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Abstract- Missing observations occur in experimental designs as a result of insufficient sampling, 

machine breakdown, high cost, and errors in the measurements. In nanomanufacturing, missing 

observations often appear in designs because the combination of factors or molecular structures 

selected by a designer cannot be experimented successfully. In the current paper, Box-Behnken and 

face-centered composite designs were studied and eight robustness criteria including D-efficiency, 

tmax, tmax ( 1 ), and their related sub-criteria were considered to evaluate the robustness of the 

aforementioned designs. Finally, the integrated TOPSIS-AHP methodology was employed to select 

the most suitable robust design, and a numerical example was also presented to assess the 

applicability of the proposed approach. 
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I. INTRODUCTION 

 

In recent years, missing observation has attracted a significant attention in experimental designs [1–3]. Missing 

observations are frequent in experimental designs or data acquisition, arising as a result of insufficient sampling, high 

cost, and errors in measurements [4]. Machine breakdown, illegible recording of response, and damaged experimental 

resources are also the common reasons for missing observations [2]. Moreover, missing observations can appear in 

nanomanufacturing industries because the combination of factors selected by a designer cannot be experimented 

successfully, for example, the study of gas phase nanoscale lubrication is an application of missing observations in 

experimental designs [2]. Hence, in order to overcome the problem of missing observation, robust criteria can be 

employed to investigate the robustness of a design [4–7, 11–13]. Ghosh [8] examined the robustness of BIBD in the 

presence of missing observations. MacEachern et al. [9] studied a number of techniques to find 
maxt and then applied the 

obtained value to evaluate the robustness of central composite design and factorial experiment against missing data. 

Whititting [10] assessed the robustness of Box-Behnken design in the presence of missing observations. Navinchandra et 

al. [2] proposed three new Bayesian algorithms based on predictive ability and minimization of the residual sum of squares 

in the presence of missing observations for factorial design. Tanco et al. [3] evaluated the robustness of some design 

experiments by three robust criteria- D-efficiency, max
t  , and 

max
(1 )t  .  

Multiple criteria decision-making problems can be divided into two main categories: multiple objective decision 

making (MODM) and multiple attribute decision making (MADM). The choice of preferred robust response design with 

various robustness criteria is an MADM problem, the technique for order preference by similarity to ideal solution 

(TOPSIS) [14], analytic hierarchy process (AHP) [15], elimination and et choice translating reality (ELECTRE) [15], 

grey relational analysis (GRA) [16], and VIKOR [17] are the most common methods of MADM. In order to determine 

the weights of each criterion in TOPSIS method, the AHP method, which works based on the decision maker judgments 

developed by Saaty [18], was employed in our study. Tavakkoli and Mousavi [19] proposed an integrated AHP-VIKOR  
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method for plant location problem. Rao and Davim [20] applied the combined TOPSIS-AHP method for material selection 

[20].  

In order to analyze the robustness of designs, the Box-Behnken and the face-centered composite designs were 

considered because these designs can precisely estimate each coefficient to achieve certain desirable properties [3]. Eight 

robustness criteria, such as D-efficiency, 
max

t , 
max

(0.99)t , 
max

(0.95)t , 
max

/t n , 
max

(0.99) /t n , and 
max

(0.95) /t n , were estimated 

in the current study.   

The present paper is divided into following sections. In Section 2, robustness criteria were introduced to investigate 

the designs. The combined TOPSIS-AHP methodology is explained in Section 3. A case study of the proposed 

methodology is presented in Section 4. The concluding remarks and some future directions are depicted in the final 

section. 

 

II. ROBUSTNESS CRITERIA FOR THE EVALUATION OF EXPERIMENTAL DESIGNS 

Factorial designs are common experimental designs. The most crucial aspect of these designs is k factors with two 

levels; the factors can be quantitative, such as temperature and pressure, or qualitative, such as machines and operators 

[21]. These designs cannot estimate the quadratic relationships, however, it is necessary to determine the quadratic 

relationships in some experimental designs. The Box-Behnken and the face-centered composite designs can estimate a 

full second-order polynomial model. In this paper, the robustness of the aforesaid designs in the presence of missing 

observations was studied for three to six factors with four center points using three robustness criteria [3], [22].  

 

A. Box-Behnken design 

Box-Behnken design consists of a set of points placed at the midpoint of each edge and the replicated center point of 

a multidimensional cube. The polynomial equation generated by this experimental design is presented below. 
2 2 2

0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 11 1 22 2 33 3 ,iy b b x b x b x b x x b x x b x x b x b x b x         
                                                                (1) 

where 
iy is the dependent variable, 

0b is the intercept, 
1b to 

33b are the regression coefficients, and 𝑥1, 𝑥2 and 𝑥3 are 

the independent variables selected from the preliminary experiments. 

 

B. Face-centered composite design 

In many situations, the region of interest is cuboidal rather than spherical. In these cases, a useful variation of the 

central composite design is the face-centered composite design, which locates the stars or the axial points on the centers 

of the faces of a cube. 

 

C. Explanation of robustness criteria for experimental designs 

Ghosh [23] proposed the D-efficiency as the most suitable robustness criteria for experimental designs. Lal et al. [24] 

evaluated the robustness of experimental designs using A-efficiency, which minimizes the trace of (xTx) and investigates 

the effect of missing observation on the sum of variances of the regression coefficients. In the current research, D-

efficiency was preferred instead of A-efficiency to assess the robustness of experimental designs. It is evident that in 

experimental designs, some observations are more important than others, hence if the most important observation is 

missing, the overall loss in efficiency is greater as compared to the missing of least important observation. The D-

efficiency of the remaining design after missing some rows of design matrix (X1) can be defined as 

 

1 1

T

T

X X
D efficiency

X X

 
  
 
 

.                                                                                                                                     (2) 

This criterion minimizes the volume of joint confidence region on the vector of regression coefficients. In this study, 

two criteria were assumed: the average of D-efficiency and the minimum value (worst case) when only one arbitrary row 

of the design was missing. Table I presents the D-efficiency values for Box-Behnken and face-centered composite 

designs, and k is the number of factors and n is the number of runs. 
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TABLE I. Average and Worst Values of D-Efficiency in FCC and BB Designs 

FCC BB 

k n average worst n average worst 

3 18 0.4440 0.2060 16 0.3750 0.2500 

4 28 0.4643 0.3412 28 0.4643 0.4167 

5 30 0.3000 0.0353 44 0.5227 0.5000 

6 48 0.4167 0.3236 52 0.4615 0.4375 

 

TABLE II. Values for BB and FCC Designs 

FCC BB 

k n tmax tmax/n n tmax tmax/n 

3 18 3 16.7 16 1 6.3 

4 28 3 10.7 28 3 10.7 

5 30 3 10.0 44 3 6.8 

6 48 3 6.3 52 3 5.8 

 

The next considered criterion in our research was m axt  proposed by Ghosh [23]. Let assume the following linear model: 

y= X  + ,                                                                                                                                                                       (3) 

where X is an n p matrix and the n rows are in the form of ).,...,;,...,;,...,,1( 22

1,1211 kiikiikiikii xxxxxxxx 
 For the 

second-order polynomial model, p can be defined as p = (k+1) (k+2)/2, where k is the number of factors. 

If the remaining design matrix (n-t)  p obtained after omitting t observations is able to estimate all parameters, it can 

be concluded that the design matrix X is robust against missing observations. In order to confirm it, the following Ghosh 

definition was applied. 

maxt max { pntt 1| , and each ptn  )(  matrix yields 0t

T

t XX }.                                                                (4) 

 

In order to further evaluate the robustness of design, two criteria tmax and tmax/n were considered (where n is the number 

of runs), and the obtained results are depicted in Table II. 

The third considered criterion was tmax (1 –  ) proposed by Tanco et al. [3], it defines the maximum number of missing 

observations; therefore, the parameters of the model can be estimated with a high probability. This criterion can be defined 

as: 

 )1(max t max { pntt 1| , and p (Model is not estimable | xt )  },                                                        (5) 

where the probability of the model is computed as 

 
, ,1

[ 0]
( ) ,

n
Tt
t l t ll

t

I X X
P Model is not estimable x

n

t





 
 
 

                                                                                       (6) 

where (
𝑛
𝑡
) is the total number of combinations for missing observations and indicator I counts the total number of 

combinations for 𝐼 [|𝑋
T

lt , 𝑋 lt , |] = 0and the model is not estimable. 

In order to compare the robustness of the designs,  )95.0(maxt and  )99.0(maxt were computed. These two criteria define 

the maximum number of missing observations; therefore, the models with probabilities of 95% and 99%, respectively, 

were estimated. The obtained results are summarized in Tables III, IV. 
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TABLE III. TMAX (0.99) Values for BB and FCC Designs 

FCC BB 

k n tmax(0.99) tmax(0.99)/n n tmax(0.99) tmax(0.99)/n 

3 18 3 16.6 16 1 6.20 

4 28 5 17.8 28 5 17.8 

5 30 4 13.3 44 9 20.4 

6 48 8 16.6 52 9 17.3 

 

TABLE IV. tmax (0.95) Values for BB and FCC Designs 

FCC BB 

k n tmax(0.95) tmax(0.95)/n n tmax(0.95) tmax(0.95)/n 

3 18 4 22.2 16 2 12.5 

4 28 7 25.0 28 7 25.0 

5 30 5 16.6 44 12 27.2 

6 48 10 20.8 52 13 25.0 

 

III. INTEGRATED TOPSIS-AHP METHOD  

In this section, the TOPSIS method was applied to select the best robust design, hence, the relative importance of 

different robust criteria was determined using AHP. AHP helps the decision makers to choose the best solution from 

several options based on the selection criteria. AHP builds a hierarchy ranking of the decision items by comparing each 

pair of items. The paired comparisons produce weighting scores, which measure the relative importance of the criteria.  

The execution steps of the TOPSIS-AHP method are presented below. 

Step1. Assume a decision matrix of n criteria and m alternatives.  

 

.

321

2232221

1131211

























mnmmm

n

n

xxxx

xxxx

xxxx

D











                                                                                                                                            
 

where xij indicates the performance of the ith alternative with respect to the jth criterion. 

Step2. Compute the normalized decision matrix. The normalized value rij can be written as 

2

1

, 1, , 1, ,
ij

ij m

ij
i

X
r i m j n

X


  



                                                                                                                             

 

Step3. Determine the relative importance of the alternatives. In AHP, the values from 1 to 9 were assigned to introduce 

the relative importance of the alternatives. Table V indicates the comparison scale used for the weighting of two criteria 

[18]. 

The matrix for the comparison of criteria can be presented as follows: 
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Every element represents the relative importance of criterion i with respect to criterion j. Therefore, it can be concluded  

 

  (7) 

  (8) 

  (9) 
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that aji=1/aij. 

Wj is the importance degree for each criterion and was calculate as 

 

TABLE V. Definition of Scale Values in Pair-Wise Comparsion Matrix 

Relative importance Description  

1 Equal importance 

3 Weak importance 

5 Strong importance 

7 Very strong importance 

9 Absolute importance 

2, 4, 6, 8 Intermediate values 

 

nji

a

a

W
n

i

n
n

j

ij

n
n

j

ij

j ,,2,1,.

1

/1

1

/1

1
































 



 



                                                                                                                     (10) 

A consistency ratio (CR) was used to determine the inconsistency. 

,
RI

CI
CR 

                                                                                                                                                                    (11) 

where the consistency index (CI) was calculated by 

,
1

max






n

n
CI



                                                                                                                                                                  (12) 

where max  is the largest eigenvalue [24] and RI (obtained from Table VI) is the random index used in decision 

making. When the value of CR was less than 0.1, the model was validated. 

 

TABLE VI. RANDOM CONSISTENCY INDEX 

n 1 2 3 4 5 6 7 8 9 10 

k 0 0 0.58 0.9  1.12 1.24 1.32 1.41 1.45 

 

Step 4: The weighted normalized matrix Vij was computed as  

ijjij rWV 
                                                                                                                                                                               (13) 

where Wj is obtained from the previous step. 

Step 5. Obtain the positive ideal solutions V+ and the negative ideal solutions V-. 

 

  1 2max / ,min / / 1,2, , { , , , }ij ij nV v j J v j J i m v v v        ,
                                                                                                      (14) 

  _ _ _

1 2min / ,max / / 1,2, , { , , , },ij ij nV v j J v j J i m v v v     
                                                                                                     (15) 

where J= (j = 1, 2,…, n)/j is the beneficial criteria and J = (j = 1, 2,…, n)/j is the non-beneficial criteria. 

Step 6. Calculate the separation distance between each alternative. The separation of each alternative from the positive 

ideal solution was defined as 

 

miVVS
n

J jiji ,,2,1,)(
1

2   



                                                                                                                            (16) 

 

Similarly, calculate the separation distance of each alternative from the negative ideal solution. 
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miVVS
n

J jiji ,,2,1,)(
1

2   



                                                                                                                        (17) 

Step 7. Calculate the relative closeness to the ideal solution. 

 

,







ii

i

i
SS

S
C                                                                                                                                                             (18) 

Step 8. Rank the alternatives based on Ci in descending order. 

 

TABLE VII. Decision Matrix of Robustness Criteria 

k AVE-D m axt
 tm(0.99) tm(0.95) 

3 0.4440 3 3 4 

4 0.4643 3 5 7 

5 0.3000 3 4 5 

6 0.4167 3 8 10 

3 0.3750 1 1 2 

4 0.4643 3 5 7 

5 0.5227 3 9 12 

6 0.4615 3 9 13 

k W-D nt /max  tm(0.99)/n tm(0.95)/n 

3 0.206 16.7 16.6 22.2 

4 0.3412 10.7 17.8 25.0 

5 0.0353 10.0 13.3 16.6 

6 0.3236 6.3 16.6 20.8 

3 0.2500 6.3 6.25 12.5 

4 0.4167 10.7 17.8 25.0 

5 0.5000 6.8 20.4 27.2 

6 0.4375 5.8 17.3 25.0 

 

TABLE VIII. Normalization of Decision Matrix 

k AVE-D m axt
 tm(0.99) tm(0.95) 

3 0.3602 0.2122 0.375 0.6031 

4 0.3767 0.3514 0.375 0.3864 

5 0.2434 0.0363 0.375 0.3611 

6 0.3381 0.3333 0.125 0.2275 

3 0.3043 0.2575 0.375 0.2275 

4 0.3767 0.4292 0.375 0.3864 

5 0.4241 0.5150 0.375 0.2455 

6 0.3745 0.4507 0.375 0.2094 

k W-D nt /max  tm(0.99)/n tm(0.95)/n 

3 0.1727 0.3608 0.1697 0.3522 

4 0.2878 0.3869 0.2969 0.3966 

5 0.2302 0.2891 0.2121 0.2634 

6 0.4605 0.3608 0.4242 0.3300 

3 0.0575 0.1358 0.0848 0.1983 

4 0.2878 0.3869 0.2969 0.3966 

5 0.5181 0.4434 0.5091 0.4316 

6 0.5181 0.3760 0.5515 0.3966 

 

 



Vol. 3, No. 1, PP 81-91, 2018           87 

 

 

TABLE IX. Pair-Wise Comparison Matrix 

1 1 1/2 1/3 5 4 3 2 

1 1 1/2 1/3 5 4 3 2 

2 2 1 2/3 10 8 6 4 

3 3 3/2 1 15 12 9 6 

1/5 1/5 1/10 1/15 1 4/5 3/5 2/5 

1/4 1/8 1/12 1/12 5/4 1 3/4 2/4 

1/3 1/6 1/6 1/9 5/3 4/3 1 2/3 

1/2 1/2 1/4 1/6 5/2 4/2 3/2 1 

 

 
 

Fig 1. The Hierarchical Structure of Decision making 

 

TABLE X. Weights of Robust Criterion 

n 1 2 3 4 

w 0.1207 0.1207 0.2414 0.3622 

n 5 6 7 8 

w 0.0241 0.0302 0.0402 0.0604 

 

IV. EVALUEATION OF ROBUST DESIGN BY THE PROPOSED  

The combined TOPSIS-AHP method was applied to select the most suitable robustness design for nanolubrication 

application. Eight efficient criteria, such as the average D-efficiency, the worst D-efficiency, 
m axt , )99.0(maxt , )95.0(maxt ,

nt /max
, nt /)99.0(max

, and nt /)95.0(max
 were considered. The hierarchical structure for the decision making is 

demonstrated in the following figure. 

First, the decision matrix was constructed, and each element expressed the performance of considered alternative with 

respect to the available criterion.  

The normalized decision matrix was obtained from Equation (8). 

The pair-wise comparison matrix is presented in Table IX. It was assumed that the matrix was obtained based on 

experts’ opinion. 

 

 

Select of the robust 

design with missing 

observations 

Average             

d-efficiency 
Worst           

d-efficiency 
 

 

BB, K=3 

 

BB, K=4 

 

BB, K=5 

 

FCC, 

K=6 
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The weights of the robust criteria were obtained using Equation (10), and the results are depicted in the Table X. 

The largest eigenvalue of the pairwise comparison matrix was equal to 8 and the value of random consistency index 

was 1.48. The inconsistency ratio was computed near to zero. As the value of RC was less than 0.1, it can be concluded 

that the comparisons were consistent.  The normalized weighted matrix is summarized in Table XI. The values of positive 

ideal V


and negative ideal V
_

solutions are expressed in Table XII. The separation distances between the alternatives 

and the ideal solutions were calculated and are illustrated in the Table XIII. 

 

TABLE XI. Normalized Weighted Matrix 

k AVE-D m axt
 

tm(0.99) tm(0.95) 

3 0.0435 0.0256 0.0905 0.2184 

4 0.0455 0.0424 0.0905 0.1399 

5 0.0294 0.0044 0.0905 0.1308 

6 0.0408 0.0402 0.0905 0.0824 

3 0.0367 0.0311 0.0302 0.0824 

4 0.0455 0.0518 0.0905 0.1399 

5 0.0512 0.0622 0.0905 0.0888 

6 0.0452 0.0544 0.0905 0.0754 

k WORST-D nt /
max  tm(0.99)/n tm(0.95)/n 

3 0.0042 0.0109 0.0068 0.0213 

4 0.0069 0.0117 0.0119 0.0239 

5 0.0056 0.0087 0.0085 0.0159 

6 0.0111 0.0109 0.0171 0.0199 

3 0.0014 0.0041 0.0034 0.0120 

4 0.0069 0.0117 0.0119 0.0239 

5 0.0125 0.0134 0.0205 0.0261 

6 0.0125 0.0113 0.0222 0.0239 

 

 

TABLE XII. Positive and Negative Ideal Solutions 

V


 V
_

 

0.0512 0.0294 

0.0622 0.0044 

0.0905 0.0302 

0.2184 0.0758 

0.0125 0.0014 

0.0134 0.0041 

0.0222 0.0034 

0.0239 0.0120 
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  TABLE XIII. Separation Distance 

S


 S
_

 

0.7891 0.9217 

0.8534 0.9586 

0.5964 0.6982 

0.9019 0.9806 

0.3935 0.4832 

0.8829 0.9895 

0.1268 1.2066 

0.0689 1.440 

TABLE XIV. Relative Closeness to Ideal Solution 

n 1 2 3 4 

C 0.5387 0.5290 0.5393 0.5209 

n 5 6 7 8 

C 0.4488 0.4715 0.9049 0.9413 

 

 

 
 

Fig 2. The relative closeness ratio for different robust experimental designs 

 

 

TABLE XV. Relative Closeness to Ideal Solution 

n 1 2 3 4 

C 0.4954 0.5895 0.3675 0.5526 

n 5 6 7 8 

C 0.2806 0.6127 0.7199 0.6814 

 

Based on the relative closeness values, the robustness for the nanolubrication experiment can be prioritized as (Table 

XIV): 

56421378 cccccccc 
 

The model for equal weights was also evaluated in this study. The relative closeness to the ideal solution is presented in 

Table XV. 
 

0.9413

0.9049

0.5393

0.5387

0.529

0.5209

0.4715

0.4488

BB, K=5, (3) 

BB, K=3, (1) 

FCC, K=5, (7) 

FCC, K=3, (5) 

FCC, K=4, (6) 

BB, K=6, (4) 

BB, K=4, (2) 

FCC, K=6, (8) 
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Based on the relative closeness values, the preferred response surface design was ranked as: 

 

53142687 cccccccc 
 

The results reveal that the proposed method was sensitive to the weights of criteria, hence, it is reasonable to extract 

them by some decision-making methods, such as AHP. 

 

V. CONCLUSION AND FUTURE RESEARCH 

Missing observations can occur in many industrial applications, such as nanomanufacturing, therefore, the selection 

of a preferred design with missing observations results in an effective economic decision. The integrated TPOSIS-AHP 

methodology was employed to select the robust design, and the Box-Behnken and the face-centered composite designs 

were applied. In order to evaluate the robustness of the Box-Behnken and the face-centered composite designs, eight 

efficient robustness criteria were considered. The face-centered composite design with the factor k = 6 was selected as 

the preferred robust design with missing observations. In our future research, other robust criteria will be proposed to 

evaluate the experimental designs in the presence of missing data. Moreover, this method will be applied to the cases of 

correlated observations and outliers in our future research.  
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