.6</td>
<td>238.49</td>
<td>10538.49</td>
<td>100.47</td>
<td>1921.47</td>
</tr>
<tr>
<td>0.7</td>
<td>1489.93</td>
<td>9389.93</td>
<td>265.34</td>
<td>1755.34</td>
</tr>
<tr>
<td>0.8</td>
<td>2730.51</td>
<td>8530.51</td>
<td>512.16</td>
<td>1501.16</td>
</tr>
<tr>
<td>0.9</td>
<td>3628.72</td>
<td>7828.72</td>
<td>678.89</td>
<td>1328.89</td>
</tr>
<tr>
<td>1</td>
<td>4605.03</td>
<td>6605.03</td>
<td>768.46</td>
<td>118.46</td>
</tr>
</tbody>
</table>
Figure 2. Membership functions for the example.

Table IX. The α-cuts of the special order for 11 values of α

<table>
<thead>
<tr>
<th>α</th>
<th>Order / No order</th>
<th>Special ordering time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No order</td>
<td>-</td>
</tr>
<tr>
<td>0.1</td>
<td>No order</td>
<td>-</td>
</tr>
<tr>
<td>0.2</td>
<td>No order</td>
<td>-</td>
</tr>
<tr>
<td>0.3</td>
<td>No order</td>
<td>-</td>
</tr>
<tr>
<td>0.4</td>
<td>No order</td>
<td>-</td>
</tr>
<tr>
<td>0.5</td>
<td>No order</td>
<td>-</td>
</tr>
<tr>
<td>0.6</td>
<td>Special order</td>
<td>t_f</td>
</tr>
<tr>
<td>0.7</td>
<td>Special order</td>
<td>t_f</td>
</tr>
<tr>
<td>0.8</td>
<td>Special order</td>
<td>t_p</td>
</tr>
<tr>
<td>0.9</td>
<td>Special order</td>
<td>t_p</td>
</tr>
<tr>
<td>1</td>
<td>Special order</td>
<td>t_p</td>
</tr>
</tbody>
</table>
Table X. The α-cuts of the output parameters for 11 values of α

<table>
<thead>
<tr>
<th>α</th>
<th>Special order quantity</th>
<th>Net saving of special order</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.6</td>
<td>[238.49,10538.49]</td>
<td>[46,206]</td>
</tr>
<tr>
<td>0.7</td>
<td>[1489.93, 9389.94]</td>
<td>[66,192]</td>
</tr>
<tr>
<td>0.8</td>
<td>[2730.51,8530.50]</td>
<td>[80,170]</td>
</tr>
<tr>
<td>0.9</td>
<td>[3628.72,7828.72]</td>
<td>[93,153]</td>
</tr>
<tr>
<td>1</td>
<td>[4605.03,6605.03]</td>
<td>[105,145]</td>
</tr>
</tbody>
</table>

According to Table VI and Fig. (2), for cuts 0 to 0.6, part membership function graph on the left is negative, which means extra cost to the organization in some orders.

The second approach to solving the model:

As described in the review of literature, the each parameter should be determined closest to its membership function (triangular, trapezoidal, Gaussian, etc.). Then, approximate the difuzzified membership function close to the actual crisp state.

The first method:

Difuzzification is done by using the Signed Distance (SD). If $\bar{\mu} \in \text{Fuzzy number}$, the signed distance from $\bar{\mu}$ to $\bar{0}$ is defined as:

$$d(\bar{\mu}, \bar{0}) = \int_0^1 d([\mu_{\alpha} - \mu_{\alpha}^+], 0) \, d\alpha$$ \hspace{1cm} (39)

The second method:

Difuzzification is done by using the Maximum Degree of Membership (MDOM) (largest value of maximum). It is supposed that there is a plateau at the maximum value of the final function, which is the largest within the range.

The third method:

Centroid of Gravity (COG) method calculates the center of gravity for the area under the curve as follows

$$X^* = \frac{\int_{\mu}^\infty x \, dx}{\int_{\mu}^\infty dx}$$ \hspace{1cm} (40)

The results of these three methods in calculating the model parameters are given in Table XI.
As observed, these methods, unlike the first approach, cannot determine the optimal policy at different levels of alpha-cutting.

The third approach to solving the model:

This approach is based on the research performed by Chen (2005). In this approach, input parameters are difuzzified and then, placed in the objective functions to calculate variables of the model. In other word, we using the center of gravity.

This approach also determines the result for the total alpha-cuts. The model presented in this study provides the decision maker with a more realistic assessment than the models presented by Cárdenas-Barrón et al. (2010b) and Taheri-Tolgari et al. (2018) do. In other words, the decision maker faces a wider range of choices. Also, considering the input parameters of the model, which are trapezoidal fuzzy numbers, the proposed model is closer to reality. Finally, the proposed model at the cut level equal to 1 tends toward a crisp state.
VIII. CONCLUSION

In this paper, an economic order quantity model was presented with a known price increase under fuzzy environment constraint by parametric non-linear programming. We used three different policies based on methods such as α-cuts (defuzzification of internal parameters before solving the model) and Vujosevic (defuzzification of the external parameters after solving the model). Under the first policy, we integrated α-cuts method and parametric non-linear programming problems to attain the membership functions of external parameters for reaching the optimal solution. The optimal order policies by the three methods were compared and numerical computations showed that the efficiency of the first method (i.e., the presented method) was considerably higher than that of the other two methods. The first method provided a more realistic evaluation than the others for decision making in the management of the organization. Also, the organization had a wide range of alternatives to select for making the optimal decisions by the first method.

The present concept can be extended to multi-product manufacturing systems via shortage (backorder and backlog), quantity discount, imperfect items, etc. for future research. The fields of plication of the proposed model may include the ordering of components in the oil and gas industry, import ordering in the conditions of the sanctioning, and ordering in the pharmaceutical industry.

REFERENCES

carbon concerned demand. OPSEARCH, 56(1), 91-122.

