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Abstract –Emerging technologies, such as vehicle-to-road infrastructure connectivity via wireless 

telecommunications systems, in addition to reducing the role of humans in driving activities, can meaningfully 

improve road performance compared to traditional traffic control systems. Today, automated vehicles (AVs), 

as an emerging player in modern urban transportation, would significantly influence customer satisfaction. 

For AVs, the optimal routes must be found by a decision support system. This problem becomes more 

challenging when a suitable route is concurrently chosen by the majority of vehicles and network congestion 

occurs. In this research, a mathematical model for seeking the optimal route and scheduling of AVs by 

considering road traffic is presented. GAMS software is used for solving and analyzing the mathematical model. 

The results for a sample example show that the optimal routes are successfully obtained for the AVs. Sensitivity 

analysis reveals that as traffic time increases, so do the cost and service time. This model calls for government 

agencies to allocate portions of road networks to AVs to regulate vehicle movement and thus increase the 

output and performance of the network. 

 

Keywords– Automated vehicle; Road  Traffic; Performance Improvement; Transportation Networks; Routing; 

Traffic 
                   

I. INTRODUCTION 

Modern technologies enable significant reductions in the human limitations associated with transportation, as well as 

an improvement in the safety and effectiveness of transportation systems (Soltanzadeh et al., 2020). Intelligent utilization 

of data interchange between infrastructure and vehicles can lower latency and improve road capacity. Among these 

technologies, automated vehicle (AV) technology is one that has the potential to enhance both road safety and 

performance (Drexl, 2013). By designating roads for automated control systems, the optimal service capacity of routes is 

increased (Kesting et al., 2010; Levin & Boyles, 2016; Chen et al., 2016).  

Researchers have proposed transforming some AVs into private AV lines to reduce traffic congestion and improve 

passenger safety (Levin & Boyles, 2016). Chen et al. (2016) proposed a time-dependent model to maximize the use of 

AV lines in the public network, consisting of AVs and conventional vehicles, to boost AV lines' utilization. Godsmark 

and Kakkar (2014) assert that AV zones' presence increases AVs' use while optimizing their performance and that 

coordinating a large fleet of AVs to provide customer service using a demand-based strategy is an appealing operational 
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paradigm. The autonomous mobility on demand (AMoD) system can reduce travel costs and produce long-term surplus 

benefits like higher use of public transit generally, less need for infrastructure supporting urban parking, and decreased 

pollution (Mitchell et al., 2010; Spieser et al., 2014). The main advantages of AMoD result from vehicle sharing, in which, 

after providing customer service, each vehicle autonomously navigates to the next customer location or anticipates 

upcoming customer demand (Pavone et al., 2012; Perez et al., 2010). A Route Optimization System (ROS) aims to reduce 

costs and other negative social and environmental impacts while optimizing vehicle routes to meet transportation 

demands. The performance of ROS is influenced by daily operations, varying traffic conditions, shifting restriction rules, 

road construction, and drivers' growing familiarity with routes and destinations. Kakimoto et al. examined the impact of 

AV on safety, efficiency, and comfort on a single-lane highway (2018). Kim et al. (2019) examined a future transportation 

landscape in which AV technologies are fully developed and have supplanted connected vehicles (CVs). 

Given the significance of the problem, a mathematical model is proposed to determine the best routes for AVs when 

more than one vehicle chooses the same route. This mathematical programming model can simulate real-world conditions 

by simulating traffic and scheduling processes for these AVs along the same route. The proposed model determines the 

optimal route for AVs by analyzing traffic on each route. The current study is organized as follows: The relevant literature 

is reviewed in Section 2. Section 3 describes the problem statement. Section 4 describes the mathematical model. Section 

5 contains the traffic time sensitivity analysis. Section 6 includes the travel time sensitivity analysis. Section 7 discusses 

conclusions and future research. 

II. LITERATURE REVIEW  

The development of autonomous vehicle technology has accelerated recently (Cao et al., 2017). From driver assistance 

to complete automation, the Society of Automobile Engineers (SAE) International outlines five stages of autonomous 

driving (SAE, 2021). Many automakers and IT companies worldwide are currently implementing level 4 (high 

automation) tests after many vehicles have completed level 1 (driver assistance) and level 2 (partial automation) testing 

(Litman, 2017). Levels of automated operation have been created by the Society of Automotive Engineers (SAE), ranging 

from zero automation (Level 0) to complete automation (Level 1). (Level 5, also referred to as autonomous or self-driving 

cars) We are now getting close to the stage where the challenges and potential related to AVs are starting to become more 

apparent after a time of intense excitement. Although the pros and cons of its use are arguable, almost every significant 

technology company and automaker invests billions of dollars annually in an effort to get a competitive edge in this 

industry (Korosec, 2018). 

In dynamic (shared autonomous taxi) SAT systems, AVs serve as public transportation. Currently, taxi drivers choose 

the fastest route based on their knowledge and experience (Yuan et al., 2011; Zheng et al., 2010). Due to the ad hoc nature 

of actual road networks, customers might not be able to get to their destinations on time (Wu et al., 2012). Customers thus 

place a high value on the possibility of arriving on time; as a result, this has been regarded as an essential component of 

urban transportation, particularly for customers with limited time and who face severe penalties for being late. Zhu et al. 

(2018) investigated the potential benefits of a road pricing scheme. Accurate travel planning information and a solution 

that may improve customers' dependability on on-time arrival are unquestionably in high demand in dynamic SAT 

systems. SATs may provide travel flexibility because they can serve several consumers (Liu et al., 2019). Customers call 

in to seek SATs, which are then automatically assigned to them by a fictional central control system. It has been discovered 

that SAT systems can reduce taxi fleets and clients' travel expenses (Liu et al., 2018a; Fagnant and Kockelman, 2018). In 

a study by Burghout et al. (2015), personal vehicles (PVs) were used instead of SATs in Stockholm. Participants in the 

sharing programs included consumers with the same origin and destination, customers with the same origin but different 

destinations, and customers with different origins but the same destination. The results show that only 5% of today's 

private automobiles would be required for passenger transportation. The examined shared taxi systems can be divided 

into three categories depending on their objectives and criteria for sharing: time-based, cost-based, and distance-based 

shared systems. The literature has looked at a wide range of travel time statistics, such as a shared taxi service that costs 

you according to how much time you spend traveling. 
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SAT simulators were developed by Fagnant and Kockelman (2018) for users with a range of origins and destinations. 

When deciding whether a ride can be shared, the total travel time and increase in remaining travel time for riders, the total 

travel time for a new passenger, the likelihood that the new passenger will be picked up in the next five minutes, and the 

total travel time for the two passengers are taken into account. Their research suggested that sharing could cut down on 

users' overall service time (including waiting time) and costs. According to Lioris et al. (2016), a potential client should 

be turned away if the time required to serve them is longer than the permitted time. A previous study found that it is better 

to give an empty or public SAT to the customer who comes to the customer's location first when both are available (Tao, 

2007). 

The combined latency of all SAT system users was decreased by Alonso-Mora et al. (2017). According to Kruege et 

al. (2016), customers pay attention to wait times. By lowering overall routing costs, Cordeau (2006) used a trip cost-based 

shared taxi system to address the shared taxi issue. To increase overall profit, Hosni et al. (2014) proposed a shared taxi 

system.  

Miller and How (2017) observed a ride-sharing system with independent automobiles where the cost of all applicants 

is maximized based on applicant location prediction. According to Ma et al. (2015), a trip request submitted using a 

smartphone app should be assigned to the taxi that minimizes the increase in travel distance caused by the request while 

meeting the arrival time, capacity, and financial restrictions of both the new and existing clients. 

In order to reduce the overall distance traveled by all customers in a shared taxi, Lokhandwala and Cai (2018) designed 

a ride-sharing taxi system that combines traditional and autonomous vehicles. They also took into account the permitted 

trip time for each consumer in their analysis. Every customer's authorized trip time was taken into account in their study. 

The transportation system today is becoming more and more complicated, which presents challenges for planners and 

politicians. They must maintain efficient traffic flows in populated areas and offer sufficient service in remote areas. The 

fleet of vehicles must minimize energy use and have as little of an environmental impact as possible, yet the overall 

increase in trips necessitates constant system capacity augmentation. Self-driving taxi services have only lately begun to 

operate all over the world, making autonomous vehicles a reality. Future predictions predict that intelligent and networked 

cars will significantly boost the effective road capacity (Fortune, 2016; Navya, 2016; Abdullah, 2016). 

The requirement for parking in cities would be drastically reduced by a fleet of self-driving taxis, freeing up additional 

lanes to expand capacity or improve the aesthetics, sustainability, and livability of urban areas (Tientrakool et al., 2011; 

Friedrich, 2015). On the other side, more vehicles may be seen on the roads if AVs become so cozy, economical, and 

accessible that aggregation means like buses or trains become redundant (Skinner and Bidwell, 2015). 

The use of AVs may have a number of benefits, including increased network capacity and a decrease in accidents. 

The results show that the average travel time increased by 50%, while parking lots that can be used again range from 

14.6% to 32.27%. Due to the lack of affordable parking options in the congested downtown area, drivers spend 8% to 

74% of their route time looking for parking spaces. Due to the inefficiency of the walking distance between the parking 

lot site and the users' destination, privately owned human-driven vehicles (HVs) restrict the number of potential parking 

spots close to their destinations. Despite the low parking fee, the farther an automobile owner must walk, the less likely 

it is that they will choose this parking lot. A major concern for the transportation system is that traffic congestion could 

get worse as a result of induced trips made by AVs to far-off parking lots. Previous research primarily focused on AV 

parking methods, morning–evening come and go trips using a monocentric model (Zhang et al., 2019a) (the bottleneck-

constrained highway model assumed only one origin and one destination), and multiclass traffic with HVs and AVs 

(Levin and Boyles, 2016). 

The quick development and mass production of autonomous vehicles (AVs) has the potential to change the way people 

travel in terms of mobility, safety, and travel habits. Shared autonomous cars (Mao et al., 2020; Kang and Levin, 2021; 

Kruege et al., 2016), cooperative adaptive cruise control (Wang et al., 2020; Lai et al., 2020; Gong and Du, 2018), policy 

and safety measures for AV/HV mixed flow (Li et al., 2020, 2021; Gong and Du, 2018; Dresner and Stone, 2008; Wu et 
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al., 2019; Kang et al., 2021). The introduction of self-driving cars has the potential to increase traffic capacity, encourage 

car sharing, and provide convenience to the elderly or disabled who are unable to drive on their own, motivating industry 

and university researchers to evaluate AVs. 

However, there are also drawbacks to adopting AVs, such as the fact that AVs may initially lower capacity if AV 

owners choose comfortable acceleration speeds and that zero-occupant vehicles may increase vehicle hours traveled 

(Kang and Miller, 2018). Transportation planners must consider the possibility of traffic congestion brought on by induced 

AV excursions in search of inexpensive parking spots as more people use AVs. A parking reservation approach with 

confined transport modes and parking lots was investigated by Wu et al. (2021). They anticipated that if commuters 

arrived late, the parking lot reservation would expire or that they would have to pay additional fees to extend the 

reservation. 

A liner aisle with a bi-directional through road was used by Su and Wang (2021) in order to observe a spatial parking 

planning design that had both AVs and HVs. Another track for the balance analysis of selecting parking spots is the static 

traffic assignment model. An approach was introduced by Jiang et al. (2014) to design the balance analysis on parking 

spot choice for electric automobiles with a time restriction. Although they examined two types of cars, the demand for 

each was indicated, implying that no mode alternative was considered. Zhang et al. (2019) proposed a variational 

inequality-based approach. In some studies, mode split and route selection were combined into a single mathematical 

model. Two methods for integrating modal split and equilibrium assignment models, as well as elastic demand modeling 

techniques, were presented by Abdulaal and LeBlanc in 1979.  

Numerous ways in which AVs may be advantageous to passengers have been thoroughly investigated as a hot issue. 

Because AVs may self-direct to a cheap parking facility, the resulting journeys can make the traffic situation worse. There 

is a lot of potential for AVs and driver assistance technology to reduce accidents and increase network capacity. 

Cooperative driving by AVs can lower vehicle emissions, but when AVs self-navigate to far-off parking lots, they run 

the risk of raising emissions. Decision-makers must choose between using less parking space in crowded core areas and 

lengthening routes when AVs and HVs coexist. 

The potential impact of self-driving technology on urban mobility has generated both enthusiasm and worry. 

Approximately 30 car manufacturers or IT companies have licenses and are already testing their AVs in actual 

environments. There are several ways in which we can make use of transformational technology (Litman, 2017). 

According to some analysts, this technology will be a key part of the sharing economy since it will make it possible 

for shared AVs (SAVs), a new door-to-door transportation option, to exist (Krueger et al., 2016). According to current 

expressed preference survey results, privately owned AVs (PAVs) will soon outnumber SAVs in the market, according 

to other studies (Zhang & Guhathakurta, 2021). Whatever the form of AV deployment, this disruptive technology will 

radically change how people travel, causing a change in how cities are developed. 

AVs are expected to significantly improve the safety and efficiency of existing roads and transportation systems. 

Although it will take years for the use of AV technology to spread, recent advancements indicate that we are rapidly 

approaching its use. As of October 2016, Google's AVs had traveled over 2 million miles on public roads. In Singapore, 

Nutonomy Software recently launched the world's first self-driving taxi. Multiple automobile manufacturers, including 

Volvo and Audi, are currently developing and testing prototypes of AVs. In the United States, government agencies in 

states such as Nevada, Florida, California, Michigan, and Washington, D.C., have yet to modify various policies and 

procedures in order to utilize and improve the application of this technology. 

   Extensive research papers on AVs have recently been published, making it necessary to have a broad perspective in 

order to synthesize the existing knowledge base. There have been attempts to bring together pertinent studies 

(Gkartzonikas and Gkritza, 2019; Becker and Axhausen, 2017; Miller and How, 2017; Soteropoulos et al., 2018). Becker 

et al. (2017) evaluate studies on autonomous car adoption up to 2016. Gkartzonikas et al. (2019) categorize survey 

research on AVs based on the study's aims. BMW Group has teamed up with Intel and the Mobileye Team to develop 
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AVs for ride-sharing by 2021 (BMW Group, 2021). In 2021, Ford aims to launch its AVs in a ride-hailing or ride-sharing 

service (The Ford Company, 2021). O'Kane (2018) says that by 2021, the Volkswagen Group and Hyundai will work 

with Aurora Innovations to launch a self-driving on-demand service.   Redistributing cars, according to Vosooghi et al. 

(2019), has a substantial impact on service performance, such as modal share and fleet utilization. Dandl et al. (2019) in 

their research work on the influence of geographical and temporal aggregation of demand forecasts used for vehicle 

redistribution. Gurumurthy et al. (2019) created a model of a system that included AVs with flexible ride-sharing options 

and congestion pricing during peak hours. Simoni et al. (2019) investigated four distinct congestion pricing and tolling 

techniques, which are divided into two categories: classic and advanced. The International Transport Forum (2018) 

examines the concerns of road safety and security connected with autonomous cars, as well as solutions for addressing 

them. Vosooghi et al. (2019) find that the AV service can lower the number of automobiles in the network by at most 1.7 

percent when considering dynamic demand and a multimodal network. In Table Ⅰ, we summarized the studies that are 

similar to the present article. 

Table Ⅰ. Components of AV modeling and indicative references 

# Authors 
Booking Type Traffic assignment Problem 

on demand 
Reservation 

based 
Fix Travel 

Time 
simulation 

system 
Objective 
function 

Multi-
objective 

1 
Alonso-Mora et al. 

(2017) 
×       Min-Time  

2 Lamotte et al. (2017)   ×     Max-profit  

3 
Fagnant and 

Kockelman (2018) 
  ×    ×    

4 
Gurumurthy and 

Kockelman (2018) 
  ×   ×   

5 Hörl, S (2017) ×     ×   

6 
Hyland and 

Mahmassani (2018) 
  ×     Min-Time  

7 Levin (2017)   ×    ×   

8 
Lokhandwala and Cai 

(2018) 
  ×    ×   

9 Mahmassani  (2018)   ×    ×   

10 Ma et al. (2017)   ×    Min-cost   

11 Dandl et al. (2021) ×   ×   

12 Pimenta et al. (2017)   ×     

Min 

number of 

stops 

 

13 Chen et al. (2016)         Min-Time  

14 Oke et al., (2020) ×   ×   

15 Boesch et al. (2016)       ×   

16 
Dia and Javanshour 

(2017) 
      ×   

17 Oh et al.(2020) ×   ×   

18 Zhou et al.(2021)       ×   

19 
Alam and Habib 

(2018) 
      ×   

20 Dandl et al. (2019)       ×   

21 
Vosooghi et al. 

(2019) 
      ×   

22 Liu et al. (2019)     × ×   

23 Bracy et al. (2019) ×     ×   

24 
Zhang and 

Guhathakurta (2021) 
×   ×   

25 Mousavi et al. (2021)    ×   
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26 Kang et al. (2022) ×    Min-Time  

27 This research ×  ×  
Min-Time 

Min-Cost 
× 

 The literature has begun to pay attention to the potential for AVs to improve traffic flow. While much of the literature 

on CVs and AVs uses micro-simulation, this study provides bi-objective mathematical modeling to investigate the effects 

of traffic on a city network with dynamic user equilibrium. This research helps in the creation of a road traffic assignment. 

In addition, the suggested model solves using the Lagrangian relaxation approach in medium and large cases. 

III. PROBLEM DESCRIPTION 

In recent years, technology advancements, particularly in the digital realm, have prompted changes to traffic 

regulations intended to increase safety. The traffic monitoring system, which is still in use today, has several 

disadvantages, including the inability to communicate information to other drivers and processing delays. Recent research 

has also focused on newer ideas, such as the wireless network. 

Because freeways and highways are critical components of the transportation infrastructure, it is essential to manage 

traffic in a way that minimizes delays. New traffic control technology can aid in this regard. Both are effective in 

enhancing the capacity of the flow and disaster management. The new concept of automobile communication systems 

and traffic infrastructure enables the management of freeways and highways in which vehicles can communicate with 

each other and with infrastructure. Before they are released to the public, vehicle communication systems must be 

evaluated for their impact on vehicle traffic, their interaction with one another, and the traffic infrastructure. People who 

cannot or will not drive are expected to behave safely as the use of independent vehicles grow rapidly in popularity. The 

following framework serves as the basis for formulating the research problem. Initially, AVs were assigned to a portion 

of a transportation network. In this situation, only AVs are permitted to use these communication paths (links). They also 

follow predetermined routes. In addition, the departure point and shortest route to each region are determined after 

entering AVs to various areas. If multiple AVs are available, the shortest route is used to determine the optimal network 

for each AV. This strategy increases the use of autonomous vehicles by improving the starting and end positions. 

Additionally, if there are insufficient routes, multiple vehicles may be assigned to a single route. 

In this proposed system, only the customer is involved in requesting a ride, allocating the trip, arranging the arrival, 

and routing the vehicle via phone. The driver is solely responsible for following the computer's instructions. Due to the 

rapid growth of autonomous vehicles, customers will eventually be able to order an AV through their smartphone or the 

internet and ride it to their destination alone. Examining shared vehicle systems has been a fundamental strategy for 

improving conventional vehicle systems in terms of customer convenience and reduction of traffic congestion. Studies 

on this methodology have recently garnered considerable interest. Systems for dynamically shared autonomous vehicles 

are seen as a practical means of enhancing travel flexibility. Since AVs lack human drivers, they require accurate traffic 

data to create suitable routes; on-time arrival is a critical service characteristic in AV systems. In this study, the reliable 

route concept and obtained travel time data were used to support path discovery for AVs to increase the probability of 

on-time arrival, and the potential benefits were examined. 

IV. MATHEMATICAL FORMULATION 

A. Assumptions 

1. AVs can travel on designated roadways. 

2. Each AV has a starting and terminating station. 

3. Uncertainty is not taken into account and all parameters are assumed to be constant. 
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4. All AVs are considered equal. 

5. Each AV is limited to passing via the stations to which it has been assigned. 

The goal of this research's mathematical model is to propose a model for the autonomous vehicle routing problem by 

taking into account road traffic for each route. The suggested model includes the following necessary information: 

B. Sets, Parameters and Variables  

Sets 

𝐈 Set of all AVs; i , i′ ∈ I 

𝐉 Set of all station;  j , j′ ∈ J 

𝐊 Set of all routes; k , k′ ∈ K 

𝐉𝐢 Set of stations that a vehicle can pass through  (each AV can only pass through assigned stations) 

𝐀𝐢 First station for AV (each AV's first station is specified.) 

𝐳𝐢 Last station for AV (each AV’s The end station is specified.) 

Parameters  

𝑷𝑻𝒊𝒋𝒌 The amount of time it takes to go from station 𝑖 ∈ 𝐼 to station 𝑗 ∈ 𝐽 using route 𝑘. 

𝑺𝑻𝒊𝒋𝒌 
The traffic time for the route 𝑘, with the purpose of arriving at station 𝑗 ∈ 𝐽 by the starting station 

𝑖 ∈ 𝐼. 

𝑻𝑫𝒊 Cost of traveling by 𝑖 ∈ 𝐼 

Decision Variables  

𝑪𝒊𝒋𝒌 The time it takes to travel via route k from station 𝑖 ∈ 𝐼 to station 𝑗 ∈ 𝐽 

𝒀𝒊𝒋𝒌 
binary variable, if the 𝑖 ∈ 𝐼 uses the route 𝑘 to arrive at the station 𝑗, it will be equal to one; 

otherwise zero 

𝑿𝒊𝒊′𝒋𝒌 
binary variable, if two AVs want to travel the same route, it represents that 𝑖′ ∈ 𝐼 arrives at the 

station 𝑗 after 𝑖 ∈ 𝐼 while using the route 𝑘, it will be equal to one; otherwise zero 

C. Proposed Mathematical Model 

The objectives of the proposed mathematical model are to minimize overall transportation costs and completion times 

while taking into account traffic conditions along each route. The following demonstrates how the proposed mathematical 

programming model is presented: 

𝑀𝑎𝑥 ∑ 𝐶𝑖𝑧𝑖𝑘𝐾∈𝑘𝑖𝑧𝑖
                         (1) 

In this case, the objective function (1) minimizes 𝑀𝑎𝑥 ∑ 𝐶𝑖𝑧𝑖𝑘𝐾∈𝑘𝑖𝑧𝑖
, which is used to minimize the traveling time. 

The objective function (1) is linearized using a decision variable named 𝑇. In this case, the whole expression in the 

Min function is equal to this decision variable: 

∑ 𝐶𝑖𝑧𝑖𝑘 = 𝑇𝐾∈𝑘𝑖𝑧𝑖
           (2) 

Where  𝑀𝑖𝑛 (𝑇) is the objective function (1), and constraint (15) maximizes the whole expression. 

  Since costs play a significant role in realistic situations, it is essential to consider the cost objective function. This 

objective function is presented in equation (3). 



Journal of Quality Engineering and Production Optimization  / Vol. 7, No. 2, Winter & Spring 2022, PP. 14-33 21 

 

Where  𝑀𝑖𝑛 (𝑇) is the objective function (1), and constraint (15) maximizes the whole expression. 
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𝑀𝐼𝑁 𝐶 = ∑ 𝑇𝐷𝑖𝑖 ∗ (∑ 𝐶𝑖𝑗𝑘𝐾,𝐽 )          (3) 

𝑀𝑖𝑛   (𝑇)                                                                                                                                        (4) 

∑ ∑ 𝑋𝑖𝑖′𝑗𝑘𝑖′∈𝐼𝑖∈𝐼
𝑖≠𝑖1

≤ 1                   ∀ 𝑗 ∈ 𝐽𝑖  , 𝑘 ∈ 𝑘𝑖𝑗        (5) 

∑ 𝑌𝑖𝑗𝑘𝑘∈𝐾 = 1                             ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽𝑖                                               (6) 

∑ 𝑌𝑖𝑗𝑘𝑘∈𝐾 = 1                             ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽𝑖                                               (7) 

𝐶𝑖𝑗𝑘 ≥ ∑ 𝐶𝑖𝑗′𝑘′ +𝑘′∈𝑘𝑖𝑗′ 𝑆𝑇𝑖𝑗𝑘 + 𝑃𝑇𝑖𝑗𝑘 − 𝑀 ∗ (1 − 𝑌𝑖𝑗𝑘)             ∀𝑖 ∈ 𝐼, 𝑗′ ∈ 𝐽𝑖 , 𝑗 ≠ 𝐴𝑖 , 𝑗′ = 𝑗 − 1, 𝑘 ∈ 𝑘𝑖𝑗      (8) 

𝐶𝑖𝑗𝑘 ≥ 𝑌𝑖𝑗𝑘 ∗ (𝑆𝑇𝑖𝑗𝑘 + 𝑃𝑇𝑖𝑗𝑘)                         ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐴𝑖, ∀𝑘 ∈ 𝑘𝑖𝑗      (9) 

𝑋𝑖𝑖′𝑗𝑘 + 𝑋𝑖′𝑖𝑗𝑘 ≤ 1                                             ∀𝑖, 𝑖′ ∈ 𝐼, 𝑖 < 𝑖′, 𝑗 ∈ 𝐽𝑖 ∩ 𝐽𝐼′ , 𝑘 ∈ 𝑘𝑖𝑗 ∩ 𝑘𝑖′𝑗                (10) 

2 ∗ 𝑋𝑖𝑖′𝑗𝑘 ≤ 𝑌𝑖𝑗𝑘 + 𝑌𝑖′𝑗𝑘                                   ∀𝑖, 𝑖′ ∈ 𝐼, 𝑖 < 𝑖′, 𝑗 ∈ 𝐽𝑖 ∩ 𝐽𝐼′ , 𝑘 ∈ 𝑘𝑖𝑗 ∩ 𝑘𝑖′𝑗                (11) 

𝑌𝑖𝑗𝑘 + 𝑌𝑖′𝑗𝑘 ≤ 𝑋𝑖′𝑖𝑗𝑘 + 𝑋𝑖𝑖′𝑗𝑘 + 1                  ∀𝑖, 𝑖′ ∈ 𝐼, 𝑖 < 𝑖′, 𝑗 ∈ 𝐽𝑖 ∩ 𝐽𝐼′ , 𝑘 ∈ 𝑘𝑖𝑗 ∩ 𝑘𝑖′𝑗                (12) 

𝐶𝑖𝑗𝑘 ≥ 𝐶𝑖′𝑗𝑘  +  𝑆𝑇𝑖𝑗𝑘 + 𝑃𝑇𝑖𝑗𝑘 − 𝑀 ∗ 𝑋𝑖′𝑖𝑗𝑘 − 2𝑀 + 𝑀𝑌𝑖𝑗𝑘 + 𝑀𝑌𝑖′𝑗𝑘            ∀𝑘 ∈ 𝐾: 𝑁𝑘 > 1, 𝑗 = 𝑗𝑘 , 𝑖, 𝑖′ ∈  𝐼𝑘  , 𝑖 < 𝑖′       (13) 

𝐶𝑖′𝑗𝑘 ≥ 𝐶𝑖𝑗𝑘  +  𝑆𝑇𝑖1𝑗𝑘 + 𝑃𝑇𝑖1𝑗𝑘 − 𝑀 ∗ 𝑋𝑖𝑖′𝑗𝑘 − 2𝑀 + 𝑀𝑌𝑖𝑗𝑘 + 𝑀𝑌𝑖′𝑗𝑘         ∀𝑘 ∈ 𝐾: 𝑁𝑘 > 1, 𝑗 = 𝑗𝑘 , 𝑖, 𝑖′ ∈ 𝐼𝑘  , 𝑖 < 𝑖′        (14) 

𝑇 ≥ ∑ 𝐶𝑖𝑧𝑖𝑘𝑘∈𝑘𝑖𝑧𝑖
                              ∀𝑖 ∈ 𝐼                     (15) 

𝐶𝑖𝑗𝑘 ≥ 0                          (16) 

𝑇 ≥ 0                          (17) 

𝑋𝑖𝑖′𝑗𝑘:𝑏𝑖𝑛𝑎𝑟𝑦                        (18) 

     𝑦𝑖𝑗𝑘 : 𝑏𝑖𝑛𝑎𝑟𝑦                                        (19) 

Constraint 4 minimizes the time it takes to reach the last station. Constraint (5) maintains that each AV is selected 

once for each route to reach the destination. In constraint (6), each AV must traverse a route to reach its destination. 

Constraint (7) ensures that if a route is chosen for transportation, its gate becomes open. Constraint (8) represents that the 

transportation time in each stage includes traveling time at the previous station, the time for the presence of a vehicle in 

traffic, and the traveling time to reach the destination. This constraint is applied to all stages of navigation, except for the 

first one. Also, constraint (9) expresses that the traveling time in the first stage includes the traveling time on each route 

and the traffic time on the route. Constraints (10)–(12) impose restrictions on the two vehicles' route selection because 

they must adhere to the traffic queue.  Constraint (12) guarantees that if the 𝑖′ ∈ 𝐼 departs from route 𝑘 before the 𝑖 ∈ 𝐼, 

the 𝑖 ∈ 𝐼 has a longer transport end time. Constraint (13) enforces that if the 𝑖 ∈ AV moves ahead of 𝑖′ ∈ 𝐼 from route k, 

the 𝑖′ ∈ 𝐼  has a longer transport end time. Also, constraints (15)-(17) are model linearization constraints. Besides, 

constraints (18) and (19) specify the types of variables.  The following specifications are applied to the schematic 

representation of the research model .Table Ⅱ gives the time that an AV reaches destination 𝑗 via route 𝑘. 
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D. Solution approach: weighted sum 

The weighted sum method integrates the objective functions by allocating appropriate weights. The weights are chosen 

by decision-makers (𝑤1 and 𝑤2). The weights of objectives may also be determined using some methods, such as AHP. 

It is important to consider that  𝑤1, 𝑤2 ≥ 0  and 𝑤1 +  𝑤2 =  1  The equation  is found in Eq. (20). Since the model 

has two objectives, the weighted sum method (WSM) is used to combine the two objectives into one objective. 

𝑀𝐼𝑁 𝑓𝑖𝑛𝑎𝑙 = 𝑤1 × ∑ 𝑇𝐷𝑖𝑖 ∗ (∑ 𝐶𝑖𝑗𝑘𝐾,𝐽 )   + 𝑤2 ×  (𝑇)                   (20) 

s.t 

𝐸𝑞𝑠. (5) − (19)   

E. Validation of the mathematical model 

A numerical experiment is considered, the details of which are presented in Table Ⅱ, to validate the mathematical 

model. The CPLEX solver is used to solve the model, and the results are presented in Table Ⅲ and Fig. (1). 

Table Ⅱ. Specification of an instance 

𝑰: Set of all AVs {𝐴𝑉1, 𝐴𝑉2, 𝐴𝑉3, 𝐴𝑉4, 𝐴𝑉5} 
𝑲: Set of all routes {𝐴𝑞1, 𝐴𝑞2, 𝐴𝑞3, 𝐴𝑞4, 𝐴𝑞5, , 𝐴𝑞6, 𝐴𝑞7, 𝐴𝑞8, 𝐴𝑞9} 

𝑺: Set of all stations {𝑠1, 𝑠2, 𝑠3} 
𝑷𝑻𝒊𝒋𝒌 𝑟𝑜𝑢𝑛𝑑(𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1,3)) 

𝑺𝑻𝒊𝒋𝒌 𝑟𝑜𝑢𝑛𝑑(𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1,3)) 

𝑻𝑫𝒊 𝑟𝑜𝑢𝑛𝑑(𝑢𝑛𝑖𝑓𝑜𝑟𝑚(25,50)) 

Table Ⅲ. Presenting the travel time for each AV at each stage 

𝑨𝑽 and 𝑺 
𝑲 

𝑨𝒒𝟏 𝑨𝒒𝟐 𝑨𝒒𝟑 𝑨𝒒𝟒 𝑨𝒒𝟓 𝑨𝒒𝟔 𝑨𝒒𝟕 𝑨𝒒𝟖 𝑨𝒒𝟗 

𝐴𝑉1. 𝑠1 

 

6 

 

 

 

𝐴𝑉1. 𝑠2  9 

𝐴𝑉2. 𝑠1 2  

𝐴𝑉2. 𝑠2 

 

4 

𝐴𝑉3. 𝑠1 5  

𝐴𝑉3. 𝑠2 
 

9  
𝐴𝑉4. 𝑠1 3 

 𝐴𝑉4. 𝑠2 
 

6 
 𝐴𝑉5. 𝑠1 2  

𝐴𝑉5. 𝑠2  5 

𝐴𝑉1. 𝑠3 

 

 
 12 

𝐴𝑉2. 𝑠3 7  
𝐴𝑉3. 𝑠3  13 

𝐴𝑉4. 𝑠3  9 

𝐴𝑉5. 𝑠3 10  

The travel time for each AV at each stage can be seen in Table Ⅲ. The proposed model is solved with the specifications 

in Table Ⅱ. Certain routes receive more traffic than others; for example, the Aq2 and Aq6 routes are used by AV1 and 

AV2. For instance, the route Aq1, Aq5, and Aq8 have been used only once, indicating a route of low importance, whereas 

the routes Aq3, Aq4, Aq2, Aq7, Aq9, and Aq6 are significant. Fig. (1) provides the optimal routes for each AV. 



Journal of Quality Engineering and Production Optimization  / Vol. 7, No. 2, Winter & Spring 2022, PP. 14-33 23 

 

 

Fig 1. The routes of AVs to reach the destination j by using route k 

Optimal routes for each AV are shown in Fig. (1). It depicts the routes and stations that each AV uses to avoid traffic 

on its trip. Vehicles 3 and 5 use the Aq3 route to S1, then the Aq4 route to S2, then the Aq8 route to the final station (S3), 

while vehicle 5 takes the Aq4 route to S2, then the Aq7 route to the final station (S3). 

For analyzing the sensitivity, we consider the parameters TDi, PTijk by increasing 1 unit in each iteration, their effect 

on the objective function is measured. In this analysis, the model is executed 10 times and each time one unit is added to 

the previous value. The results of each parameter are presented in Fig. (2). 

 

Fig 2. Analyzing the sensitivity by considering the parameters 𝑻𝑫𝒊, 𝑷𝑻𝒊𝒋𝒌 

Results after 10 iterations can be seen in Fig. (2), by increasing 1 unit of  TDi, PTijk in each iteration, the cost increases 

as expected. In addition to sensitivity analysis, the mathematical model can be validated. Also, by increasing 1 unit of 

TDi  in each iteration the cost increases. 

V. CONCLUSION 
The sensitivity of the parameters must be investigated and appropriate scheduling policies to improve the scheduling 

under study. The traffic time was evaluated with a tolerance of ±25%.  
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Fig 3. Analyzing traffic time sensitivity 

   As can be seen in Fig. (3), after a 5% increase in traffic time, the objective function value was increased by 5% due 

to the increased penalty of delay. On the other hand, a 10% increase in traffic time results in a 6% increase in the objective 

function value, and when traffic time is increased to 25%, 19% of the objective function's optimum value can fall outside 

the optimum range. As a result, managers of the studied organizations are advised to plan traffic management so that the 

time required to complete the task is less than the minimum value, which requires studying the operation of and developing 

traffic management systems. On the other hand, by reducing traffic time, the overall system's objective function is 

reduced. It indicates that the mathematical model is highly susceptible to traffic time, such that if traffic time is reduced 

to 25% of its current value, the objective function value decreases by 35%, indicating the parameter's effect on the 

mathematical model. 

Optimal Cost Changes (%) 19 13 11 6 5 0 -6 -12 -17 -24 -35 

Parameter changes (%) 25 20 15 10 5 0 -5 -10 -15 -20 -25 

VI. ANALYZING TRAVELING TIME SENSITIVITY 

Another factor affecting the model's sensitivity analysis is the travel time.  

 

Fig 4. Analyzing route travel time sensitivity 

As can be seen in Fig. (4), 5% increase in the travel time results in a 9% deviation from the objective function's optimal 

value. As is well known, travel time includes numerous effective parameters, It was observed that a 25% increase in travel 

time resulted in an 18% increase in the objective function value. 
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Optimal cost changes (%) 19 13 11 6 5 0 -1 -1 -1 -2 -3 

Parameter changes (%) 25 20 15 10 5  0 -5 -10 -15 -20 -25 

VII. SOLVING THE MATHEMATICAL MODEL USING SPLITTING ALGORITHM OF 

LAGRANGIAN RELAXATION  

The Lagrange relaxation (LR) algorithm is one of the useful techniques for solving complex problems, proposed in 

1970. This technique relaxes (removes) complex constraints (constraints that increase complexity; their elimination can 

simplify the problem) from the original problem and transfers them to the objective function. This relaxation makes the 

problem simpler (more straightforward) than the original. In the minimization (maximization) problem, the optimal value 

of the relaxed problem is the lower bound (upper bound) for the main problem. The approach was developed based on 

Lagrange's theorem. Geoffrion (2010) studies the principles and concepts of LR in detail. Preliminary studies of the LR 

algorithm are reviewed, and the concepts and principles of this algorithm are reviewed by Fisher (2004). Due to its good 

performance (Guignard, 2003), the LR algorithm has been used by many researchers in various fields of integer 

programming. Such an incremental trend is evident in many areas of research (for example, the multi-level location-

inventory problem (Fu and Diabat, 2015), the integrated quay crane assignment and scheduling problem (Fu and Diabat, 

2015), the vehicle routing problem (VRP) (Imai et al., 2007), the center and orbit network design problem poles and lunar 

orbits, and source and branch (Alkaabneh et al., 2019). This study uses the LR algorithm too, because it has performed 

well in solving complex supply chain optimization problems (Hamdan and Diabat, 2020). In view of the fact that the 

standard form of this algorithm has its drawbacks, in addition to its original form, a modified approach is developed here 

based on Alkaabneh et al. (2019) in which the standard LR algorithm is improved by updating its multipliers following 

the violated constraints. In this algorithm, the relaxed constraint is converted to the objective function by the Lagrange 

multiplier 𝑢. Finding the optimal Lagrange multipliers is one of the important issues in this algorithm. In this regard, one 

of the common approaches that finds the best Lagrange multiplier through an iterative procedure is the subgradient 

optimization (SO) algorithm. The main problem in SO is determining the step size to ensure that the algorithm converges 

to the optimal solution. The LR and SO algorithms are combined to overcome these requirements. The pseudo-code for 

this combination is as follows: 

Step 0. Identify the constraints that need to be relaxed. 

Step 1. Set the initial Lagrange multiplier 𝑢0 to zero, 𝑡 =  1, and set the initial value 𝜃. 

Step 2. Transfer the relaxed constraints to the objective function using Lagrange multipliers. 

Step 3. Find a feasible solution to the main problem and set the value of its objective function as the upper bound 

(UB). 

Step 4. Set the initial lower bound (LB) to a small value (LB∗  =  − ∞). 

Step 5. Follow these steps until the stopping criteria are met. 

Step 5-1. Solve the relaxed problem and get a new lower bound (LB). 

Step 5-2. If  LB >  LB∗, then set LB∗  ⟵  LB. 

Step 5-3. Update the Lagrange multipliers corresponding to the violated constraints. 

Step 6. Report the lower bound of the problem. 
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A. The Proposed LR Algorithm 

The LR algorithm used in this study considers the constraints on calculating the travel time and the time to reach the 

last node. In this mathematical model, constraints (8), (9), (13), and (14) refer to these constraints. It is worth noting that 

the selected constraints are to examine (test) their properties in the main problem for relaxation, rewritten as follows: 

−𝐶𝑖𝑗𝑘 + ∑ 𝐶𝑖𝑗′𝑘′ − 𝑀 ∗ (1 − 𝑌𝑖𝑗𝑘)𝑘′∈𝑘𝑖𝑗′ ≤ −𝑆𝑇𝑖𝑗𝑘 − 𝑃𝑇𝑖𝑗𝑘                           ∀𝑖 ∈ 𝐼, 𝑗′ ∈ 𝐽𝑖 , 𝑗 ≠ 𝐴𝑖 , 𝑗′ = 𝑗 − 1, 𝑘 ∈ 𝑘𝑖𝑗         (20) 

−𝐶𝑖𝑗𝑘 ≤ −𝑌𝑖𝑗𝑘 ∗ (𝑆𝑇𝑖𝑗𝑘 + 𝑃𝑇𝑖𝑗𝑘)                                                                          ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐴𝑖 , ∀𝑘 ∈ 𝑘𝑖𝑗                (21) 

−𝐶𝑖𝑗𝑘 + 𝐶𝑖′𝑗𝑘 − 𝑀 ∗ 𝑋𝑖′𝑖𝑗𝑘 − 2𝑀 + 𝑀𝑌𝑖𝑗𝑘 + 𝑀𝑌𝑖′𝑗𝑘 ≤   −𝑆𝑇𝑖𝑗𝑘 − 𝑃𝑇𝑖𝑗𝑘   ∀𝑘 ∈ 𝐾: 𝑁𝑘 > 1, 𝑗 = 𝑗𝑘 , 𝑖, 𝑖′ ∈  𝐼𝑘  , 𝑖 < 𝑖′          (22) 

−𝐶𝑖′𝑗𝑘 + 𝐶𝑖𝑗𝑘 − 𝑀 ∗ 𝑋𝑖𝑖′𝑗𝑘 − 2𝑀 + 𝑀𝑌𝑖𝑗𝑘 + 𝑀𝑌𝑖′𝑗𝑘 ≤ − 𝑆𝑇𝑖1𝑗𝑘 − 𝑃𝑇𝑖1𝑗𝑘  ∀𝑘 ∈ 𝐾: 𝑁𝑘 > 1, 𝑗 = 𝑗𝑘 , 𝑖, 𝑖′ ∈ 𝐼𝑘  , < 𝑖′            (23) 

Since the model is of the minimization type, the result of the proposed algorithm is a lower bound for the main 

problem. For this purpose, the constraints (8), (9), (13), and (14) are removed from the solution space and the equations 

(24-27) are added to the objective function 20 to obtain a relaxed problem. 

∑ ∑ ∑ ∑ 𝑈𝐿𝑘𝑗
𝑖𝑗′

𝑗≠𝐴𝑖𝑗′∈𝐽𝑖

𝑗′=𝑗−1

𝑖∈𝐼𝑘∈𝑘𝑖𝑗    × [[−𝐶𝑖𝑗𝑘 + ∑ 𝐶𝑖𝑗′𝑘′ − 𝑀 ∗ (1 − 𝑌𝑖𝑗𝑘)𝑘′∈𝑘𝑖𝑗′ ] − (−𝑆𝑇𝑖𝑗𝑘 − 𝑃𝑇𝑖𝑗𝑘)]              (24) 

∑ ∑ ∑ 𝑉𝐿𝑘𝑗
𝑖

𝑗≠𝐴𝑖𝑖∈𝐼𝑘∈𝑘𝑖𝑗    × [[−𝐶𝑖𝑗𝑘] − (−𝑌𝑖𝑗𝑘 ∗ (𝑆𝑇𝑖𝑗𝑘 + 𝑃𝑇𝑖𝑗𝑘))]                  (25) 

∑ ∑ ∑ 𝑅𝐿𝑘𝑗
𝑖𝑖′

𝑗=𝑗𝑘𝑖,𝑖′∈ 𝐼𝑘  

𝑖<𝑖′
𝑘∈𝐾:𝑁𝑘>1    × [[−𝐶𝑖𝑗𝑘 + 𝐶𝑖′𝑗𝑘 − 𝑀 ∗ 𝑋𝑖′𝑖𝑗𝑘 − 2𝑀 + 𝑀𝑌𝑖𝑗𝑘 + 𝑀𝑌𝑖′𝑗𝑘] − (−𝑆𝑇𝑖𝑗𝑘 − 𝑃𝑇𝑖𝑗𝑘)] (26) 

∑ ∑ ∑ 𝑆𝐿𝑘𝑗
𝑖𝑖′

𝑗=𝑗𝑘𝑖,𝑖′∈ 𝐼𝑘  

𝑖<𝑖′
𝑘∈𝐾:𝑁𝑘>1    × [[−𝐶𝑖′𝑗𝑘 + 𝐶𝑖𝑗𝑘 − 𝑀 ∗ 𝑋𝑖𝑖′𝑗𝑘 − 2𝑀 + 𝑀𝑌𝑖𝑗𝑘 + 𝑀𝑌𝑖′𝑗𝑘 ] − (− 𝑆𝑇𝑖1𝑗𝑘 − 𝑃𝑇𝑖1𝑗𝑘)            (27) 

In equations (24)-(27)  𝑈𝐿𝑘𝑗
𝑖𝑗′

, 𝑉𝐿𝑘𝑗
𝑖 , 𝑅𝐿𝑘𝑗

𝑖𝑖′ , and  𝑆𝐿𝑘𝑗
𝑖𝑖′   are Lagrange multipliers for their corresponding constraints. 

B. Updating Lagrange Multipliers 

The quality of the solution obtained from the LR algorithm is sometimes unsatisfactory due to the type I zigzag 

behavior of the pure SO method. Alkaabneh et al. (2019) used the modified SO method to improve the Lagrange 

multipliers to prevent this behavior. In this study, Lagrange multipliers are updated as follows according to Alkaabneh et 

al. (2019).  

To implement the proposed LR algorithm, the Lagrange multipliers are updated in each iteration based on Equations 

(28) - (44) where 𝑠𝑡𝑡  represents the step size. Note that the values of the parameters gamma1𝑖𝑗′𝑘𝑗
𝑡   , gamma2𝑖𝑘𝑗

𝑡  , 

gamma3𝑖𝑖′𝑘𝑗
𝑡 , and gamma4𝑖𝑖′𝑘𝑗

𝑡  are calculated as the violation of the relaxed constraints by Equations (28) - (44). 

  

gamma1𝑖𝑗′𝑘𝑗
𝑡 = [[−𝐶𝑖𝑗𝑘 + ∑ 𝐶𝑖𝑗′𝑘′ − 𝑀 ∗ (1 − 𝑌𝑖𝑗𝑘)𝑘′∈𝑘𝑖𝑗′ ] − (−𝑆𝑇𝑖𝑗𝑘 − 𝑃𝑇𝑖𝑗𝑘)]                  (28) 

gamma2𝑖𝑘𝑗
𝑡 = [[−𝐶𝑖𝑗𝑘] − (−𝑌𝑖𝑗𝑘 ∗ (𝑆𝑇𝑖𝑗𝑘 + 𝑃𝑇𝑖𝑗𝑘))]                    (29) 

gamma3𝑖𝑖′𝑘𝑗
𝑡 = [[−𝐶𝑖𝑗𝑘 + 𝐶𝑖′𝑗𝑘 − 𝑀 ∗ 𝑋𝑖′𝑖𝑗𝑘 − 2𝑀 + 𝑀𝑌𝑖𝑗𝑘 + 𝑀𝑌𝑖′𝑗𝑘] − (−𝑆𝑇𝑖𝑗𝑘 − 𝑃𝑇𝑖𝑗𝑘)]                                           (30) 

gamma4𝑖𝑖′𝑘𝑗
𝑡 = [[−𝐶𝑖′𝑗𝑘 + 𝐶𝑖𝑗𝑘 − 𝑀 ∗ 𝑋𝑖𝑖′𝑗𝑘 − 2𝑀 + 𝑀𝑌𝑖𝑗𝑘 + 𝑀𝑌𝑖′𝑗𝑘 ] − (− 𝑆𝑇𝑖1𝑗𝑘 − 𝑃𝑇𝑖1𝑗𝑘)]                            (31) 
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𝜀1
𝑡 = {

𝜏.
gamma1𝑖𝑗′𝑘𝑗

𝑡 .𝑑1𝑖𝑗′𝑘𝑗
𝑡−1

‖𝑑1𝑖𝑗′𝑘𝑗
𝑡−1 ‖

2

0 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

   𝑖𝑓 gamma1𝑖𝑗′𝑘𝑗
𝑡 . 𝑑1𝑖𝑗′𝑘𝑗

𝑡−1 < 0                   (32) 

𝑑1𝑖𝑗′𝑘𝑗
𝑡 = gamma1𝑖𝑗′𝑘𝑗

𝑡 + 𝜀1
𝑡 . 𝑑1𝑖𝑗′𝑘𝑗

𝑡−1                      (33) 

𝑈𝐿𝑘𝑗
𝑖𝑗′ ,𝑡

= 𝑈𝐿𝑘𝑗
𝑖𝑗′ ,𝑡−1

+ 𝑠𝑡𝑡 . 𝑑1𝑖𝑗′𝑘𝑗
𝑡                                   (34)

  

𝜀2
𝑡 = {

𝜏.
gamma2𝑖𝑘𝑗

𝑡 .𝑑2𝑖𝑘𝑗
𝑡−1

‖𝑑2𝑖𝑘𝑗
𝑡−1‖

2

0 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

   𝑖𝑓 gamma2𝑖𝑘𝑗
𝑡 . 𝑑2𝑖𝑘𝑗

𝑡−1 < 0                                 (35) 

𝑑2𝑖𝑘𝑗
𝑡 = gamma2𝑖𝑘𝑗

𝑡 . +𝜀2
𝑡 . 𝑑2𝑖𝑘𝑗

𝑡−1                     (36) 

𝑉𝐿𝑘𝑗
𝑖     ,𝑡 = 𝑉𝐿𝑘𝑗

𝑖     ,𝑡−1 + 𝑠𝑡𝑡 . 𝑑2𝑖𝑘𝑗
𝑡                                    (37) 

𝜀3
𝑡 = {

𝜏.
gamma3𝑖𝑖′𝑘𝑗

𝑡 .𝑑3𝑖𝑖′𝑘𝑗
𝑡−1

‖𝑑3𝑖𝑖′𝑘𝑗
𝑡−1 ‖

2

0 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

   𝑖𝑓 gamma3𝑖𝑖′𝑘𝑗
𝑡 . 𝑑3𝑖𝑖′𝑘𝑗

𝑡−1 < 0                              (38) 

𝑑3𝑖𝑖′𝑘𝑗
𝑡 = gamma3𝑖𝑖′𝑘𝑗

𝑡 + 𝜀3
𝑡 . 𝑑3𝑖𝑖′𝑘𝑗

𝑡−1                      (39) 

𝑅𝐿𝑘𝑗
𝑖𝑖′ ,𝑡 = 𝑅𝐿𝑘𝑗

𝑖𝑖′ ,𝑡−1 + 𝑠𝑡𝑡 . 𝑑3𝑖𝑖′𝑘𝑗
𝑡                                                  (40) 

𝜀4
𝑡 = {

𝜏.
gamma4𝑖𝑖′𝑘𝑗

𝑡 .𝑑4𝑖𝑖′𝑘𝑗
𝑡−1

‖𝑑4𝑖𝑖′𝑘𝑗
𝑡−1 ‖

2

0 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

   𝑖𝑓 gamma4𝑖𝑖′𝑘𝑗
𝑡 . 𝑑4𝑖𝑖′𝑘𝑗

𝑡−1 < 0                              (41) 

𝑑4𝑖𝑖′𝑘𝑗
𝑡 = gamma4𝑖𝑖′𝑘𝑗

𝑡 + 𝜀4
𝑡 . 𝑑4𝑖𝑖′𝑘𝑗

𝑡−1                                     (42) 

𝑆𝐿𝑘𝑗
𝑖𝑖′ ,𝑡 = 𝑆𝐿𝑘𝑗

𝑖𝑖′ ,𝑡−1 + 𝑠𝑡𝑡 . 𝑑4𝑖𝑖′𝑘𝑗
𝑡                       (43) 

𝑠𝑡𝑡 = 𝜃𝑡 . [
𝑈𝐵−𝐿𝐵∗

∑ gamma1𝑖𝑗′𝑘𝑗
𝑡 +gamma2𝑖𝑘𝑗

𝑡 +gamma3𝑖𝑖′𝑘𝑗
𝑡 +gamma4𝑖𝑖′𝑘𝑗

𝑡
𝑖𝑖′𝑗′𝑘𝑗

]                     (44) 

The parameters 𝑑1𝑖𝑗′𝑘𝑗
0 , 𝑑2𝑖𝑘𝑗

0 , 𝑑3𝑖𝑖′𝑘𝑗
0 , and 𝑑4𝑖𝑖′𝑘𝑗

0 are initialized with 1. The value of the parameter 𝜃, which is used 

to calculate st, is set to 0.1, and the value of 𝜏 is set to [0,2]. In this algorithm, 𝜃 is halved if no improvement is achieved 

after 𝑡 consecutive iterations at the best value of the lower bound. The stopping criterion is the maximum number of 

iterations equal to 50. As mentioned, the LR algorithm is used to solve larger problems. In Table Ⅳ, sample problems 

are designed in which the data are set according to Table Ⅱ. 

Table Ⅳ. Test problems specifications 

Set of all stages Set of all routes Set of all AVs problem 

2 4 8 1 
2 5 9 2 
2 6 9 3 
3 6 9 4 
3 7 9 5 
3 7 10 6 
4 7 10 7 
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4 8 15 8 
4 9 15 9 

5 10 15 10 

5 10 15 11 

5 11 20 12 

6 11 25 13 

6 12 30 14 

6 12 30 15 

Table Ⅴ. Comparison Lagrangian and CPLEX 

 GAMS Lower bound (LR) Upper bound (UB)  

 Objective function Runtime Objective function Objective function Runtime optimality gap 

1 751.351 1:24 724.324 918.919 0:36 22.3 

2 1586.486 3:56 1518.919 1727.027 1:04 8.85 

3 2047.568 7:18 1996.216 2334.054 1:22 13.99 

4 2572.162 9:47 2492.973 2812.703 1:56 9.35 

5 2769.459 12:35 2762.703 3155.946 3:58 13.95 

6 3379.189 29:21:00 3365.135 3638.649 5:01 7.67 

7 3739.730 48:10:00 3732.703 3815.405 6:12 2.02 

8 3944.865 60:00:00 3844.865 4158.378 7:43 5.41 

9 4063.243 60:00:00 3991.892 4368.649 10:05 7.51 

10 5369.459 60:00:00 5329.189 5658.649 12:30 5.38 

11 5823.514 60:00:00 5737.568 6005.946 12:30 3.13 

12 6231.081 60:00:00 6140.811 6390.270 14:27 2.25 

13 6597.027 60:00:00 6551.351 6931.081 13:40 5.06 

14 6992.703 60:00:00 6926.757 7273.243 14:40 4.01 

15 7342.432 60:00:00 7253.514 7727.027 16:01 5.23 

The time of one hour (60 minutes) was considered as a time constraint to solve the problems according to Table Ⅳ 

which contains the data obtained by solving through CPLEX solver and LR algorithm. As can be seen in Table Ⅴ, GAMS 

reached the optimal solution up to the seventh problem before the time constraint, but after it, the solution was obtained 

with a gap. However, the Lagrange method did not reach a time of 60 minutes in any of the problems and achieved a 

solution in a much shorter time than GAMS. The optimality gap is calculated using the following formula. 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑔𝑎𝑝 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 −𝐿𝐵

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
× 100                     (45) 

The two methods are compared in terms of the value of the objective function according to Table Ⅴ.  
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Fig 5. Comparing the solutions obtained from GAMS and the algorithm 

The comparison of the objective function can be seen in Fig. (5). As can be seen, the solutions obtained from GAMS 

and the algorithm are close to each other, and the solutions are reliable. Besides, the Lagrange method performs better in 

terms of solution time based on the Fig. (6). 

 
Fig 6. Comparing the run time  

The comparison of the run time can be seen in Fig. (6). As can be seen, the Lagrange method performs better. 

VIII. CONCLUSIONS AND FUTURE RESEARCH 

In this research, a mathematical model was proposed for the autonomous vehicle routing problem. This research differs 

from previous studies in that it takes into account routes while considering traffic conditions for the routing problems of 

autonomous vehicles. The mathematical model's objectives are to minimize travel time and costs. The weighted sum 

method was used to solve the bi-objective mathematical model. The results show that including traffic in the model makes 

it more accurate, and the sensitivity analysis of the model shows that if decision-makers prioritize reducing travel time, 

the system will incur more costs; on the other hand, if they prioritize reducing cost, the travel time will be longer. The 

value of the objective function tends to increase when travel and traffic times increase. Since the mathematical model for 

this research is in the NP-hard category, the Lagrange algorithm was used to solve 15 designed cases. The results of 

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

0 2 4 6 8 10 12 14 16

O
b

je
ct

iv
ef

u
n

ct
io

n

Problem

Weighted sums method_GAMS

Lower bound (LR)

Upper bound (LR)

0:00

12:00

0:00

12:00

0:00

12:00

0:00

0 2 4 6 8 10 12 14 16

C
P

U
 T

im
e

Problem

Weighted sums method_GAMS
LR



30 Momeni, M, et al.  / A nonlinear mathematical model for autonomous vehicle routing problem by considering…..  

solving the model in large dimensions show the efficiency of the Lagrange algorithm. This mathematical model can be 

useful for programming autonomous vehicles. 

   Future study could provide an uncertainty approach, a multi-objective mathematical model based on energy 

consumption and the number of stops along the route, or other approaches to solving the real issue, including metaheuristic 

algorithms. 
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