
 
 Journal of Quality Engineering and Production Optimization 

       Vol. 7, No. 2, Winter & Spring 2022 

      http://jqepo.shahed.ac.ir 

 

 

 

Manuscript Received: 20- September -2022 & Revised: 3- Nov -2022 & Accepted: 29- Dec -2022 

ISSN:2423-3781 

Research Paper 

                   
DOI: 10.22070/jqepo.2022.16129.1233 

  

A predictive data-driven state-dependent decision approach to 

determine inventory system states for critical spare parts  

 Akbar Abbaspour Ghadim Bonab1, Mahdi Yousefi Nejad Attari2* 

1 Department of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran 
2 Department of Industrial Engineering, Bonab Branch, Islamic Azad University, Bonab, Iran 

* Corresponding Author: Mahdi Yousefi Nejad Attari (Email: Mahdi_108108@yahoo.com) 
 

Abstract –  The Markov chain is widely used in state-dependent inventory control of spare parts because of its 

ability to model the gradual degradation process of components and predict their condition. Also, according 

to previous studies, considering system information causes a significant reduction in costs. Therefore, the 

present study tries to extract the system information using a machine learning algorithm and provide it as a 

transition matrix to the Markov decision process (MDP) to determine the future states of the critical spare 

parts inventory system. In the presented method, the machine learning algorithm, here Adaptive Neuro-Fuzzy 

Inference System (ANFIS), is in charge of the training data. The Markov chain uses the trained data to predict 

the future states of the inventory system. For this purpose, four states have been considered, each representing 

a level of tension and demand in the inventory system. Applying the model to the data collected for a critical 

component showed that the model has good accuracy in predicting the following states of the system. Also, the 

presented model offers a lower error rate, RMSE, and MAPE, compared to the ARIMA model for predicting 

the next state of the inventory system. 
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I. INTRODUCTION 

Strategic and important spare parts significantly affect how manufacturing units and other machinery operate. The 

operation and manufacturing process can cease if these components approach their last deterioration phase. Additionally, 

the stoppage of other machinery due to the failure of one machine in a manufacturing unit might interrupt operation. In 

this situation, the lack of spare parts can lengthen the stoppage of the production line.  Therefore, maintaining a suitable 

spare part level is one of such systems' obligations.  As a result, it can substantially help to make the system interruption 

time-limited and manageable to replace a malfunctioning component with a functional one (Basten and Houtum 2014). 

In this situation, the absence of spare components might prolong the time required for the system to change a part; 

therefore, having replacement parts on hand can accelerate the procedure and lower the cost of downtime. In order to 

lessen the economic and reputational (loss of brand image) implications of system failure, it is essential for production 

organizations and service companies to maintain the continuous operation of their systems and necessary infrastructure 

(Turrini and Meissner, 2017). Therefore, it's imperative to keep sufficient inventory available to prevent expensive 

downtimes (Lin et al., 2017). Higher storage costs for such components are one of the difficulties that should be 

considered, even though higher stock levels limit operations failure time(Kiesmüller, 2020). Spare parts are intermittently 
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consumed, and various spare parts are stored for this type of inventory (Rubino et al., 2010). The cost of spare components 

is frequently high. As a result, keeping extra parts in storage might be expensive. As a result, one of the major problems 

with spare parts management is maintaining an appropriate quantity of parts storage. The large number of components 

that many businesses have to store in their inventories has a high financial expense.  On either side, numerous companies 

and organizations lack the funding and resources necessary to supply this quantity of spare parts. Therefore, the issue is 

clear: higher inventories will lead to extra expenses, while on the contrary, a lack of stock will result in a disruption of 

the delivery of goods or services, and shortage costs would follow from this circumstance (Aronis et al., 2004). The topic's 

relevance has led to numerous research on spare parts inventories, all of which have attempted to manage maintenance 

and ordering procedures and stock levels. Identifying the ideal amount of components and optimum order quantity can 

significantly minimize overall investment in spare parts. Improving the reliability of the system, it moreover reduces 

system downtime and the associated expenses. In nearly all studies on this topic, the creation of models has focused on 

the condition of parts and systems. In these approaches, the state of the critical components is determined through 

observing systems and components or through scheduled assessments. Most of this research has modeled the components 

degradation process and produced maintenance and procurement forecasts based on this modeling. The MDP is one of 

the most utilized techniques. Several studies examined ordering and maintenance practices, whereas others cover either 

one of these topics. To overcome uncertainties and determine the appropriate amount of inventory, we aim to provide an 

approach that extends earlier research from a unique perspective and aspect. One of the key objectives of this viewpoint 

is to avoid over-storing spare components and to have them available when needed. The inventory level can be established 

in the interim by analyzing the system's present and potential subsequent states. By concentrating on the available data 

regarding the inventory system's condition, we attempt to develop an estimation of the demand for critical components 

over various periods in this research. The present study focuses on the system state information acquired for such an 

objective to forecast the demand for spare parts accurately. This study does not address maintenance practices; instead, it 

concentrates primarily on providing a decision approach to assist with finding the demand for spare parts. The study's 

methodology can be applied to any situation with enough online or historical data to help find the inventory system  state. 

This research aims to give a flexible, functional, and reliable method using the power of data. In order to control crucial 

spare parts, research was done utilizing the ANFIS and MDP. This study aims to establish the ideal state of inventory 

control for vital parts.  

The rest of this research is structured as follows. Following this introduction, section 2 describes the problem briefly 

but comprehensively. Section 3 examines the relevant literature on the topic under discussion. We propose our approach 

in section 4. Section 5 includes the result and discussion on the developed method and a case study. Lastly, the 

conclusions are presented in Section 6. 

II. PROBLEM DESCRIPTION 

This research presents a model to predict the inventory system's behavior based on past periods' data. This behavior 

is explained by four states, each representing a demand for spare parts. This model considers a single identical critical 

component in a group of similar machines. We do not monitor the degradation rate of installed components. If this 

component fails during the period, it is considered non-repairable and should be replaced with a new one. In the case of 

component failure, replacement is done quickly, and the machine continues to work normally, so we do not consider a 

preventive replacement. The component's failure rate depends on the machines' operation hours, but other factors in the 

working environment can also be considered. The machine breakdowns follow an irregular pattern, and the need for spare 

parts in each period can differ. Therefore, the demand for spare parts in each period is intermittent. In the case of an 

inventory shortage, machine breakdown will lead to prolonged operation disruption and financial loss, and high inventory 

levels for spare parts will contribute to additional storage costs. In this situation, our model aims to determine the demand 

and help make decisions about optimal inventory levels for upcoming periods. To this end, each period will be assigned 

to a state. Four states are established that can be found in section 4.2.  
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Our model processes available data from the operation line and inventory system using machine learning algorithms 

and, after discovering patterns and knowledge (Kamranrad et al., 2021), then transfer this knowledge to MDP. MDP is 

responsible for simulating and predicting the state of the inventory system for the subsequent periods. Being in each of 

these states will determine the demand and generally the conditions of the inventory system. By being aware of the state, 

it will be possible to decide on the optimal spare parts order. Notably, data can include any information that affects the 

operation of the installed component. The more information and the bigger the data, the more accurate the model will be. 

The model can utilize online or historical data to work. However, in this study, we used historical data from previous 

periods to predict the state of the inventory system for the following periods.  

How can machine learning help? Keizer et al. (2011) found that considering the information of the entire system can 

help reduce costs significantly. Therefore, the machine learning process can be suitable for this purpose because it can 

handle complex data with numerous features, extract the system's behavioral characteristics, and provide them to the 

Markov chain to predict the following states.  

Why do we use the ANFIS model? ANFIS is a complex model that can handle large data with many features. So this 

paves the way to use the model in many fields (Bonab, 2022). 

The reason for the superiority of state-oriented politics: According to Lin et al. (2017), the state-dependent optimal 

policy causes a significant cost reduction compared to the state-independent policy. 

The reason for using the Markov model: Markov process, because of its efficiency in predicting the condition of 

components or system's behavior, is used as a forecasting method. Previous works have used the Markov chain to model 

the degradation process of an installed part to predict the state of that component for maintenance or replacement. In this 

article, because the degradation of the component is not considered, we used the Markov process to determine the next 

state of the inventory system according to the system's current state. 

III. LITERATURE REVIEW 

In different studies, various techniques have been used to employ condition-based approaches. These studies also 

addressed various objectives and perspectives. We put up Table I to conduct a thorough and efficient evaluation of the 

literature to evaluate the studies on condition-based parts management. 

Table I. Studies on condition-based methods 

References 

Considered conditions Considered policies 

Methods used Installed 
components 

System Inventory Maintenance Replacement Inventory 

Smidt-

Destombes et 

al (2004) 

      
They provide a k-out-of-N 

system with identical, repairable 

components. 

Ghodrati and 

Kumar (2005) 
      

Modeling covariates in the 

regression analysis, step down 

procedure. 

Chakravarthy 

(2006) 
      

They outline a k-out-of-N 

reliability system and study that 

as a continuous time Markov 

chain. 

Elwanay and 

Gebraeel 

(2007) 

      
A sensor-based decision-making 

model. 
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Ilgin. and 

Tunali (2007) 
      

Using genetic algorithms, they 

offer a simulation approach to 

optimize spare provisioning and 

preventive maintenance (PM) 

practices. 

Wang et al. 

(2009) 
      

They create a model for a Monte 

Carlo simulation and a 

simulation model for the 

system's functioning based on 

the established condition-based 

replacement and spare 

provisioning policies. 

Lanza et al. 

(2009) 
      

They propose an approach for 

figuring out when to perform 

preventive maintenance and 

when to stock up on spare parts. 

A stochastic optimization 

approach is used to accomplish 

this goal in accordance with a 

dependability model. 

Tinga (2010)       

Usage-based maintenance 

(UBM). 

Load-based maintenance (LBM). 

Rausch and 

Liao (2010) 
    Production  

A framework was established 

that includes condition-based 

maintenance and production and 

spare part stock management. 

Louit et al. 

(2011) 
      

Reliability-centered maintenance 

(RCM) terminology and 

remaining useful life of a 

component. 

Li and Ryan 

(2011) 
      

They model the degradation 

procedure using the Wiener 

process. 

Updates to monitored conditions 

are made using a Bayesian 

process. 

Neves et al. 

(2011) 
      Hidden Markov Model theory. 

Keizer et al. 

(2011) 
      

They formulate their model as a 

Markov Decision Process. 

Wang and 

Syntetos 

(2011) 

    
Spares 

demand 

forecast 

 

They make an effort to connect 

predictions to presented 

maintenance policies. 

Frazzon et al. 

(2011) 
    

Demand 

forecast 
 

They provide a sensitivity 

analysis based on simulation and 

mathematical programming. 

Giorgio 

(2011) 
      

They provide a Markov chain 

degradation model. 
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Tracht et al. 

(2013) 
    

Failure 

prediction 

Spares 

demand 

forecast 

Data mining, a binomial 

distribution, and the proportional 

hazards model (PHM). 

Boudhar et al. 

(2013) 
      

They offer a replacement 

order/remanufacturing strategy 

and want to assess the quality of 

new components before using 

them. 

Also, they provide a solution 

based on a genetic algorithm and 

mathematical modeling of the 

issue. 

Wang et al. 

(2013) 
      

They model the part's degrading 

trend using the Wiener process. 

Real-time CM data are used to 

adjust parameters using the 

Bayesian approach and the 

expectation maximization (E.M.) 

algorithm. 

Panagiotidou 

(2013) 
      

Ordering of spare parts and 

maintenance strategies were 

examined concurrently in a 

system with several components. 

Hellingrath 

and Cordes 

(2014) 

   

Estimating 

spare parts 

demand 

Spares 

supply chain 

planning 

Breakdown 

forecasts 

They incorporate prediction 

methods with the condition 

monitoring data provided by 

IMS. 

Wang et al. 

(2015) 
      

They provide a methodology for 

integrated decision-making for 

spare parts and equipment 

maintenance. 

Kareem and 

Lawal (2015) 
    

Spare parts 

Failure 

prediction 

 

Through the use of ABC 

analysis, they provide a system 

that dynamically determines 

essential equipment and spare 

parts and offers a model for 

forecasting the failure of spare 

parts in the automotive sector 

under extreme circumstances. 

Hu et al. 

(2015) 
    

Spare parts 

demand 

forecast 

 

They forecast the need for spare 

parts using a two-dimensional 

preventive maintenance strategy 

that considers the components' 

installation and operating times. 

The mathematical model has 

also been solved using a 

different approach. 

Cheng et al. 

(2016) 
      

They consider a production 

inventory system in which the 

quality is associated with the 

degree of deterioration and 

subsequently offer condition-



210                     Abbaspour Ghadim Bonab, A, et al.  / A predictive data-driven state-dependent decision approach to determine.... 

based maintenance and 

replacement plans for the 

system. 

The gamma process is used to 

model how a production system 

degrades. 

Wang et al. 

(2016) 
      

They provide a decision-making 

approach for a single component 

system that is exposed to 

stochastic and ongoing 

degradation under a condition-

based maintenance strategy. 

Saalmann et 

al. (2016) 
  machine 

Failure  

forecasting 

Machine  

control 

SPSC  

planning 

They deal with the 

integration issue of IMS 

(intelligent maintenance 

systems) devices and supply 

chains for spare parts (SPSC). 

Lin et al. 

(2017) 
      

They use a discrete-time Markov 

decision process to model this 

issue (MDP). 

Compared to a state-independent 

stock policy, a state-dependent 

approach saves 20% more cost. 

Bousdekis et 

al. (2017) 
      

They provide a proactive event-

centered decision-making 

approach to optimize the spare 

parts inventory and preventive 

maintenance. 

Cai et al. 

(2017) 
      

They present a spare parts 

appointment policy based on 

forecasting the remaining useful 

life. 

Also, they provide an 

optimization technique that 

considers spare parts inventory 

and preventive maintenance. 

Liu et al. 

(2017) 
      

They provide a maintenance 

strategy for a deteriorating 

system and consider operational 

costs connected to its age and 

condition. As the system ages 

and the degree of degradation 

rises, the costs also rise. The 

Wiener process with linear drift 

is a characteristic of the 

degradation process. 

Eruguz et al. 

(2017) 
      

They address the combined 

maintenance and spare part 

optimization challenge for a 

single moving asset's critical 

component and model the 

problem using a Markov 

decision process. 
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Bülbül et al. 

(2019) 
      

They involve the joint challenge 

of managing spare parts 

inventories and preventive 

replacement. They provide a 

precise dynamic programming 

formulation to reduce the total 

estimated cost over a limited 

planning horizon. 

Wang and 

Zhu (2021) 
      

They utilize the gamma and the 

Wiener process to simulate the 

deterioration of components. 

They offer an algorithm for 

optimizing the CBRICP for the 

k-out-of-n:F system using MDP 

and dynamic programming. 

Aliunir et al. 

(2020) 
      

A preventative maintenance and 

spare parts stock integration 

approach is suggested. 

Muniz et al. 

(2020) 

Maximizes the total criticality 

of spare part items 
   

To address spare parts inventory 

control during the initial 

provisioning phase in the mining 

industry, they provide a new 

hybrid approach based on 

criticality analysis and 

optimization. 

Usanov et al. 

(2020) 
      

They combine dynamic spare 

parts control with condition-

based maintenance in a network 

setting. They design the issue as 

a Markov decision process and 

include the degradation process 

in the model. 

Farsi and Zio 

(2020) 
      

In order to obtain the lowest cost 

and highest availability, a joint 

optimization strategy based on 

GA-PS and Monte Carlo 

simulation is suggested. 

Additionally, the impact of spare 

parts degradation in storage is 

considered when assessing 

system performance. 

Dendauw et 

al. (2021) 
      

They suggest a critical level 

strategy that is dependent on 

conditions. They 

perform  Preventive 

maintenance under this strategy 

so spare parts can be used even 

when the inventory level is over 

the critical threshold. 

Kang et al. 

(2021) 
      

They provide a cutting-edge 

machine learning-based method 

for automating the equipment 
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failure prediction process in 

continuous manufacturing lines. 

Zhang et al. 

(2021) 
      

They create a model-based 

reinforcement learning strategy 

for maintenance optimization. 

Over a limited planning horizon, 

the presented technique 

identifies maintenance activities 

for each level of degradation at 

each inspection time. 

Tusar and 

Sarkar (2022) 
A critical review and comparative study 

The study looked at well-known 

spare parts models in Offshore 

Wind Farm, presented the 

findings methodically, compared 

them to some essential 

determining criteria, conducted a 

critical analysis, and analyzed 

the models' relevance. 

Present study       

We offer a Neuro-Fuzzy 

Inference System for condition 

information training and a 

Markov Decision Process for 

recognizing the following states 

of the system as a decision-

making tool in determining 

demand and optimal levels of 

spare parts. 

Ordering, inventory, repair, operational rules, and maintenance have all been explored in the publications on this topic. 

Some studies look at just one of these, whereas others address more. In this respect, several studies have concurrently 

accompanied inventory management and maintenance strategies, such as Wang and Zhu's (2020) dealing with spare parts 

from the viewpoint of inventory control and maintenance. They conclude that recharging spare parts in the stock point 

depends on maintenance strategies and the system's state. They discuss the best approach for managing inventories of 

non-repairable components and replenishing them under various system conditions. When making decisions, the installed 

components' condition is considered in addition to the system's state. In order to achieve this, the Wiener and Gamma 

process is used to predict the state of degradation of installed components. The quantity of degrading parts is also 

considered while determining the best maintenance and inventory strategy. They optimize the CBRICP for a k-out-of-n: 

F system using the MDP in conjunction with dynamic programming. Additionally, Keizer et al. (2011) take into account 

these two policies. They suggest that while employing degradation criteria for a system with a single part can be beneficial, 

doing so for a system with multiple components may not always be the best option. They thus offer an optimization 

strategy for a system with multiple parts, including a condition-based spare parts inventory and condition-based 

maintenance (CBM). They find out that considering the whole system information rather than using a more standardized 

inventory policy, such as (s, S), further reduces costs. Bousdekis et al. (2017) offer a proactive event-driven decision 

approach for spare parts inventory and optimizing maintenance strategies in this field. After putting the developed 

framework into the trial, they discovered that maintenance and inventory costs significantly decreased by switching from 

a time-based strategy to a CBM approach. To prevent a large amount of stock and a lack of replacement components, Cai 

et al. (2017) study inventory and maintenance concurrently. They present a hybrid optimization method of spare parts 

inventory and preventive maintenance (Rastgar et al., 2021) after first recommending a spare parts appointment policy 

based on the prediction of residual functional life. 
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Additionally, Smidt-Destombes et al. (2004) seek to establish a fair relationship between a k-out-of-repair System's 

capacity, component inventory, and preventative maintenance strategy. The maintenance starts whenever malfunctioning 

components' numbers reach a predetermined critical threshold. The spare parts are then used to replace these components. 

After that, damaged components are fixed at a repair facility. The spare parts inventory policy, repair capacity, and 

maintenance are additional factors that affect how well the system operates, and the authors try to balance these three 

factors.  

The Markov process is frequently employed in state-dependent studies, particularly when simulating the deterioration 

process. The Markov process is used by Lin et al. (2017) to design the process of component deterioration. They consider 

the state of a single critical component in a group of machines. Based on a finite state space Markov chain mechanism, 

this crucial part deteriorates over time. It is also expected that each period can only have one state transition. As a result, 

the component can only experience its final stage of degradation before failing. At the start of each period, the degradation 

state of the components is carefully examined. A functional part from the stock is used to replace the failed part. If spare 

parts are unavailable when needed, there will be an immediate fee associated with obtaining them from some other 

sources. They use a discrete-time MDP to describe this issue and suggest three heuristic approaches to streamline 

computation. They discovered that compared to the state-independent stock policy, the optimal policy reduces costs by 

20%. It should be emphasized that in this approach, maintenance policies were not taken into account. Moreover, 

according to Giorgio (2011), the components' age and condition during the slow decline can have an impact. As a result, 

they offer a four-parameter Markov chain model whose transition matrix depends on the component's present age and 

condition. The reliability function and the average remaining life are predicted based on the component's age, present 

state, and deterioration progress throughout upcoming time intervals. Another research adopted the Markov process to 

represent system conditions rather than components deterioration; Neves et al. (2011) seek to offer an algorithm for the 

optimum CBM policymaking. Their primary contribution is creating an optimization method and a methodology for 

identifying the model's input parameters. They address this problem in their model, noting that often CBM approaches 

do not go into detail about the model's input parameters. They offer theoretical and real-world problems and investigate 

a system with periodical monitoring, and a discrete-time Markov process shows the system's status. They employ a hidden 

Markov model and conclude that a method that incorporates optimization and model parameter calculation from historical 

data is the key achievement of their model. 

Some studies use various methodologies in place of the Markov process to represent the deterioration process of parts. 

Li and Ryan (2011) build a model for incorporating real-time state monitoring data into stock management for spare parts. 

The Wiener process is used to model the component's degradation process, which is monitored by the state monitoring 

process. The life distribution of the working part was then created using the established model to calculate the demand 

distribution for spare components. This estimation is updated periodically in a Bayesian pattern by gathering data on 

deteriorating components. Wang et al. (2015) also address the part's deterioration as a continual gamma process with 

constant status monitoring. Due to the degradation phases' uncertainty, Wang et al. (2009) suggest condition-based 

reliability to typify different and uncertain degradation stages whenever a component malfunction occurs. Elwanay and 

Gebraeel (2007) also offer a deterioration modeling approach for calculating the residual life distribution of partly 

deteriorated parts. Some studies in the field of spare parts concentrate mainly on maintenance procedures. Wang et al. 

(2015) aim to improve spare parts procurement and equipment maintenance procedures. They consider a single-equipment 

system with randomized and continual deterioration rates for a state-dependent maintenance decision process. To start, 

they put up a probability model for figuring out the ideal stockpile amount of spare parts to satisfy the need for a 

predetermined stockout likelihood. The replacement decision of the equipment and ordering components was then made 

collaboratively, relying on the degree of deterioration and the cost of operation to optimize the policies taken into 

consideration. In further research by Rausch and Liao (2010), CBM is used to manage the inventory management 

techniques for both production and spare parts. On a critical part of manufacturing machinery, they apply this technique. 

Their approach is founded on observing the desired components' deterioration process. They give a valuable tool to 

maintain deteriorating parts efficiently. They declare that the overall manufacturing cost will be greatly decreased by 

putting the proposed stock management and production model into practice. 
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According to Tinga (2010), preventive maintenance is a crucial step to preserving system uptime. He emphasizes 

maintenance policies. Rather than corrective approaches, they consider preventive maintenance practices. As they 

suggest, the full-service lifespan of parts is used in corrective approaches; thus, unexpected breakdowns, operation 

disruptions, and damages to several other components are to be anticipated. They offer two brand-new ideas that combine 

static maintenance with condition-based maintenance: usage-based maintenance and load-based maintenance. This 

approach involves monitoring usage or load parameters to evaluate the system's state. 

Due to several scholars, the subject of reliability has not received enough attention. In this context, Ghodrati and 

Kumar (2005) think that many studies emphasize accessibility and inventory control. They contend that these 

investigations fail to address how the operational environment factor that can affect reliability. They argue that the 

operating environment and time affect a system's reliability. Therefore, the predictions cannot be reliable enough without 

considering these factors. Additionally, Frazzon et al. (2014) use intelligent maintenance platforms to profit from 

technical condition data to increase the accuracy of spare parts demand forecasts. The suggested approach utilizes 

simulation-based sensitivity analysis and mathematical programming. A state-dependent replacement, reliability, and 

spare parts provisioning strategy is also put forth by Wang et al. (2009). They create a simulation model to reduce cost 

rates and employ a genetic algorithm to optimize decision factors. They employ suggested principles from a case study 

to optimize the maintenance plan to achieve this goal. 

This topic at hand, like other studies in various fields, has made use of prediction, as Tracht et al. (2013) propose an 

enhanced forecasting framework that involves SCADA data from a wind farm, data mining, and the proportional hazards 

approach, and binomial distribution. As a result, they can foresee the demand for components and reliably estimate failure 

likelihood. Hellingrath and Cordes's (2014) primary objective is to develop a way of integrating state monitoring 

information and prediction techniques to estimate spare parts  demand; therefore, they may effectively strategize the 

supply chain for spares. A method for making decisions about ordering spare parts was presented by Louit et al. in 2011, 

where a monitoring system is used to control the functioning components. As a result, their ordering decisions are based 

on the components' anticipated remaining service life. The component's age and state of health are evaluated for this aim. 

They argue that if they can predict when the failing process would begin at the right time, the anticipated lead-time for 

receiving the part on-site will be shorter than that lead-time, negating the need to store the component. 

Improving the correctness of decisions on replacements and spare parts stock is the topic of some studies. For example, 

Elwanay and Gebraeel (2007) argue that most approaches concentrate on developing decision policies based on 

population-specific reliability characteristics such as breakdown time distributions. These distributions cannot 

differentiate between the degradation traits of various components of the population because they are impacted by all of 

the population's deterioration procedures. Due to this, failure predictions will be less accurate, which will lead to less 

precise maintenance and stock decisions. They offer a sensor-based decision framework for components replacement and 

spare parts inventory to overcome this. They concentrate on a single-unit inventory and replacement approach, which 

computes the optimum spares ordering and ideal component replacement using the life distribution. 

As discussed in the literature, our study follows a state-dependent approach. Our research considers the overall 

inventory system's condition rather than just one component's state. Most studies in the literature review benefit from 

statistical methods and mathematical modeling. In contrast, we describe a strategy focusing on machine learning and the 

MDP. In this regard, four states are established based on a unique method to study and categorize the system's behavior. 

In each period, the system can be in just one of these states, and in other periods, the system's behavior can alternate 

between these four states. Additionally, for each period, historical data is gathered for three variables: the quantity of 

failed spare parts, average inventory, and operating hours. Then the inventory system's state for each period is calculated 

based on these three variables using the proposed method in section 4.2. The ANFIS model is responsible for identifying 

patterns and knowledge hidden in data. Hereafter, the system's following states are determined by the Markov decision 

process. As a result, upcoming states reveal the demand and behavior of the inventory system so decisions can be made 

regarding the level of spare parts. 
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The most important innovation of our research is bringing the subject of state-dependent management of spare parts 

into machine learning and connecting that to the Markov process. Based on Kezer et al. (2011), the positive effect of 

including the information of the whole system is reducing inventory costs, and considering the importance of data in 

today's world, providing a machine learning-based approach for state-dependent problems seemed very necessary. 

Furthermore, unlike most condition-based methods, the degradation process of the desired component has not been 

directly monitored in this research. A set of variables connected with or affecting parts failure has been considered, like 

operation hours. The remaining useful life of the component is not included in the data. Instead, we tried to provide 

another way to categorize the inventory state of spare parts by relating it to a series of operational data, the average 

inventory, and the number of failures in each period. Since we use the machine learning approach, the number of these 

variables can increase, and there is no particular limit in this regard; this is one of the strengths of this model. Also, 

according to Ghodrati and Kumar (2005), considering operational environment factors that can affect the reliability of the 

systems can increase the reliability of predictions. Due to that, the machine learning algorithms have the ability to consider 

numerous environmental factors and discover knowledge and patterns which will end in increased prediction accuracy. 

IV. RESEARCH METHOD  

Given the problem's significance, in this research, by providing a framework, an effort has been made to identify the 

system state and, based on that, the spare parts demand for the following periods. A hybrid methodology of ANFIS and 

MDP is employed to build the model. The ANFIS model thus establishes the system's present state in the first phase 

utilizing condition data relating to working hours, failures, and replacements. It should be highlighted that because fuzzy 

logic is included, ANFIS can account for current uncertainty. The transition matrix is constructed in the following steps. 

The MDP is then used to determine the system's subsequent state. We may manage critical spare parts well to prevent 

spare parts inventory costs, both in terms of shortages and high stock levels, by understanding the system's current state 

and forecasting its future state. The developed method's total effect is shown in Figure 1. Figure 2 also illustrates the 

thorough process of the model under discussion. 

 

Fig 1. Overall view of the proposed model 

A. Condition information 

It is possible to determine the system's state or installed parts through sensor monitoring or routine assessments. 

Regarding the nature of the system under investigation, many different environmental and operational factors can be 
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utilized to establish the system's condition. In the current study, some variables like operating hours, the number of failed 

components, initial inventory, ending inventory, average inventory throughout each period, and ordering data were 

considered to ascertain the system states. In other words, the model's primary goal is to determine the system's following 

states and behavior by utilizing several variables that can be used to draw an overview of the inventory system's future 

conditions. In order to achieve this, an identical critical component was taken into consideration, and data relating to it 

was collected throughout a number of periods. The ANFIS model will use these variables as input condition data. 

B. State definition and determination 

We establish four states to represent the inventory system condition. Each of these states reveals the inventory system 

condition at each period, which is indeed connected to the state variables that are taken into account. By establishing these 

four states, we hope to convey the reliability status of the inventory system at various points in time and classify the level 

of risk. Since the condition and reliability of the inventory system have a direct effect on the status and reliability of the 

operational system. The availability of spare parts can directly impact the operating system's reliability in the needed 

timeframe, which might result in significant issues. This approach of defining and identifying the states can be customized 

according to different systems and would be adjusted for any situation depending on the target system. The states have 

been determined using the creative technique described below: 

In the first state, the system is in a safe condition if the number of component failures during the period is less than or 

equal to one-third of the average inventory. Shown as in Eq. 1: 

Number of failed spare parts ≤  
1

3
 Average Inventory          (1) 

Second state, if the number of failed parts during the period is more than one-third or less or equal to two-thirds of the 

average inventory. As shown in Eq. 2: 

1

3
 Average Inventory <  Number of failed spare parts ≤  

2

3
 Average Inventory    (2) 

In the third state, if the number of failed components in each period is more than two-thirds or less than the average 

inventory, the system is in alarm mode. Determined as Eq. 3: 

2

3
 Average Inventory <  Number of failed spare parts <  Average Inventory    (3) 

In the fourth state, if the number of failed parts in each period is more than or equal to the average inventory, then the 

inventory system is in an unfavorable and very high-risk state. Determined as Eq. 4: 

Number of failed spare parts ≥ Average Inventory        (4) 

 

State 1 Safe Zone 

State 2 Optimal Zone 

State 3 Alarm Zone 

State 4 Critical Zone 

Fig  2. Color indication of states 
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The safe zone represents that there would be few breakdowns and the inventory system have more than enough stock 

to deal with the condition. The optimal zone means there would be some breakdowns and the inventory system has enough 

stock to deal with the situation. The alarm zone represents that the number of failures would rise, and consequently, the 

inventory system for spare parts would tackle a pretty demandable period. The critical zone means that the demand for 

spare parts would be high, and the spare parts inventory level would not be able to face this demand, so decision-makers 

should take action to tackle the condition. 

Notably, ML considers inventory states, the number of failures, and working hours for each period and provides this 

information to the MDP. The provided inventory state space (1, 2, 3, 4) can be modified according to the case of 

implementation or even replaced with a new technic. 

C. ANFIS model 

After identifying the variables, we employ the recorded data as inputs for the ANFIS model. We also think of each 

period's system state as the ANFIS target. In other words, the state column is considered the target for ANFIS.  In the 

created ANFIS model, we apply FCM clustering, which employs fuzzy c-means clustering to construct a FIS. The model 

performs at its best by figuring out the ideal number of clusters. In general, several tests are carried out to find the ANFIS 

model's parameters' ideal values. Additionally, the data were split into two sections for the training and testing processes, 

with 70% of the data taken into account for training and the remaining 30% for testing. 

D. Transition matrix 

It is required to find the transition matrix following running the ANFIS model and obtaining the output. The ANFIS 

model's training output, which reflects the probability of transitioning from one state to another different state, is used to 

compute and create the matrix of observed transition counts. This matrix will be used to create a Markov chain. Then the 

Markov chain will obtain a transition probability matrix, which indicates the probabilities of moving between states and 

will be used in random walk simulation. 

E. Markov Decision Process (MDP) 

MDP aims to discover the best strategy for decision-makers and is founded on the probability transition matrix. We 

utilize the transition state matrix obtained in the previous step to forecast the system's upcoming state. A discrete-time, 

finite-state, and time-homogeneous Markov chain were used to achieve this. This method allows for the prediction of 

system states up to multiple further steps, allowing for appropriate inventory decisions. 
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Fig 3. The detailed procedure of proposed model 

Determining state related parameters 

Working hours Number of Failed components Average inventory 

Record variables data for each period 

Data separation 

Inputs Targets 

Training data (70%) Testing data (30%) Training data (70%) 

         

Testing data (30%) 

 

ANFIS 

Matrix of Observed Transition Counts 

Markov Chain 

Following states of the inventory system 

Determining demand and making decisions about optimal inventory level 

Determining system state for each 

period based on variables 

D
a
ta

 

 

Data separation 

Train Outputs 

Specified states for the 

inventory system 

Simulating an n-step random walk through the chain 

starting from the system’s current state 

M
a
ch

in
e 

L
ea

rn
in

g
 

 

End 

M
a
rk

o
v
 P

ro
c
es

s 

 
Start 



Journal of Quality Engineering and Production Optimization  / Vol. 7, No. 2, Winter & Spring 2022, PP. 205-231 219 

 

V. RESULT AND DISCUSSION 

Hellingrath and Cordes (2014) provide a forecasting procedure for spare parts demand. To this end, they gather 

condition information data provided by IMS and carry out demand forecasting based on a CBMF method. They argue 

that the most recent investigation on spare parts forecasting revealed a research gap in the integration of spare parts 

prediction models and condition monitoring data. Considering this problem, they aim to address the gap by providing a 

forecasting approach. Their study shows the impact of data in increasing forecasting accuracy. In continuation of the same 

issue, Kang et al. (2021) utilize data and Artificial Neural Networks to predict the remaining life of spare components. 

Zhang et al. (2021) use online degradation data at inspection times and a reinforcement learning approach for maintenance 

optimization. They show that their data-driven method can generate the CBM policy of the same quality as the policies 

whit an accurate degradation model. The present study tries to extend the use of data and machine learning approaches in 

forecasting the state of the inventory systems to determine the demand for spare parts in the following periods. In the first 

step, we use the recorded state data for each period (Table II) to feed it to the machine learning model, and here the ANFIS 

model was utilized to process and train data. 

Table II. Recorded state data 

Training Data . Testing Data 

Inputs Targets  Inputs Targets 

Working 
Hours 

Failed 
components 

Average 
inventory 

System state  
Working 

Hours 
Failed 

components 
Average 

inventory 
System state 

513 6 5 4  486 6 9 2 

480 7 8.5 3  503 6 13 2 

440 6 12 2  555 7 6.5 4 

320 4 17 1  478 6 8 3 

440 6 12 2  446 5 12.5 2 

600 9 4.5 4  . 

. 

. 570 7 6.5 4  

612 9 8.5 4  385 4 12 1 

623 9 7.5 4  460 5 12.5 2 

532 6 9 2  488 6 7 3 

. 

. 

. 
 

395 4 15 1      

439 4 11 2      

514 6 12 2      

520 6 6 4      

565 7 9.5 3      

488 6 11 2      

510 6 5 4      

 

In table II, three variables, including working hours, failed components, and average inventory, are independent or 

feature variables, and system state is a dependent or response variable. Then dataset is separated into training and test 

data (Figure 3). We initially developed a Sugeno fuzzy inference system (FIS) employing FCM clustering with state data 

and the attributes specified in Table III to establish the ANFIS model. Figure 4 also shows the Gaussian membership 

functions of the input variables. Each input variable has a membership function and a rule for each fuzzy cluster when 
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using FCM clustering. Each output variable has an output membership function for each fuzzy cluster. 

Table III. FIS properties 

Name Method 

Clustering Type FCM Clustering 

Fuzzy System Type Sugeno 

Input Membership Functions gaussmf 

Output Membership Functions linear 

And Method prod 

Or Method probor 

Implication Method prod 

Aggregation Method sum 

Defuzzification Method wtaver 

Inputs [1×3 fisvar] 

Outputs [1×1 fisvar] 

Rules [1×5 fisrule] 

Number of Clusters 5 

 

 

Membership Functions for input 1 

 

Membership Functions for input 2 

 

Membership Functions for input 3 

Fig 4. Membership functions for input data 

The error goal was set to zero when the initial FIS was created to begin training the ANFIS. After several 

experimentations, epoch 2000 produced the best results, with ANFIS outputs closely matched to targets. For training data, 

ANFIS achieved an RMSE of 0.015511, and for test data, an RMSE of 0.73419. Additionally, a correlation coefficient 

was observed with training data R=0.99989 and test data R= 0.78639. Figure 5 shows a comparison of the Targets and 

Outputs of ANFIS. As a result, ANFIS was able to demonstrate acceptable performance. Table IV also provides the 

ANFIS features that were described. 
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Table IV. ANFIS info 

ANFIS info 

Number of nodes 46 

Number of linear parameters 20 

Number of nonlinear parameters 30 

Total number of parameters 50 

Number of training data pairs 34 

Number of checking data pairs 0 

Number of fuzzy rules 5 

 

T
ar

g
et

s 

 
 outputs 

Fig 5. comparison between Targets and Outputs of the ANFIS 

A transition matrix will be produced once the ANFIS model has been created and the training output has been received. 

In this case, the MATLAB function can be used to create a Markov chain using either a probability matrix or a matrix of 

observed transition counts. The present study uses a matrix of observed transition counts to develop the Markov chain. 

The transition probability matrix and the matrix of observed transition counts, accordingly, are illustrated in Figures 6 

and 7. 

 State 1 State 2 State 3 State 4 

State 1 0.4 0.6 0 0 

State 2 0.1875 0.4375 0.0625 0.3125 

State 3 0 0.75 0.25 0 

State 4 0 0.25 0.375 0.375 
 

Fig 6. Transition probability matrix 

 

 State 1 State 2 State 3 State 4 

State 1 2 3 0 0 

State 2 3 7 1 5 

State 3 0 3 1 0 

State 4 0 2 3 3 
 

Fig 7. Matrix of observed transition counts 

The developed Markov Chain features are shown in Table V. Figure 8 also illustrates the directed graph related to the 

developed Markov chain. 
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Table V. Markov Chain properties 

Properties 

P [4×4 double] 

StateNames ["state 1"    "state 2"    "state 3"    "state 4"] 

NumStates 4 

 
Fig 8. Directed graph of Markov chain 

We can investigate the Markov chain's structure thanks to Figure 8. Therefore, all states fall within the category of 

aperiodic communicating class. Additionally, the edges of the graph are colored to represent the transition probabilities 

in P.  

After setting up the Markov chain, we aim to simulate a ten-step random walk through the chain to see the states 

reached by simulation. The indices of the states reached during the random walk are contained in a ten-by-one vector X, 

where rows correspond to steps in the random walk. The realized starting state is in the first row. Because X(1) is 4, the 

random walk begins at state four. The initial state can be specified optionally, or the simulation will randomly start from 

a state. Position at step n + 1 is highly correlated with the position at step n. Therefore, we started a random walk from 

state four according to the system's last state. Figures 9 and 10 show the X and random walk, respectively. Figure 11 also 

depicts the path of a random walk through the states. 
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Fig 9. states visited during the random walk Fig 10. A heatmap of the random walk 
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Fig 11. Illustrates the random walk path through states 
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A. The performance of the model 

After simulating ten steps ahead, we intend to evaluate the model's performance and efficacy. A straightforward 

approach to see how well the forecasting method is performing is to create a confusion matrix. In other words, it is a brief 

table demonstrating how well our model predicts samples from different classes. Therefore, a confusion matrix was 

employed as a performance analysis tool. A confusion matrix can be created by addressing the Test target and simulated 

values (Chicco et al., 2021). This process determines how well the model fits values into their real classes. In essence, 

this tool compares actual values with those forecasted by the model. Figures 12 and 13 show the confusion matrix and 

the confusion matrix chart, respectively. 

[

0   0   1   0
0   4   1   0
0   0   2   0
0   0   0   2

] 

Fig 12. Confusion matrix 

 

Fig  13. confusion matrix chart 

Based on created confusion matrix, one data point which should be in group 1 was mistakenly placed in group 3. Four 

data points known to belong in group 2 are accurately categorized according to the confusion matrix, but one of the data 

points is incorrectly assigned to group 3. Also, the two data points in group 3 are classified appropriately. The data points, 

which should be in group 4, are correctly placed in group 4. This means independent random walks through the chain 

have accurately visited state two four times, two times visited state three, and two times state four. On the other side, 

random walk visited state three wrongly instead of state two and one-time state three instead of state one.  

A. A. performance measures for the confusion matrix 

An accuracy test can follow a confusion matrix analysis. It is preferable to employ this metric if we value each class 

equally. Equation 5 can be utilized to perform the accuracy test for this purpose. An accuracy value of 80% means that 

the identification of two of ten states is incorrect, and eight is correct. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥
        (5) 
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So, the accuracy test can be calculated in percentage as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
2

10
 × 100 = 80%           

A.B. Other performance measures based on the confusion matrix 

We utilized Python's Scikit-Learn to compute additional confusion matrix-related metrics; Scikit-Learn treats the rows 

as the true class and the columns as the predicted class. Table VI defines these measurements. 

Table VI. Definition of performance measures of the confusion matrix 

Sensitivity or 
Recall 

The capability of a model to locate each and every pertinent point (state) in a set of data. It establishes 

that weather predictions were accurate (Olson and Delen, 2008; Saito and Rehmsmeier, 2015; Chicco 

and Jurman, 2020). 

Precision 

A classification model's capability to select just the pertinent data points. Precision describes the 

percentage of data points that the model claims were in the relevant class and were actually relevant 

(Olson and Delen, 2008; Saito and Rehmsmeier, 2015; Chicco and Jurman, 2020). 

F1 score 

The F1 score, which considers both measures, is the harmonic mean of precision and recall. The F1 

score is attempted to be optimized in order to produce a classification model with the best possible 

recall and precision ratio. An F1 score can have a maximum value of 1.0. (Chicco and Jurman, 2020) 

Support Support is the number of class instances that actually occur in the dataset. 

Figure 14 demonstrates the classification report of Python for the confusion matrix and shows values for performance 

measures and RMSE and MAPE error values. 

 

Fig 14. Classification Report 

In an ideal scenario, we would desire a model with precision and recall of 1. Achieving higher values of recall and 

precision is important. The F1 score allows combining the two metrics in situations where we wish to discover the best 

possible balance of precision and recall. 

Here we aim to investigate these measures for each class. According to fig 14, class 2 represents that the Markov 

model was able to predict or walk through node two (state two) four times correctly out of five (support) or actual 

occurrences of state two in the test data set. Accordingly, the precision and sensitivity values for class 2 were 1 and 0.8, 

respectively. Also, class 3 shows that the model was able to walk through node three (state three) two times out of two 

(support) correctly whit precision and sensitivity values of 0.5 and 1, respectively. Class 4 demonstrates that the 
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simulation was able to walk through node four (state four), two times equal to the actual occurrence for this class, and all 

measures for this class are 1. The model could not walk through state one and instead incorrectly predicted state three. 

Table VII represents all classes' Weighted-averaged precision, recall, and F1 score.  

Table VII. Weighted-averaged measures 

Weighted Precision 0.8 

Weighted Recall 0.8 

Weighted F1-score 0.78 

Also, by evaluating the difference between actual and forecasted data, the efficiency of the model can be assessed 

according to the error with the lowest value. Root mean square error (RMSE) and mean absolute percentage error 

(MAPE) are the error measurement types used in this research. According to Table VIII, compared to the ARIMA model, 

the ANFIS+Markov model has the lowest value, with RMSE and MAPE values of 0.7071 and 30 percent, respectively 

(Zakaria et al., 2019). Table IX assesses the MAPE range (Lewis, 1982 & Kathiria and Arolkar, 2022). 

Table VIII. Model comparison of forecast values. 

Model RMSE MAPE 

ANFIS + Markov 0.7071 30% 

ARIMA 1.2459 48.2732% 

Table IX. MAPE interpretation as per Lewis 1982 & Kathiria & Arolkar 2022. 

MAPE Interpretation 

<10 Highly accurate forecasting 

10–20 Good Forecasting 

20–50 Reasonable forecasting 

>50 Inaccurate forecasting 

B. Interpreting system behavior and determining demand 

In this part, we provided a sample and tried to put the suggested model into practice to predict the inventory system's 

upcoming states and behavior. We may decide on the proper spare parts inventory level now that we know the system 

behavior's direction. According to the proposed sample, the system has a propensity to transition to state 4 in the 

succeeding period. State four is a critical zone regarding spare parts demand and inventory. Based on the definition of 

states as specified in section 4.2, a critical zone means we will encounter a significant demand for spare parts, and the 

inventory system will not be able to tackle the situation in the upcoming periods if we do not take proper action. Moreover, 

when predictions for the following periods imply state four, we can consider this situation while planning and deciding 

the level of spare parts inventories for the subsequent periods. 

The random walk started from state 4, the last state of the spare parts inventory system in the studied case, and 

predicted states 4, 3, and 2 as the following three states of the inventory system, respectively. By understanding that state 

four will be repeated for the next period, according to the fourth assumption in section 4.2, we can realize that the 

presented model has forecasted a critical condition for the next period, considering the current conditions of the system 

(Fig 15). 
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Fig 15. Classification Report 

How do optimizing inventory levels relate to forecasting the state of the inventory system? Forecasting the inventory 

system's state is intimately connected to having optimum inventory levels. The historical data unveil the range of demand 

for spare parts in the past periods for each state. How much the model can predict the following states of the inventory 

system correctly, the accuracy of inventory estimate and optimization would be higher. Based on the available dataset, 

the failure rate of parts in each period was presented in Table X. According to table X, the maximum demand in state 4 

is about nine. By considering the current period's ending inventory and the demand for the next period, a correct decision 

can be made about the balance of spare parts for the next period. 

 

 

 

Fig 16. Classification Report 

Table X. Model comparison of forecast values. 

State Demand for spare parts 

1 3-4 

2 4-6 

3 6-7 

4 6-9 

C. Discussions and managerial insight 

The results obtained in this study show that the presented model has an acceptable ability to predict the future states 

of the critical spare parts inventory control system. The developed model has more reliable results compared to 

comparable models, and that is because of its capability of random walk in transition matrix and memoryless property 

(Kathiria & Arolkar, 2022; Piccardi et al., 2017; Hazra et al., 2017; Tserenjigmid, 2019). In general, this paper plays a 

crucial role in linking state-dependent inventory control of spare parts to the world of machine learning. At the same time, 

thanks to machine learning algorithms, it can handle situations with many variables, factors, features, and big data, which 

can lead to more accurately predicting system states. Also, this study gives an overview of how to use data and improve 

condition-based predictions. The analysis results can be obtained smoothly, and it can be an appropriate and 

understandable tool for inventory control managers to make easy and optimal decisions. 

VI. CONCLUSIONS 

One of the most crucial parts of inventory control is managing spare parts, which is essential to keeping efficiency. 

There is unreliability in this situation because the need for spare parts is frequently sporadic. As a result, much study has 

been carried out to manage spare parts depending on the condition of components and systems. The development of 
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predictive models with high accuracy is a suitable option for estimating the condition of installed parts and determining 

the state of the inventory system of these parts. It can significantly help spare parts management. In this regard, a hybrid 

model of the machine learning process and Markov chain was presented in this paper. ANFIS model is responsible for 

the machine learning process because it has a good ability to train large data with many variables and features. Next, to 

connect ANFIS to Markov, we needed a transition matrix. The transition matrix was created based on the output of ANFIS 

training and was used to create a Markov chain. We utilized a random walk to move along the Markov chain to simulate 

the following states. The current state of the inventory system should be considered the starting state because the current 

state is decisive in the Markov chain transition to other states. 

The case study showed that the model could predict the system's future states with acceptable accuracy. The measures 

such as accuracy, precision, and recall, all with values of 0.8, were indicative of the model's ability. Also, the model's 

performance was compared with the ARIMA model and demonstrated better results in this case. The RMSE error values 

for the presented model (0.7) compared to ARIMA (1.27) were significantly lower. Also, the MAPE for the proposed 

model (30%) was much lower compared to 48.27% for the ARIMA model. 

Management insights can be summarized in the following: 

1- Since the inventory of spare parts plays a vital role in the maintenance and repair of machines, managers 

should be cautious in providing parts and predicting the lack of these parts. 

2- Forecasting of spare parts should be done with multiple and efficient techniques, and the accuracy of these 

techniques should be measured, and the forecast with the least error should be selected, so according to the 

method used in this research, it is strongly recommended to production managers. 

For future suggestions, the introduced model can be utilized as follow: 

• In the presented model, using online data collected by sensors instead of historical data can provide the real-

time state of the inventory system. 

• Maintenance and repair policies can be implemented by shifting from determining the state of the inventory 

system to determining the state of components in operation. 

• In the case study section, a single component was considered. Several components can be regarded, and the 

model's performance can be compared with a single component model. 

• Since one of the proposed method's key characteristics is flexibility, it is possible to make improvements and 

adjustments to many aspects of it. For instance, a different approach to identifying states may be provided, 

or alternative machine learning techniques could be used. 
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