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Abstract– The impetus for this research was examining a flow shop problem in which tasks were expected to 

be successively carried out with no time interval (i.e., no wait time) between them. For this reason, they 

should be completed by specific dates or deadlines. In this regard, the efficiency of the models was evaluated 

based on makespan. To solve the NP-Hard problem, we developed two mathematical models. Once we solved 

our problem using Mixed-Integer Programming Model (henceforth MIPM) and then, we applied a Constraint 

Programming Model (CPM); finally, we compared the optimality of the presented results. 
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I. INTRODUCTION 

In this paper, we focus on no-wait flow shop scheduling problem in which tasks are successively operated. 

Moreover, there is no interval or interruption between these tasks and even the operations of the same task are not 

interrupted. The assumption is that there is a time constraint for each job in which it should be completed. We assume 

that the tasks need to be finished at time zero. This means the tasks are all set to the earliest time (henceforth the release 

date), which is zero; the optimality of models can be evaluated based on makespanc while the NP-hardness of 

max
| , |

i
F no wait d C  can be approved (Samarghandi & ElMekkawy, 2012). 

Industrial implications of 
max| , |iF no wait d C  have been underlined in the literature on different disciplines 

such as chemistry (Afshar-Nadjafi, 2014); nutrition (Hall & Sriskandarajah, 1996); manufacturing; e.g., steel (Wismer, 

1972) or concrete (Raaymakers & Hoogeveen, 200); and pharmacy (Grabowski & Pempera, 2000). Specific time 

constraints have been addressed as hard constraints. The reason for the gap we find is that scholars have often 

developed a feasible model for the problem and then, have shown that the feasibility is a big challenge, especially when 

due dates are closer. The literature is full of proposed methods in which the time constraints are removed to address the 

no-wait scheduling problem. 

A review of studies shows that scholars have drawn upon programming models to address ordering and 

scheduling issues. For instance, Selen & Hott (1986) used MIPM to schedule flow shop tasks and executed them to 

more than one apparatus or machine. In proposing a Mixed Integer Linear Programming Model (MILPM), Stafford 

(1988) used the model developed by Wagner (1959). In another empirical study, Tseng et al. (2004) assessed the 

efficiency of different MIPMs for permutation flow-shop scheduling problems; their results were quite in line with 

those reported by Pan (1997) for both work-shop and flow-shop problems. To have the best solution to the reentrant 

workshop scheduling problem, Pan & Chen (2005) adopted a Mixed Binary Integer Programming Model (MBIPM). In 
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the same vein, Ziaee & Sadjadi (2007) solved and compared 7 MBIP models for a problem in which flow-shop tasks 

were sequenced. In another study, using fuzzy objective functions, Javadi et al. (2008) solved a Linear Programming 

Model (LPM) for the flow shop problem with no elapsed time between the tasks. Ramezanian et al. (2010) developed a 

mathematical programming model to cut down the expenses of a flow shop context in which processing times were 

assumed zero. 

Reviewing the available research (see Lee et al., 2014; Yazdani et al., 2010; Zandieh et al., 2006) shows that 

scheduling for an activity or operation has been carried out considering constant processing time. However, the 

processing time can be multimode. In fact, when more resources are assigned to an activity, the processing time is 

reduced. When there are constraints on the available resources, in addition to scheduling of the activities, the allocation 

of available resources to them needs to be considered. 

The present research proposes two mathematical algorithms, namely a constraint programming model (CPM) 

and an MIPM, for 
max| , |iF no wait d C . Specific time constraints are considered as hard ones. Analysis of 

computational data in this research reveals that the decrease in the number of jobs in 
max| , |iF no wait d C  leads to 

achieving the best possible result for small problems. Such a reduction in jobs in a problem instance is more prominent 

when the due dates are closer. 

 

   
II. PROBLEM DESCRIPTION 

The assumptions for 
max| , |iF no wait d C  are as follows: 1) scheduling all jobs or tasks has to be done in a 

specific order; 2) interruption between the jobs is not allowed; 3) each task should be executed on an apparatus only 

once at a time and each machine should process a single operation once at a time; and 4) tasks should be successively 

operated with no wait time. We present our scheduling models using the following indices: 

A Set of apparatuses 

a = ∣A∣ Number of apparatuses 

N   Set of tasks 

| |n N  Number of tasks 

Ti Task i  

ijo  j th operation of Ti 

ijp  Time required for the j th operation of Ti on a specific apparatus 

 Bi Time at which Ti has begun 

Boij Time at which ijo  has begun 

id   Specific date of Ti 

l  Sequence or order of l  

maxC  Makespan of l  

 
Brackets show that the tasks are scheduled successively. For example, Bi is defined as the time at which the 

task is expected to begin and needs to be scheduled after the i th task in a specific succession.  
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III. PROPOSED MODELS 

A. Mixed-integer programming model 

We defined the decision variable by constraint Error! Reference source not found.. 

1 if isplacedimmediatelyafter in thesequence

0 Otherwise

, 1,2,...,

j i

ij

J J
x

i j n


 




  (1) 

         
Our algorithm would be 

maxMin C  (2) 

max ; 1,2,...,
imo imC S p i n  

 (3) 
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1; 1,2,..., ; 1,2,...,ij jix x i n j n   
  (9) 

1 1

1
n n

ij

i j

x n
 

 
  (10) 

0; 1,2,..., ; 1,2,...,
ijoS i n j m  

 (11) 

{0,1}; 1,2,..., ; 1,2,...,ijx i n j n  
  (12) 

In this model, we attempt to decrease the makespan. A is a big number. According to constraint (3), the value 

of makespan is equal to the completion time of the previous tasks. Constraint (4) ensures that operations do not overlap 

and it is the binding provided that Tk is scheduled right away after Ti in the specific order. Constraint (5) enforces no-

wait constraints. Constraint (6) determines the specific time constraint. Constraint (7) ensures that each task is over 
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before the given time. Constraints (8), (9), (10), and (11) ensure that all the jobs are to be executed exactly once in the 

sequence determined. 

 

B. Constraint programming model 

In developing this Error! Reference source not found., we considered features of constraint programming. 

We defined the decision variable of this model as follows: 

ix j  if 
jJ  is in the place of i . 

         
Thus, our model would be: 

 
, ,min

x m nn
o x mS p   (13) 

1 2All Different( , ,..., )nx x x  (14) 

, ,( 1)
, ; 1,2,..., ; 1,2,..., 1

x k x k ii i
o o x kS S p k m i n



       (15) 

,[ ] , , ; 1,2,..., 1; 1,2,...,
x j x j ii i

o o x jS S p j m i n       (16) 

, , ; 1,2,...,
x m i ii

o x m xS p d i n     (17) 

0; 1,2,..., ; 1,2,...,
ijoS i n j m    (18) 

 1,2,..., ; 1,2,...,ix n i n    (19) 

In this model, Constraint (15) ensures that the jobs should overlap each other. Constraint (16) enforces the no-

wait constraints and Constraint (17) shows the due date constraints. Numerical findings are detailed in the following 

section. 

 

C. COMPUTATIONAL ANALYSIS 

To assess the optimality of our models, we carried out numerical experiments using IBM ILOG CPLEX 

V12.5. The computer used in this study was a 3GHz Intel Pentium IV CPU with 4 GB of RAM. To carry out the 

analysis, we reviewed the literature and chose 8 test problems for max| |F no wait C ; the car problems were derived 

from the study of Carlier (1978) (for more information and access to the test, refer to the OR-Library (Beasley, 1990)). 

The optimal solution to the selected problems for max| |F no wait C  was also
 
extracted from the literature. Due or 

specific deadlines for the test problems were extracted from the study by Garcia (2016). Then, we calculated tightness 

factor (henceforth TF ) for specific dates, which is presented in the following table. We considered 4 TF settings for 

each test problem. Overall, there were 32 test problems for max| , |iF no wait d C  and 8 test problems for 

max| |F no wait C . Test problems with due date constraints were called Car+DD. We set 300 seconds as the 

maximum solution time for each problem. The numerical data of our models are presented in Table . According to this 
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table, the solution found in the CPU time limit is not feasible. In addition, A. Mixed-integer programming model 

dominates the other formulation. To understand the complexity of the sizes of the models, the examples of two modes 

and a type of sources are presented. The information about variables and constraints is provided in Table I. The findings 

indicate that the first model has more binary variables and requires fewer constraints. However, in the second model, 

there are fewer binary variables and more constraints that need to be included. Since the number of continuous variables 

is equal to na for both models, they are discarded. 

  

A. CONCLUSION 

This study attempted to solve a flow shop problem in which tasks were consecutively carried out and there was 

no elapsed or wait time between them. The optimality and efficiency of our models were assessed using the makespan 

criterion. This NP-Hard problem was solved twice. We solved the problem once using Mixed-Integer Programming 

Model and another time using a Constraint Programming Model. 

Table I. Computational results 

 MIP Model CP Model 

Problem Size n*m 
Specific 

Deadline or TF 

Best Feasible 

OFV Found 

Optimality 

Proved 
CPU Time OFV 

Optimality 

Proved 
CPU Time 

Car01+DD 11*5 

TF=1 8,152 No 300 8,152 No 300 

TF=2 8,168 No 300 8,164 No 300 

TF=3 NFS No 300 NFS No 300 

TF=4 NFS Yes 4 NFS Yes 23 

Car02+DD 13*4 

TF=1 8,646 No 300 8,465 No 300 

TF=2 9,139 No 300 9,002 No 300 

TF=3 NFS No 300 NFS No 300 

TF=4 NFS Yes 298 NFS No 300 

Car03+DD 12*5 

TF=1 9,170 No 300 9,091 No 300 

TF=2 9,148 No 300 9,120 No 300 

TF=3 NFS No 300 NFS No 300 

TF=4 NFS Yes 305 NFS Yes 37 

Car04+DD 14*4 

TF=1 9,674 No 300 9,798 No 300 

TF=2 NFS No 300 NFS No 300 

TF=3 NFS No 300 NFS No 300 

TF=4 NFS Yes 4 NFS No 300 

Car05+DD 10*6 

TF=1 9,159 No 300 9,159 No 300 

TF=2 9,454 No 300 9,454 No 300 

TF=3 11,537 Yes 174 11,537 No 300 

TF=4 NFS Yes 25 NFS Yes 6 

Car06+DD 8*9 

TF=1 9,690 Yes 10 9,690 Yes 24 

TF=2 9,690 Yes 10 9,690 Yes 28 

TF=3 9,690 Yes 10 9,690 Yes 25 

TF=4 NFS Yes 290 NFS Yes 9 

Car07+DD 7*7 

TF=1 7,705 Yes 2 7,705 Yes 1 

TF=2 7,705 Yes 2 7,705 Yes 1 

TF=3 7,705 Yes 2 7,705 Yes 1 

TF=4 NFS Yes 14 NFS Yes 0 

Car08+DD 8*8 

TF=1 9,372 Yes 11 9,372 Yes 49 

TF=2 9,372 Yes 11 9,372 Yes 56 

TF=3 9,573 Yes 11 9,573 Yes 69 

TF=4 NFS Yes 12 NFS Yes 3                 
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Analyses were carried out and the performances of our proposed models were assessed. To this purpose, the 

size and computational complexity of each model were determined. Comparing the sizes and complexity of the models 

showed that the first model had more variables and needed fewer constraints. In terms of computational complexity, the 

first model had a significantly better performance than the second model. In addition, the first model could solve more 

problems optimally in a shorter time than the second model. Computational results illustrated that finding a feasible 

solution to max| , |iF no wait d C  was difficult when there were tight due dates. Numerical results revealed that the 

mixed-integer programming model outperformed the other formulation. 

Developing lower and upper bounds for max| , |iF no wait d C  using tight factors is a promising direction 

for the future research. However, finding a feasible solution to problems with tight specific dates is demanding. As a 

result, developing a problem-solving approach that can efficiently generate feasible solutions seems useful. Moreover, 

the mathematical models developed in this study incorporate a large number of A constraints. Therefore, 

future studies might develop models with fewer A constraints. 
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