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Abstract – This paper addresses optimal locating healthcare facilities problem regarding the essential role of 

these systems on expense and equity at the strategic level to decision-makers. As a result, a multi-objective 

model with a hierarchical structure and congestion consideration is proposed for the location issue, which is 

the main contribution of this study. A mixed-integer non-linear programming (MINLP) model is developed to 

reduce overall system expenses, such as setup, operating, travel costs, and total waiting time at facility levels, 

while concurrently maximizing the number of covered patients. Furthermore, two M/M/1/K and M/M/C/K 

queue systems are utilized at facility levels. Then, two LP-metric and Augmented epsilon-constraint methods 

are implied. Several examples are conducted and evaluated using statistical tests and the TOPSIS approach to 

assess the performance of the solution strategies. After that, a sensitivity analysis is carried out. The findings 

indicate that the proposed model may be used as a tool to assist decision-makers in the design of multi-level 

healthcare facilities.  

 

 

Keywords– Hierarchical Location, Queue Theory, Multi-Objective, Augmented epsilon-Constraint, LP-metric, 

Uncertainty 
                  

I. INTRODUCTION 

Health care systems have an essential role in reducing or increasing public health countries' overall economic costs 

and equity. Furthermore, the optimization of these systems can significantly impact the macro-level of countries. Timely, 

easy access and efficient service delivery are critical and vital for these systems. Many issues influence the efficiency of 

healthcare systems. Locating healthcare facilities (HCFs) is one of the practical factors in optimizing healthcare systems 

which causes reducing system costs and increased public access to this type of service. Therefore, in recent decades, many 

studies have been conducted to discuss the location of HCFs.  

The Leinbach and Gould research is perhaps one of the first studies on the placement and distribution of health care 

facilities (Rahman & Smith, 2000). The difficulty of finding and assessing the capacity of hospitals was discussed in this 

work. The issue was also solved using the transportation method. Ahmadi-Javid et al. (2017) reviewed the literature on 

HCF sites and proposed a paradigm for categorizing non-emergency and emergency HCF locations. 

http://jqepo.shahed.ac.ir/
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According to various diseases and therapies and care of patients, HCFs provide different treatments and services 

regarding the condition of patients. As a result, healthcare facilities may be classed according to their therapeutic levels, 

such as low or high. Regarding location difficulties, hierarchical location characteristics may give facilities several 

degrees of service. A common hierarchical facility placement challenge involves determining the position of facilities in 

a multi-level network to meet consumers' needs at all levels of the hierarchy (Farahani, Hekmatfar, Fahimnia, 

Kazemzadeh, & Engineering, 2014). 

In hierarchical location problems, flow patterns can be classified into single, multi, referral, and non-referral. Service 

availability is either nested or non-nested. A higher-level facility delivers all services supplied by a lower-level facility or 

facilities at each level that provide various services. Spatial configuration may be coherent (i.e., a lower-level service area 

is a subset of a higher-level service area) or non-coherent (i.e., a lower-level service area is not a higher-level service 

area). (Farahani and colleagues, 2014) (Figure 1(Şahin, Süral, & Research, 2007)). This paper proposes a hierarchical 

location model containing three levels of the facility level-one, level-two, and level-three related to physicians, clinics, 

and general hospitals, Super-special and Special hospitals, respectively, with multi-flow patients, nested system, and non-

coherent structure. 

 

Fig 1. A multi-flow, nested, and coherent structure 

Concerning service systems (e.g., post offices, banks, and hospitals), customers might suffer waiting time according 

to limitations of facilities such as insufficient capacity, interrupted, or unexpected demand. In healthcare facilities, patients 

must be treated as soon as possible and experience the shortest waiting time. The queuing theory has been used to address 

this aspect.  

Larson (1974) developed a hypercube queuing model to determine the ideal sites for ambulance stations. As a result, 

the queuing theory has been applied in several investigations. To reduce overall waiting time in facilities, two queuing 

systems, M/M/1/K (Figure 2.a) and M/M/C/K (Figure 2.b), are studied in this research. With two LP-metric and 

Augmented epsilon-constraint solution approaches, this work describes and solves a mixed-integer non-linear 

programming (MINLP) model with three levels of facilities and congestion with demand uncertainty. 
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A. Motive 

As mentioned, locating healthcare facilities is of great importance at high levels of decision-making by reducing costs 

and increasing equity in access to healthcare services. Motivated by this, the problem of locating healthcare facilities is 

addressed in this study. To this aim, a location model is presented to maximize covered patients and minimize total system 

costs and waiting time.  

The hierarchical structure of healthcare facilities and the congestion of healthcare facilities were both taken into 

account. As a result, these characteristics are addressed by a mathematical model that combines a hierarchical location 

model with queuing theory.  

Moreover, the number of patients is considered uncertain about getting close to the real world. 

  

Fig 2. Structure of M/M/1/K (a) and M/M/C/K (b) queue system 

The remainder of the paper is presented in the following sequence. The second section examines the relevant literature. 

Section III contains the problem description, mathematical model, and uncertainty. Section IV discusses the problem-

solving approaches, while section V assesses the effectiveness of the solutions. Sensitivity analysis is covered in Section 

VI. Section VII concludes with findings and recommendations for further study. 
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II. LITERATURE REVIEW  

Hierarchical and probabilistic location models in healthcare applications were investigated as part of the study subject. 

A. Hierarchical location model 

Narula and Ogbu are two early works on hierarchical location models (1979). They provided a two-level location 

model that reduced overall weighted journey distance and solved the issue using a heuristic strategy. Moore and ReVelle 

(1982) presented a hierarchical placement model that employed an exact solution approach based on the branch and bound 

methodology to maximize the number of covered demand nodes. Since then, a slew of relevant investigations has been 

carried out. Galvao et al. (2002) looked at a three-level location model with a nested service structure and referrals and a 

model for developing a maternal and perinatal care network in Rio de Janeiro. Ahin et al. (2007) offered two-level, multi-

flow, layered, and coherent hierarchical location models to overcome challenges in the Turkish Red Crescent's regional 

blood services. 

In recent decades, hierarchical location models have been developed to make more sophisticated judgments in system 

design. Mestre et al. (2012) suggested a hierarchical multi-service mathematical programming model to guide choices on 

the placement and supply of hospital services in the Portuguese south area, considering demand and hospital services 

uncertainty.  

Smith et al. (2013) introduced hierarchical location models with bi-criteria efficiency/equity goals for the hospital 

environment. Baray and Cliquet (2013) investigated a three-level location strategy to optimise patients' geographical 

access to maternity care in France. Pehlivan et al. (2014) presented a multi-period hierarchical location model. They 

tackled the challenge of finding joint sites and ideal capacity levels at each institution to improve France's prenatal care 

network. In Shenzhen, Zhu et al. (2016) proposed a hierarchical location-allocation model that examined response, 

coverage, treatment, and cost capacity for low- and high-level trauma clinics.  

The ideal solution was calculated using an ant colony optimization method. Paul et al. (2017) used the epsilon-

constraint technique to produce a set of non-inferior solutions to a multi-objective hierarchical extension of the maximum 

covering location problem to maximize population coverage within a quick reaction window. Maleki et al. (2018) 

presented a two-level hierarchical model. The most important decisions were the optimal flow of patients between 

network levels, capacity planning, and the planning of required human resources. The model was solved using a 

credibility-based chance constraint programming method. By considering a referral system and using an augmented 

epsilon-constraint approach to solve the model, Maleki Rastaghi et al. (2018) suggested a multi-objective and multi-

service location-allocation model with capacity planning to construct a healthcare facilities network.  

Gitinavard et al. (2019) introduced a unique bi-objective multi-echelon supply chain model based on fuzzy demand 

to optimize the placement of perishable product distribution centers. Using the basic augmented epsilon-constraint 

technique, they used the probabilistic chance-constrained programming methodology to assess and rank the acquired 

Pareto optimum locations. Song et al. (2019) investigated the service availability, financial limitations, and quantity in a 

hierarchical facility-location issue for hybrid service availability. To tackle the case, they developed an upgraded genetic 

algorithm. Vakili et al. (2021) proposed two distinct scenario-based mathematical programming formulations for a Green 

Open Location- Routing Problem to reduce expenses connected with CO2 emission and solved the problem using two 

probabilistic and resilient optimizing solution approaches. 

 To promote accessibility and cost-efficiency, Karakaya and Meral (2022) suggested a bi-objective hierarchical 

location-allocation model for maternal-neonatal care regionalization. The model was solved using three innovative top-

down heuristics and Lagrangian relaxation approaches. Korzebor et al. (2022) proposed a bi-objective model for placing 

and moving hospital facilities in a hierarchical method to optimize demand coverage while minimizing structural costs 

by considering the likelihood of disruptions and crises. The issue was also solved using the epsilon-constraint approach. 

Rouhani and Amin (2022) suggested a bi-objective hierarchical location-allocation approach for creating an organ 
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transplant network to reduce overall time and costs while increasing regional parity. Then The model was solved using 

the augmented epsilon-constraint method. In addition, a convex robust optimization strategy was created to deal with 

uncertainty. Chouksey et al. (2022) suggested a hierarchical capacitated facility location-allocation model for developing 

maternal healthcare facilities in India to reduce overall expenditures and a sequential strategy to solving the issue. 

Additionally, recent researches tackle this issue correspondingly (Kamran Rad et al.,  2021; Salimian and Mousavi, 2021; 

Khadem et al., 2021; Emami et al., 2021) 

B. Probabilistic location model 

More complex location models have recently supplemented this field. The challenge of identifying the location, 

service rate, and pricing of each service facility was studied by Abouee-Mehrizi et al. (2011). Their research looked at 

the maximum acceptable line length and gave patients the option of joining or not joining the queue. Vidyarthi and 

Jayaswal (2014) used an M/G/1 type queuing model to investigate a location issue. Mohammadi et al. (2014) presented a 

location model for designing a reliable healthcare network with uncertainty. A new hybrid solution approach based on 

queuing theory, interval programming, stochastic programming, fuzzy programming, and game theory was presented to 

solve the proposed model. Tavakkoli-Moghaddam et al. (2017) developed a novel Pareto-based multi-objective 

metaheuristic algorithm to solve a new multi-objective optimization model for the facility location problem with 

congestion (M/M/m/k system) and pricing policies.  

Alumur et al. (2018) modeled service time limits and congestion in hub placement concerns. The models were 

evaluated on the Australia Post (AP) data set, and service time was computed by considering transit time on network 

connections and processing time at hubs. The placement of emergency service (ES) vehicles over fully linked networks 

was investigated by Akdoan et al. (2018). They used an approximation queueing model (AQM) to collect system 

performance metrics and a genetic algorithm to solve the model. Salmasnia et al. (2018) created a multi-objective 

competitive location issue with M/M/m/k queuing system for joining enterprises in a competitive setting.  

The issue was solved using a non-dominated sorting genetic algorithm (NSGA-II) and a non-dominated ranked genetic 

algorithm (NRGA). The multiple allocation p-hub placement issues under congestion were suggested by zgün-Kibirolu 

et al.(2019), and the problem was solved using a heuristic approach called particle swarm optimization. Health post 

networks were created by Ahmadi-Javid and Ramshe (2020). They were inspired by the necessity of primary healthcare 

to decide the placement of facilities, the staff mix at each open facility, and their optimum number and capacity. 

 Bahrami et al. (2020) suggested a multi-objective maximum coverage facility placement model for emergency service 

centers inside an M(t)/M/m/m queuing system, considering various service levels and periodic demand rates. The model 

was solved using two enhanced epsilon-constraint and NSGA-II algorithm approaches. Using RFID technology, Hajipour 

et al. (2021) presented a bi-objective mathematical model to reduce supply chain costs and increase the number of 

undamaged items delivered to demand points. They used the multi-objective Vibration Damping Optimization (MOVDO) 

meta-heuristic method to overcome the issue. Fattahi et al. (2021) proposed a bi-objective mathematical model with 

M/MC/K queuing system for the location-pricing problem, which they solved using the NSGA-II and MOPSO methods. 

C. Hierarchical and Probabilistic location model 

Zhang and colleagues (2010) investigated a bi-level location model with an M/M/C queuing model. A case study that 

locates mammography clinics in Montreal to optimize the number of participating customers is discussed in their paper. 

Specifically, the number of customers seeking preventative treatment throughout the network increased. Zarrinpoor et al. 

(2017) presented a two-level multi-flow nested hierarchy with service referral, the risk of unanticipated disruptive 

occurrences, and future demand pattern changes. The Benders decomposition type technique was used to construct a 

queuing system that considers the uncertainty associated with demand and service. Pouraliakbarimamaghani et al. (2017) 

presented a hierarchical location-allocation model for a capacitated health care system that considered the M/M/C/K 

queuing system to determine the optimal number of facilities among candidates and optimal allocations of existing 

customers to operating health centers in a coverage distance.  
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Genetic and simulated annealing techniques, as well as their combination, were presented as meta-heuristic 

algorithms. Ghodratnama et al. (2018) created a novel bi-objective hub location-allocation model that considered M/M/C 

queueing systems and production schedules. To solve the bi-objective model, goal attainment and LP metric approaches 

were integrated to provide a more effective multi-objective methodology. Pouraliakbari et al. (2018) developed a 

probabilistic maximum covering location model to determine the best placement of facilities in congested (M/M/C 

queueing systems) healthcare systems with a referral hierarchy structure to reduce the overall amount of demand lost in 

the system. The model was solved using two meta-heuristic algorithms: population-based simulated annealing (PBSA) 

and ant colony optimization (ACO).  

In Korea, Jang and Lee (2019) created a mathematical model that integrates a hierarchical newborn care services 

placement model with an M/G/S queuing system and allocates capabilities to neonatal intensive care facilities. 

Khodemani-Yazdi et al. (2019) proposed a bi-objective hierarchical hub placement issue with congestion to minimize the 

overall network cost and maximum trip time at the same time. Two M/M/C and M/M/1 queuing systems were examined 

in central and local hubs. A novel game theory variable neighborhood fuzzy invasive weed optimization was used to solve 

the model. Azimi and Asadollahi (2019) suggested a two-level location-allocation model that considered the M/M/1/K 

queue and was solved using NSGA II and MOPSO metaheuristics. Nasrabadi et al. (2020) proposed a bi-objective 

hierarchical location-allocation model for locating healthcare facilities, allocating service units, and calculating facility 

capacity. Furthermore, the M/M/C and M/M/C/C queue systems capture both short- and long-term uncertainty, and the 

issue is solved using an NSGA-II approach. 

D. Contribution of our work 

However, the areas mentioned above have been studied in detail and considering our model and applications, few 

studies are relevant to this research (Pehlivan et al. (Pehlivan et al., 2014)); Pouraliakbarimamaghani et al. 

(Pouraliakbarimamaghani et al., 2017); Salmasnia et al. (Salmasnia et al., 2018); Azimi and Asadollahi (Azimi & 

Asadollahi, 2019); H Jang et al. (Jang & Lee, 2019)).  

Most of these studies were formulated as a minimization problem (i.e., costs, traveling time) or a maximization 

problem and applied different queue systems. Therefore, the contribution of this study is a hierarchical structure (multi-

flow patients, non-coherent structure, and nested system) with three levels for locating the healthcare facilities and 

classifying patients into three classes. Moreover, due to the characteristics of healthcare facilities, two different queue 

systems are applied. In this regard, a multi-objective model is proposed to minimize total costs and waiting time and 

maximize covered patients simultaneously, and also, the number of patients is considered uncertain.  

As a result, to the best of the authors' knowledge, this research does not precisely match the current literature. 

III. PROBLEM MODELING  

A. Problem definition 

In this study, a multi-objective mixed-integer non-linear programming (MINLP) model for locating three levels of 

facilities with multi-flow patients (three classes of patients), nested system (higher-level facilities provide lower-level 

facilities services), and non-coherent structure is developed (lower-level service area is not a subset of a higher-level 

service area). Then, the location of the healthcare facilities problem is described, and the model is presented based on 

assumptions and two queue systems. Moreover, the number of patients is considered uncertain. In the following sections, 

two methods are applied to solve the proposed model, and these methods are compared statistically and ranked. In this 

detail, the structure of this study is illustrated in Figure 3 to describe the proposed approach. 
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Fig 3. the structure of the proposed approach 

B. Problem description in more detail 

As mentioned before, the problem of locating healthcare facilities addressed in this study increases the overall number 

of patients covered while reducing total costs and waiting time. The facilities operate as three different levels of services 

which indexes J, K, and L denoted type and locations of facilities Physician and Clinic, General Hospitals and Specialty, 

Super specialty hospitals respectively (Figure 4). The types of patients are also defined in index B= [Ot, It, St] which Ot 

stands for outpatients, It refers to inpatients, and St is for patients with particular conditions;  

Due to a seriously sick condition, this category ensures that a patient of this severity may be effectively managed by 

a level one, level two, or level three. 
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Fig 4. Conceptual model of patient flow, facilities levels, and queue systems 

Index I defines demand at each location i, and the number of demand patients B is shown by demi
b.  

All level-one and level-two medical services can be given by level-three, which implies that all level-three candidates 

may be considered level-two and level-one, and all level-two candidates can be considered level-one if required. A patient 

is covered if he or she can go to a healthcare institution that provides the required level of treatment within a reasonable 

distance of their home. i. If a patient is an outpatient, at least one level-one (Figure 5.a) (or level-two and level-tree) 

healthcare institution within driving distance may be covered. If a patient is an inpatient, at least one level-two (or level-

three) (Figure 5.b) facility within the coverage distance, or at least one level-one facility within covered distance to level-

one, with access to level-two within the available coverage distance, may be covered. In addition, if there is at least one 

level-three institution within the coverage distance, a patient with a particular condition may be covered. Or there exists 

at least one level-two (or level-one) facility within a covered distance to which the level-two (or level-one) has access to 

level-three within the available coverage distance (Figure 5.c).  

When a patient is transported to healthcare facilities within coverage distance, he/she might experience delays in 

receiving treatment regarding congestion at facilities. So in this research, minimizing waiting time at facilities is 

considered to calculate the waiting time at the facility levels. Two queue systems The M/M/1/K (Figure 2. a) system with 

one server and finite capacity K for level-one, and The M/M/C/K  (Figure 2.b) system with C servers and finite capacity 

K for level-two and level-three facilities are applied. 

Summary of assumptions considered in the mode as follows 

➢ Three levels of facilities are considered for the healthcare system. 

➢ Patients are classified into three classes. 

➢ Higher levels of facilities can provide lower-level services. 

➢ The flow of patients might change from one level to another. (If they are within the facility's coverage range) 

➢ The first level of facilities is considered M/M/1/K, and the second and third levels of facilities as M/M/C/K 

queue systems. 

➢ Any institution-level may deliver services if the patient is within the coverage distance. 
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➢ The exact number of patients is unknown. 

C. Mathematical model 

C.A. Indices of model 

𝐼 Patient node 

𝐽 Potential location for facilities of level 1(Physician) 

𝑘   Potential location for facilities of level 2(clinics, general hospitals) 

𝑙  Potential location for facilities of level 2(special and super-special hospitals) 

𝑏  Patient types 

𝑎 Intersection of the levels 𝐽 ∩ 𝐾 ∩ 𝐿  

Fig 5. patient pathway to a healthcare facility with considering covering distance 

C.B. parameters of model 

𝑑𝑒𝑚𝑖
𝑏  Amount of patient types 𝑏  at patients points 𝑖 

𝑓𝑖𝑥𝑗     Fixed cost of establishing facility 𝑗  

𝑓𝑖𝑥𝑘   Fixed cost of establishing facility 𝑘  

𝑓𝑖𝑥𝑙    Fixed cost of establishing facility  𝑙  
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𝑜𝑐𝑗   Operating cost at facility 𝑗 

𝑜𝑐𝑘   Operating cost at facility 𝑘 

𝑜𝑐𝑙    Operating cost at facility 𝑙 

𝑑𝑖𝑗    Distance between patient points 𝑖 to facility 𝑗 

𝑑𝑖𝑘   Distance between patient points 𝑖 to facility 𝑘 

𝑑𝑖𝑙    Distance between patient points 𝑖 to facility  𝑙 

𝑑𝑗𝑘   Distance between facility 𝑗 to facility k 

𝑑𝑗𝑙    Distance between facility 𝑗 to facility 𝑙 

𝑑𝑘𝑙    Distance between facility 𝑘 to facility 𝑙 

𝑐𝑑𝑗   Coverage distance of facility level-one 𝑗 

𝑐𝑑𝑘   Coverage distance of facility level-two 𝑘 

𝑐𝑑𝑙    Coverage distance of facility level-three 𝑙 

𝑡𝑐𝑖𝑗   Traveling cost between patient points 𝑖 to facility 𝑗 

𝑡𝑐𝑖𝑘   Traveling cost between patient points 𝑖 to facility 𝑘 

𝑡𝑐𝑖𝑙    Traveling cost between patient points 𝑖 to facility 𝑙 

𝑡𝑐𝑗𝑘   Traveling cost between facility 𝑗 to facility 𝑘 

𝑡𝑐𝑗𝑙   Traveling cost between facility 𝑗 to facility 𝑙 

𝑡𝑐𝑘𝑙   Traveling cost between facility 𝑘 to facility 𝑙 

𝑛𝑢𝑚𝑗 Maximum number of facilities 𝑗 

𝑛𝑢𝑚𝑘 Maximum number of facilities 𝑘 

𝑛𝑢𝑚𝑙 Maximum number of facilities 𝑙 

𝑀𝐹𝑃𝑗 Minimum flow input to facility 𝑗 

𝑀𝐹𝑃𝑘Minimum flow input to facility 𝑘 

𝑀𝐹𝑃𝑙  Minimum flow input to facility 𝑙 

λ𝑗      Entry rate of patient to facility 𝑗 

λ𝑘  Entry rate of patient to facility 𝑘 

λ𝑙  Entry rate of patient to facility 𝑙 
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𝜇𝑗  Servicing rate at facility 𝑗 

𝜇𝑘  Servicing rate at facility 𝑘 

𝜇𝑙  Servicing rate at facility 𝑙 

g
𝑘
 Number of servers at facility 𝑘 

g
𝑙
 Number of servers at facility 𝑙 

𝑦𝑗 Capacity at facility 𝑗 

y
k 

 Capacity at facility 𝑘 

y
l 
 Capacity at facility 𝑙 

𝛼 big number 

C.C. variables of model  

 𝑆𝑖𝑗𝑏 The expected number of patients type b who are transported to level one facility j from node i 

 𝑆𝑖𝑘𝑏 The expected number of patients type b who are transported to level two facility k from node i 

 𝑆𝑖𝑙𝑏  The expected number of patients type b who are transported to level three facility l from node i 

 𝑆𝑗𝑘𝑏 The expected number of patients type b who are transported from level one facility j to level two facility k 

 𝑆𝑗𝑙𝑏  The expected number of patients type b who are transported from level one facility j to level three facility l 

 𝑆𝑘𝑙𝑏  The expected number of patients type b who are transported from level facility two k to level facility three l 

𝑊𝑞𝑗 Average waiting time at facility level one 𝑗 

𝑊𝑞𝑘 Average waiting time at facility level two 𝑘 

𝑊𝑞𝑙 Average waiting time at facility level three 𝑙 

er𝑗 Entry rate to facility 𝑗 

er𝑘 Entry rate to facility 𝑘 

er𝑙 Entry rate to facility 𝑙 

C.D. Binary variables 

𝑥𝑐𝑗 1 if a first-level facility is located at node 𝑗, 0 otherwise  

𝑥ℎ𝑘 1 if a second-level facility is located at node 𝑘, 0 otherwise  

𝑥𝑠𝑙  1 if a third-level facility is located at node 𝑙, 0 otherwise 
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C.E. Queue systems 

As mentioned, two queue systems are used for three levels of facilities. The M/M/1/K queue system is assumed for 

first-level facilities, while the M/M/C/K queue system is inferred for second- and third-level facilities. (Shortle, 

Thompson, Gross, & Harris, 2018) These two systems are explained.     

C.A.A. M/M/1/K 

Customers arrive according to a Poisson process with the rate of λ, and the time to serve each customer by each server 

is exponentially distributed with the rate of 𝜇. There is one server in the system with finite capacity k. 

𝑟𝑗 =
er𝑗

𝜇𝑗 
                ∀ j∈J                     (1) 

𝐿𝑞𝑗 =
𝑟𝑗

1−𝑟𝑗
−

𝑟𝑗(𝑦𝑗 𝑟𝑗
𝑦𝑗+1)

1−𝑟𝑗
𝑦𝑗+1                     ∀ j∈J                      (2) 

Average queue length at facility level one j 

𝑊𝑞𝑗 =
𝐿𝑞𝑗

er𝑗
                    ∀ j∈J       (3) 

Average waiting time at facility level one j 

C.A.B. M/M/C/K 

Customers come in a Poisson process at a rate of λ, and the time it takes each server to service each customer is 

exponentially dispersed at a rate of 𝜇. The system has C servers, and its capacity is limited. Hence it is referred to as K. 

𝑟𝑘 =
er𝑘

g𝑘𝜇𝑘 
      ∀ k∈K                    (4) 

𝑝0𝑘 = [
(

er𝑘
𝜇𝑘 

)
g𝑘

g𝑘!
(

1−𝑟𝑘
y𝑘 −g𝑘+1

1−𝑟𝑘
) + ∑

𝑟𝑘
n

n!

g𝑘−1

𝑛=0 ]

−1

           ∀ k∈K      (5) 

The probability 𝑝0𝑘 , there is 0 patient at facility level two 𝑘   

𝐿𝑞𝑘 =
𝑃0𝑘𝑟𝑘

g𝑘!(1−𝑟𝑘)2 (
er𝑘

𝜇𝑘
)

g𝑘
[1 − 𝑟𝑘

y𝑘 −g𝑘 +1 − (1 − 𝑟𝑘)(y
𝑘 

− g
𝑘

+ 1)𝑟𝑘
y𝑘 −g𝑘 ]         ∀ k∈K   (6) 

Average queue length  𝐿𝑞𝑘 at facility level two 𝑘  

𝑊𝑞𝑘 =
𝐿𝑞𝑘

er𝑘(1-𝑃𝑛𝑘)
                          ∀ k∈K      (7) 

Average waiting time 𝑊𝑞𝑘 at facility level two 𝑘 

𝑟𝑙 =
λ𝑙 

g𝑙𝜇𝑙 
      ∀ l∈l      (8) 

𝑃0𝑙 = [
(

λ𝑙
𝜇𝑙 

)
g𝑙

g𝑙!
(

1−𝑟𝑙
y𝑙−g𝑙+1

1−𝑟𝑙
) + ∑

𝑟𝑙
n

n

g𝑙−1

𝑛=0 ]

−1

  ∀ l∈l      (9) 

The probability𝑝0𝑙  , there is 0 patient at facility level three 𝑙 
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𝐿𝑞𝑙 =
𝑃0𝑙 𝑟𝑙

g𝑙!(1−𝑟𝑙)2 (
λ𝑙 

𝜇𝑙 
)

g𝑙
[
1 − 𝑟𝑙

y𝑙−g𝑙+1 − (1 − 𝑟𝑙)

(y
𝑙

− g
𝑙

+ 1)𝑟𝑘
y𝑙−g𝑙

]  ∀ l∈l                 (10) 

Average queue length  𝐿𝑞𝑙  at facility level three 𝑙  

𝑊𝑞𝑙 =
𝐿𝑞𝑙

er𝑙(1-𝑃𝑛𝑙)
                          ∀ l∈l                 (11) 

Average waiting time 𝑊𝑞𝑙 at facility level three 𝑙 

𝑀𝑖𝑛  𝑍1 = (∑ 𝑓𝑖𝑥𝑗  𝑥𝑐𝑗𝑗 + ∑ 𝑓𝑖𝑥𝑘  𝑥ℎ𝑘𝑘 + ∑ 𝑓𝑖𝑥𝑙  𝑥𝑠𝑙𝑙 ) + (∑ ∑ ∑ 𝑠𝑖𝑗
𝑜𝑡𝑜𝑐𝑗  𝑥𝑐𝑗𝑏𝑗𝑖 + ∑ ∑ ∑ ∑ (𝑠𝑖𝑘

𝑜𝑡 + 𝑠𝑖𝑘
𝑖𝑡 +𝑏𝑘𝑗𝑖

𝑠𝑗𝑘
𝑖𝑡 ) 𝑜𝑐𝑘  𝑥ℎ𝑘 + ∑ ∑ ∑ ∑ ∑ (𝑠𝑖𝑙

𝑜𝑡+𝑠𝑖𝑙
𝑖𝑡+𝑠𝑖𝑙

𝑠𝑡+𝑠𝑗𝑙
𝑖𝑡+𝑠𝑗𝑙

𝑠𝑡+𝑠𝑘𝑙
𝑠𝑡)𝑜𝑐𝑙  𝑥𝑠𝑙𝑏𝑙𝑘𝑗𝑖 ) + (∑ ∑ ∑ (𝑠𝑖𝑗

𝑜𝑡 + 𝑠𝑖𝑗
𝑖𝑡 + 𝑠𝑖𝑗

𝑠𝑡)𝑡𝑐𝑖𝑗  𝑑𝑖𝑗  𝑥𝑐𝑗𝑏𝑗𝑖 +

∑ ∑ ∑ ∑
((𝑠𝑖𝑘

𝑜𝑡 + 𝑠𝑖𝑘
𝑖𝑡 + 𝑠𝑖𝑘

𝑠𝑡)(𝑡𝑐𝑖𝑘  𝑑𝑖𝑘  𝑥ℎ𝑘) +

(𝑠𝑗𝑘
𝑖𝑡 + 𝑠𝑗𝑘

𝑠𝑡)(𝑡𝑐𝑗𝑘  𝑑𝑗𝑘  𝑥ℎ𝑘))
𝑏𝑘𝑗𝑖 + ∑ ∑ ∑ ∑ ∑ ((𝑠𝑖𝑙

𝑜𝑡+𝑠𝑖𝑙
𝑖𝑡 + 𝑠𝑖𝑙

𝑠𝑡)(𝑡𝑐𝑖𝑙  𝑑𝑖𝑙  𝑥𝑠𝑙) +𝑏𝑙𝑘𝑗𝑖

(𝑠𝑗𝑙
𝑖𝑡+𝑠𝑗𝑙

𝑠𝑡)(𝑡𝑐𝑗𝑙  𝑑𝑗𝑙  𝑥𝑠𝑙) + (𝑠𝑘𝑙
𝑠𝑡  𝑡𝑐𝑘𝑙  𝑑𝑘𝑙  𝑥𝑠𝑙)))                    (12) 

𝑀𝑎𝑥  𝑍2 = ∑ ∑ ∑ 𝑠𝑖𝑗
𝑜𝑡

𝑏𝑗 + ∑ ∑ ∑ 𝑠𝑖𝑘
𝑜𝑡

𝑏𝑘𝑖 + ∑ ∑ ∑ 𝑠𝑖𝑘
𝑖𝑡

𝑏𝑘𝑖 + ∑ ∑ ∑ 𝑠𝑖𝑙
𝑜𝑡

𝑏𝑙𝑖 + ∑ ∑ ∑ 𝑠𝑖𝑙
𝑖𝑡

𝑏𝑙𝑖𝑖 + ∑ ∑ ∑ 𝑠𝑖𝑙
𝑠𝑡

𝑏𝑙𝑖 +

∑ ∑ ∑ 𝑠𝑗𝑘
𝑖𝑡

𝑏𝑘𝑗 + ∑ ∑ ∑ 𝑠𝑗𝑙
𝑖𝑡

𝑏𝑙𝑗 + ∑ ∑ ∑ 𝑠𝑗𝑙
𝑠𝑡

𝑏𝑙𝑗 + ∑ ∑ ∑ 𝑠𝑘𝑙
𝑠𝑡

𝑏𝑙𝑘                                    (13) 

𝑀𝑖𝑛  𝑍3 = ∑ 𝑤𝑞𝑗𝑥𝑐𝑗𝑗 + ∑ 𝑤𝑞𝑘𝑥ℎ𝑘𝑘 + ∑ 𝑤𝑞𝑙𝑥𝑠𝑙𝑙                     (14) 

∑ 𝑆𝑖𝑗
𝑜𝑡

𝑗 + ∑ 𝑆𝑖𝑘
𝑜𝑡

𝑘 + ∑ 𝑆𝑖𝑙
𝑜𝑡

𝑙 ≤ 𝑑𝑒𝑚𝑖
𝑜𝑡      ∀ i∈I,b∈B               (15) 

∑ 𝑆𝑖𝑗
𝑖𝑡

𝑗 + ∑ 𝑆𝑖𝑘
𝑖𝑡

𝑘 + ∑ 𝑆𝑖𝑙
𝑖𝑡

𝑙 ≤ 𝑑𝑒𝑚𝑖
𝑖𝑡      ∀ i∈I,b∈B               (16) 

∑ 𝑆𝑖𝑗
𝑠𝑡

𝑗 + ∑ 𝑆𝑖𝑘
𝑠𝑡

𝑘 + ∑ 𝑆𝑖𝑙
𝑠𝑡

𝑙 ≤ 𝑑𝑒𝑚𝑖
𝑠𝑡      ∀ i∈I,b∈B               (17) 

∑ 𝑆𝑗𝑘
𝑖𝑡

𝑘 + ∑ 𝑆𝑗𝑙
𝑖𝑡

𝑙 ≤ ∑ 𝑆𝑖𝑗
𝑖𝑡

𝑖       ∀ j∈J,b∈B               (18) 

∑ 𝑆𝑗𝑘
𝑠𝑡

𝑘 + ∑ 𝑆𝑗𝑙
𝑠𝑡

𝑙 ≤ ∑ 𝑆𝑖𝑗
𝑠𝑡

𝑖       ∀ j∈J,b∈B               (19) 

∑ 𝑆𝑘𝑙
𝑠𝑡

𝑙 ≤ ∑ 𝑆𝑖𝑘
𝑠𝑡

𝑖 + ∑ 𝑆𝑗𝑘
𝑠𝑡

𝑘       ∀ k∈K,b∈B               (20) 

     ∑ ∑ (𝑆𝑗𝑘
𝑖𝑡 + 𝑆𝑗𝑘

𝑠𝑡)𝑏𝑘 ≤ 𝛼 er𝑗  𝑥𝑐𝑗       ∀ j∈J                (21) 

∑ ∑ (𝑆𝑗𝑙
𝑖𝑡 + 𝑆𝑗𝑙

𝑠𝑡)𝑏𝑙 ≤ 𝛼 er𝑗  𝑥𝑐𝑗       ∀ j∈J                (22) 

∑ ∑ 𝑆𝑘𝑙
𝑠𝑡

𝑏𝑙 ≤ 𝛼 er𝑘𝑥ℎ𝑘        ∀ k∈K                (23) 

∑ ∑ 𝑆𝑖𝑗
𝑜𝑡

𝑏𝑖 ≤ y
𝑗
 𝑥𝑐𝑗       ∀ j∈J                             (24) 

∑ ∑ 𝑆𝑖𝑘
𝑜𝑡

𝑏𝑖 + ∑ ∑ 𝑆𝑖𝑘
𝑖𝑡

𝑏𝑖 + ∑ ∑ 𝑆𝑗𝑘
𝑖𝑡

𝑏𝑗 ≤  y
𝑘 

𝑥ℎ𝑘     ∀ k∈K                (25) 

∑ ∑ 𝑆𝑖𝑙
𝑏

𝑏𝑖 + ∑ ∑ 𝑆𝑗𝑙
𝑖𝑡

𝑏𝑗 + ∑ ∑ 𝑆𝑗𝑙
𝑠𝑡

𝑏𝑗 + ∑ ∑ 𝑆𝑘𝑙
𝑠𝑡

𝑏𝑘 ≤  y
𝑙 

 𝑥𝑠𝑙    ∀ l∈L                (26) 

∑ ∑ 𝑆𝑖𝑗
𝑏

𝑏 𝑥𝑐𝑗𝑖 ≥ 𝑀𝐹𝑃𝑗        ∀ j∈J                (27) 

∑ ∑ 𝑆𝑖𝑘
𝑏

𝑏𝑖  𝑥ℎ𝑘 ≥ 𝑀𝐹𝑃𝑘       ∀ k∈K                (28) 
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(∑ ∑ 𝑆𝑗𝑘
𝑖𝑡

𝑏𝑗 + ∑ ∑ 𝑆𝑗𝑘
𝑠𝑡

𝑏𝑗  )𝑥ℎ𝑘 ≥ 𝑀𝐹𝑃𝑘      ∀ k∈K                (29) 

∑ ∑ 𝑆𝑖𝑙
𝑏

𝑏𝑖 𝑥𝑠𝑙 ≥ 𝑀𝐹𝑃𝑙       ∀ l∈L                (30) 

(∑ ∑ 𝑆𝑗𝑙
𝑖𝑡

𝑏𝑗 + ∑ ∑ 𝑆𝑗𝑙
𝑠𝑡

𝑏𝑗  )𝑥𝑠𝑙 ≥ 𝑀𝐹𝑃𝑙      ∀ l∈L                (31) 

∑ ∑ 𝑆𝑘𝑙
𝑠𝑡

𝑏𝑘 𝑥𝑠𝑙 ≥ 𝑀𝐹𝑃𝑙        ∀ l∈L                (32) 

𝑥𝑐𝑎 +  𝑥ℎ𝑎 +   𝑥𝑠𝑎  ≤ 1      ∀ a∈J∩K∩L               (33) 

∑ 𝑥𝑐𝑗𝑗∈𝐽 ≤ 𝑛𝑢𝑚𝑗                       (34) 

∑ 𝑥ℎ𝑘𝑘∈𝐾 ≤ 𝑛𝑢𝑚𝑘                       (35) 

∑ 𝑥𝑠𝑙𝑙∈𝐿 ≤ 𝑛𝑢𝑚𝑙                       (36) 

𝑑𝑖𝑗𝑥𝑐𝑗  ≤ 𝑐𝑑𝑗        ∀  i∈I,j∈J               (37) 

𝑑𝑖𝑘𝑥ℎ𝑘  ≤ 𝑐𝑑𝑘       ∀ i∈I,k∈K               (38) 

𝑑𝑗𝑘𝑥ℎ𝑘  ≤ 𝑐𝑑𝑘       ∀ j∈J,k∈K               (39) 

𝑑𝑖𝑙  𝑥𝑠𝑙   ≤ 𝑐𝑑𝑙        ∀ i∈I,l∈L               (40) 

𝑑𝑗𝑙  𝑥𝑠𝑙   ≤ 𝑐𝑑𝑙        ∀ j∈J ,l∈L               (41) 

𝑑𝑘𝑙  𝑥𝑠𝑙   ≤ 𝑐𝑑𝑙        ∀k∈K,l∈L               (42) 

er𝑗 ≥ λ𝑗  𝑥𝑐𝑗        ∀ j∈J                             (43) 

er𝑘 ≥ λ𝑘 𝑥ℎ𝑘         ∀ k∈K                (44) 

er𝑙 ≥ λ𝑙  𝑥𝑠𝑙        ∀ l∈L                (45) 

𝑥𝑐𝑗 ,  𝑥ℎ𝑘 ,   𝑥𝑠𝑙  ∈ {0,1}      ∀ i∈I,j∈J,k∈K,l∈L              (46) 

𝑆𝑖𝑗𝑏 ,  𝑆𝑖𝑘𝑏 ,   𝑆𝑖𝑙𝑏 ,  𝑆𝑗𝑘𝑏 ,  𝑆𝑗𝑙𝑏 ,  𝑆𝑘𝑙𝑏  ≥ 0     ∀ i∈I,j∈J,k∈K,l∈L,b∈B              (47) 

The first objective function (12) tries to reduce overall system costs, including facility setup expenses, operational 

costs at the facility level, and travel costs. Whereas the second objective function (13) increases the overall number of 

patients served by healthcare facilities. The third objective function (14) reduces the average waiting time at the facilities 

According to constraints, the flow of patient b from i to facilities must be less than or equal to the number of requests 

(15-17). All predicted patients referred from level-one j to level-two k and level-three l should be fewer than or equal to 

the entrance flow to level-one j facility, according to constraints (18) and (19). All predicted patients referred from level-

two k to level-three l should be fewer than or equal to the entire entrance flow to the level-two k facility, according to 

Constraint (20). 

 Constraint (21) states that patients referred to facility level-two k can only be accepted if facility level-one j was 

selected. Constraints (22) and (23) state that patients referred to facility l can only be accepted if facilities level-one j and 

level-two k were selected.  
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The number of patients I who attend facility-level one j must be fewer than or equal to the facility's capacity, 

according to Constraint (24). The number of patients i and level-one j who attend facility level-two k must be fewer than 

or equal to its capacity, according to Constraint (25). The number of patients I level-one j, and level-two k who enter the 

facility level-three l must be fewer than or equal to its capacity, according to Constraint (26). Constraints (27-32) ensure 

that the level-one, level-two, and level-three healthcare facilities can meet patient demand. According to Constraint (33), 

healthcare institutions qualified to be classified as level one, level two, or level three may only be allocated to one of the 

three levels. Constraints (34-36) guarantee the maximum number of level one, level two, and level three facilities are 

available. Constraint (37) assures that the distance between the patient point I and facility level-one j must be less than or 

equal. The distance between patient point i and facility-level one must be less than or equal to the coverage distance of 

facility-level two k, according to constraints (38) and (39). Constraints (40-42) guarantee that the distance between the 

patient point k, facility-level one i, and facility-level two k must be less than or equal to the facility level-three coverage 

distance l.Constraints (43-45) state the inflow rate of patient types b to the healthcare facility level-one, level-two, and 

level-three, respectively. Constraint (46) denotes binary variables, and Constraint (47) is related to the positive variables. 

C.A.C Uncertainty 

In this model, uncertainty related to the demand of patients (demi
b)  is considered using the Scenario-based stochastic 

programming technique and three basic scenarios, pessimistic and optimistic, the number of demi
b.is implemented with 

probabilities p1 = 0.5, p2 = 0.25, and p3 = 0.25, respectively. 

IV. SOLUTION METHODS 

For the hierarchical location healthcare issue, the mathematical model in section 3 is a multi-objective mixed-integer 

non-linear programming. As is evident in the multi-objective models, the objectives conflict with each other so that one 

objective cannot reach optimal value without declining the other objective functions. Multi-criteria decision-making 

(MCDM) strategies are used to address issues by taking into account conflicting goals. Multi-objective issues may be 

solved using a variety of approaches. The suggested model is solved using two multi-objective decision-making 

techniques: augmented epsilon-constraint and LP-metric approaches. The chosen solution approaches are discussed in the 

following sections. 

A. Augmented epsilon-constraint method 

The epsilon-constraint algorithm aims to optimize one objective function while treating the others as constraints. The 

epsilon-constraint approach is one of the most efficient ways for generating a collection of Pareto solutions for multi-

objective optimization problems, giving managers and decision-makers a range of options. However, the result can be 

inefficient Pareto solutions.  

As a result, the new form of the issue has been adjusted by including the slack variables in the objective function 

constraints as a second term in the objective function and the weight for the objective functions. (Esmaili, Amjady, & 

Shayanfar, 2011). 

𝑀𝑖𝑛  𝑓1(𝑥) − ∑ (
𝑤𝑖

𝑤1
)𝜙𝑖𝑠𝑖

𝑛
𝑖=2

𝑓𝑖(𝑥) + 𝑠𝑖 = 𝑒𝑖  𝑖 = 2,3, . . , 𝑛
𝑥 ∈ 𝑋
𝑠𝑖 ≥ 0

                      (48) 

Where 𝑠𝑖 is a negative variable for deficiency, the range of 𝑒𝑖 are determined based on the Lexicography method, 

and then the 𝑒𝑖   are quantified. 𝑤𝑖  (∑ 𝑤𝑖 = 1𝑛
𝑖=1 ) is the weight factors of the decision-maker. 𝜙𝑖  is a parameter that 

normalizes the first objective function's value concerning objective i. (𝜙𝑖 =
𝑅(𝑓1)

𝑅(𝑓𝑖)
) 
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B. LP-metric method 

The LP-metric approach solves multi-objective issues with conflict in the objective functions. This strategy aims to 

find a solution that minimizes the deviation from the ideal criteria. In other words, if the answer F∗ is considered as the 

ideal answer, then the minor digression in the answer FA from the answer F∗ , the better the performance of the method. 

( In this study, p is considered 1) 

𝑁𝑜𝑟𝑚𝑝(𝐹∗, 𝐹𝐴) = |𝐹∗ − 𝐹𝐴|𝑝 = (∑ (𝑓𝑖
∗ − 𝑓𝑖(𝑥𝐴))

𝑝
 𝑛

𝑖=1 )
1

𝑝                   (49) 

V. PERFORMANCE EVALUATION AND COMPARISON 

To indicate validation and evaluate the performance of the solutions as mentioned above in terms of the objectives 

function value and CPU times, twenty hypothetical problems with different sizes (Table III) are solved with the BARON 

solver of the GAMS software on a laptop Intel(R), Core (TM) i7 CPU, 2.8 GHz, 8.00 GB of RAM. Parameters of the 

mathematical model are randomly generated using uniform distributions, and the parameters with the same values in all 

problems and the parameters with different values in the problems are shown in Tables I and II (a,b,c), respectively. 

Moreover, the weights of the objectives function are W1=0.3, W2= 0.5, W3=0.2, and the Minimum flow input rate (MFP) 

to each level of facilities is considered 0.5 based on the capacity of the facilities.  

Table III shows the values of the objective functions (Z1, Z2, and Z3) and CPU times in the solution methods for twenty 

distinct issues, and the outcomes of the solution methods, as shown in Figures 6-9, demonstrate that the two suggested 

techniques follow the same pattern. 

In multi-objective models, one objective function can't attain its optimum value without causing other objective 

functions to deteriorate. According to the augmented epsilon-constraint method's Pareto optimum positions (Table IV), 

the first and third objective function values increased by increasing the second objective function value. The conflict 

between objective functions is proved. This conflict is depicted in Figure 10. These results can help decision-makers reach 

their optimal objective functions regarding the degree of importance of objective functions.  

Table I.  Parameter with the same values in all problems 

Parameter  Value  Parameter  Value 

𝒇𝒊𝒙𝒋  ~ uniform (100000 ,150000)  𝒄𝒅𝒍  ~ uniform (40,50) 

𝒇𝒊𝒙𝒌  ~ uniform (500000,550000)  𝒕𝒄𝒊𝒋  ~ uniform (10,12) 

𝒇𝒊𝒙𝒍  ~ uniform (1000000,1500000)  𝒕𝒄𝒊𝒌  ~ uniform (10,12) 

𝒐𝒄𝒋  ~ uniform (100,150)  𝒕𝒄𝒊𝒍  ~ uniform (10,12) 

𝒐𝒄𝒌  ~ uniform (500,550)  𝒕𝒄𝒋𝒌  ~ uniform (12,14) 

𝒐𝒄𝒍  ~ uniform (100,1500)  𝒕𝒄𝒋𝒍  ~ uniform (12,14) 

𝒄𝒅𝒋  ~ uniform (30,35)  𝒕𝒄𝒌𝒍  ~ uniform (14,16) 

𝒄𝒅𝒌  ~ uniform (35,40)     

Table IIa. Parameter with the different values in the problems 

Parameter 
 Problem number 

 1 2 3 4 5 6 7 

𝜇𝑗~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.7,0.8) (0.8,0.9) (0.7,0.8) (0.8,0.9) (0.7,0.8) (0.8,0.9) (0.7,0.8) 

λ𝑗~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.6,0.7) (0.7,0.8) (0.6,0.7) (0.7,0.8) (0.6,0.7) (0.7,0.8) (0.6,0.7) 

𝜇𝑘~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.5,0.6) (0.6,0.7) (0.6,0.7) (0.5,0.6) (0.6,0.7) (0.6,0.7) (0.6,0.7) 

λ𝑘~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.4,0.5) (0.5,0.6) (0.5,0.6) (0.4,0.5) (0.5,0.6) (0.5,0.6) (0.5,0.6) 

𝜇𝑙~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.3,0.4) (0.4,0.5) (0.3,0.4) (0.4,0.5) (0.4,0.5) (0.4,0.5) (0.4,0.5) 
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λ𝑙~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.2,0.3) (0.3,0.4) (0.2,0.3) (0.3,0.4) (0.3,0.4) (0.3,0.4) (0.3,0.4) 

g
𝑘

~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (10,15) (16,20) (10,15) (10,15) (16,20) (16,20) (16,20) 

g
𝑙
~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (10,15) (16,20) (16,20) (16,20) (10,15) (16,20) (16,20) 

𝑦𝑗~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (30,40) (41,50) (51,60) (51,60) (30,40) (41,50) (51,60) 

y
𝑘

~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (50,60) (61,70) (71,80) (50,60) (71,80) (61,70) (71,80) 

y
𝑙
~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (50,60) (61,70) (71,80) (61,70) (50,60) (61,70) (71,80) 

Table IIb. Parameter with the different values in the problems 

Parameter 
 Problem number 

 8 9 10 11 12 13 14 

𝜇𝑗~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.8,0.9) (0.7,0.8) (0.7,0.8) (0.7,0.8) (0.8,0.9) (0.7,0.8) (0.7,0.8) 

λ𝑗~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.7,0.8) (0.6,0.7) (0.6,0.7) (0.6,0.7) (0.7,0.8) (0.6,0.7) (0.6,0.7) 

𝜇𝑘~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.5,0.6) (0.5,0.6) (0.5,0.6) (0.6,0.7) (0.6,0.7) (0.5,0.6) (0.6,0.7) 

λ𝑘~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.4,0.5) (0.4,0.5) (0.4,0.5) (0.5,0.6) (0.5,0.6) (0.4,0.5) (0.5,0.6) 

𝜇𝑙~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.4,0.5) (0.3,0.4) (0.4,0.5) (0.3,0.4) (0.3,0.4) (0.3,0.4) (0.3,0.4) 

λ𝑙~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.3,0.4) (0.2,0.3) (0.3,0.4) (0.2,0.3) (0.2,0.3) (0.2,0.3) (0.2,0.3) 

g
𝑘

~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (10,15) (10,15) (10,15) (16,20) (10,15) (10,15) (10,15) 

g
𝑙
~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (16,20) (10,15) (16,20) (10,15) (10,15) (10,15) (16,20) 

𝑦𝑗~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (51,60) (30,40) (30,40) (41,50) (51,60) (30,40) (51,60) 

y
𝑘

~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (50,60) (50,60) (71,80) (61,70) (61,70) (50,60) (71,80) 

y
𝑙
~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (61,70) (50,60) (61,70) (71,80) (50,60) (50,60) (71,80) 

Table IIc. Parameter with the different values in the problems 

Parameter 
 Problem number 

 15 16 17 18 19 20 

𝜇𝑗~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.7,0.8) (0.8,0.9) (0.8,0.9) (0.7,0.8) (0.8,0.9) (0.7,0.8) 

λ𝑗~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.6,0.7) (0.7,0.8) (0.7,0.8) (0.6,0.7) (0.7,0.8) (0.6,0.7) 

𝜇𝑘~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.6,0.7) (0.5,0.6) (0.6,0.7) (0.5,0.6) (0.5,0.6) (0.6,0.7) 

λ𝑘~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.5,0.6) (0.4,0.5) (0.5,0.6) (0.4,0.5) (0.4,0.5) (0.5,0.6) 

𝜇𝑙~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.3,0.4) (0.4,0.5) (0.4,0.5) (0.4,0.5) (0.3,0.4) (0.4,0.5) 

λ𝑙~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (0.2,0.3) (0.3,0.4) (0.3,0.4) (0.3,0.4) (0.2,0.3) (0.3,0.4) 

g
𝑘

~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (16,20) (10,15) (16,20) (10,15) (16,20) (16,20) 

g
𝑙
~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (10,15) (16,20) (16,20) (16,20) (10,15) (16,20) 

𝑦𝑗~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (41,50) (51,60) (41,50) (30,40) (41,50) (51,60) 

y
𝑘

~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (61,70) (50,60) (61,70) (71,80) (50,60) (71,80) 

y
𝑙
~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚  (71,80) (61,70) (61,70) (61,70) (50,60) (71,80) 

Table III. The results obtained by the solution methods 

 
 Number of 

potential 
location 

 
LP-Metric 

 
Augmented Epsilon-

Constraint 

Problem 
No 

 
i-j-k-l 

 
𝒁𝟏 𝒁𝟐 𝒁𝟑 time 

 
𝒁𝟏 𝒁𝟐 𝒁𝟑 time 

1  6-2-1-1  2287100 207 2.09 1.6113  2287473 210 2.2 1.23 

2  6-2-2-2  4974991 438 3.78 7.6956  4975737 444 4.01 5.83 

3  6-3-2-1  3778429 336 8.53 7.8792  3780294 351 9.55 5.88 
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4  6-3-2-2  5240563 459 8.69 17.94  5242428 474 9.72 13.8 

5  6-3-3-3  8215866 546 8.41 46.9431  8407376 612 10.6 36.39 

6  8-2-2-2  5253735 435 3.78 12.9536  5254854 444 4.13 10.12 

7  8-3-2-2  6005747 519 9.34 27.8901  6008358 540 10.76 20.97 

8  8-3-3-2  6798597 492 9.32 49.5232  6801581 516 10.98 38.69 

9  8-3-3-3  8401605 513 7.83 94.2975  8403843 531 9.03 74.25 

10  8-4-3-2  7694281 501 13.64 80.7  7696519 519 15.45 64.56 

11  8-4-3-3  10703987 741 18.34 153.02  10707717 771 21.49 109.3 

12  8-4-4-4  13467511 762 22.66 341.8314  13469749 780 24.61 260.94 

13  10-3-2-2  5869531 447 8.25 41.1734  5994725 456 8.84 32.42 

14  10-3-3-3  10835682 825 11.63 126.7712  10842396 879 15.29 99.04 

15  10-4-3-2  8614366 552 17.23 128.2905  8616977 573 19.46 99.45 

16  10-4-3-3  10340546 672 19.82 222.391  10343903 699 22.74 171.07 

17  10-4-4-4  16032118 957 20.25 521.56  16035102 981 22.77 401.2 

18  10-5-3-3  11836430 672 21.01 339.0542  11841652 714 26.34 258.82 

19  10-5-4-3  12252863 609 24.42 527.275  12255474 630 27.22 402.5 

20  10-5-4-4  19341026 1137 34.42 805.3356  19344383 1164 38.06 614.76 

 
Fig 6. The first objective function values in both proposed methods for the generated problems 

 
Fig 7. The second objective function values in both proposed methods for the generated problems 
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Fig 8. The third objective function values in both proposed methods for the generated problems 

 
Fig 9. CPU time in both proposed methods for the generated problems 

Table IV. The obtained Pareto optimal points by the Augmented epsilon-constraint method 

Pareto optimal points First objective value Second objective value 
Third objective 

value 

1 8403843 531 9.03 

2 8404589 537 9.42 

3 8405335 543 9.82 

4 8405708 546 10.02 

5 8423864 558 10.62 

6 8594980 594 11.02 

7 8680718 612 11.12 

8 8784020 630 11.22 

9 8907642 633 12.02 
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Fig 10. The conflict of the objective functions 

A. Statistical comparison 

To analyze and compare the results of the solution methods with each other, paired t-test at the 95% significant level 

is performed.  

The paired t-test is a statistical method for comparing two population means when the samples are matched pairs. 1) 

The test can only be performed with matched pairings. 2) It is assumed that normal distributions exist. 3) The two samples 

have the same variance. 4) Cases must be distinct from one another.  

For the mean objectives function values and CPU times comparison, the hypotheses are as follows: 

𝐻0:  𝜇𝐿𝑃−𝑚 = 𝜇𝐴𝐸𝐶  

𝐻1:  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 

The test results using MINITAB 19.2 software for the equality of means for the objectives function values (OFV) and 

CPU times are presented in Tables V and VII.  

There is no significant difference between the results of the provided approaches regarding the values of the First 

objective function since the significance for the equality of the first objective function is more than 0.05. The importance 

of the second, third, and CPU time means being equal is less than 0.5; hence, the equality of means assumption is rejected. 

Table V. Paired sample t-test for the equality of means for the first objective function values of Augmented epsilon-constraint 

and LP-metric 

  

Paired difference 
T Df 

Sig. (2-

tailed) 
Mean 

Std. 
deviation 

Std. error 
mean 

95% confidence interval of the 
difference 

Lower Upper 

Pair 

z1 

LP-m 

,AEC 

-

18278 
49118 10983 -41266 4709 

-

1.66 
19 0.112 
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Table VI. Paired sample t-test for the equality of means for the second objective function values of Augmented epsilon-

constraint and LP-metric 

  

Paired difference 

T Df 
Sig. (2-
tailed) Mean 

Std. 
deviation 

Std. error 
mean 

95% confidence interval of the 
difference 

Lower Upper 

Pair 

z2 

LP-m 

,AEC 

-

23.40 
15.47 3.46 -30.64 -16.16 

-

6.76 
19 0.000 

Table VII. Paired sample t-test for the equality of means for the third objective function values of Augmented epsilon-

constraint and LP-metric 

  

Paired difference 

T Df 
Sig. (2-
tailed) Mean 

Std. 
deviation 

Std. error 
mean 

95% confidence interval of the 
difference 

Lower Upper 

Pair 

z3 

LP-m 

,AEC 

-

1.990 
1.341 0.300 -2.618 -1.363 

-

6.64 
19 0.000 

Table VIII. Paired sample t-test for the equality of means for CPU times of Augmented epsilon-constraint and LP-metric 

  Paired difference 

T Df 
Sig. (2-
tailed) Mean 

Std. 
deviation 

Std. error 
mean 

95% confidence interval of the 
difference 

Lower Upper 

Pair 

time 

LP-m 

,AEC 
-41.6 52.2 11.7 17.2 66.1 3.56 19 0.002 

B. The Best solution method  

The technique for order of preference by similarity to the ideal solution (TOPSIS) is a multi-criteria decision analysis 

method developed by Hwang, Lai, and Liu (Hwang, Lai, & Liu, 1993) to determine the best alternative based on the 

concept that the chosen alternative should have the shortest geometric distance from the positive ideal solution and the 

longest geometric distance from the negative ideal solution. This method's stages are as follows: 

Step1: Create evaluation matrix X consisting of m alternatives and n criteria 

𝑋 = [𝑟𝑖𝑗]     i=1,…,m      j=1,…,n                 (50) 

Step2: normalized matrix 𝑋 to the matrix 𝑅 by the normalization method 𝑟𝑖𝑗  

𝑅 = [𝑟𝑖𝑗]     i=1,…,m      j=1,…,n                                  (51) 

𝑟𝑖𝑗 =
𝑋𝑖𝑗

√∑ 𝑋𝑖𝑗
2𝑚

𝑖=1

     i=1,…,m      j=1,…,n                     (52) 

Step3: Calculate the weighted normalized decision matrix 𝑉𝑖𝑗 

𝑉𝑖𝑗 = 𝑊𝑗 ∗  𝑟𝑖𝑗     i=1,…,m      j=1,…,n                     (53) 

Where 𝑊𝑗 is the weight of indicator j and also ∑ 𝑊𝑗
𝑛
1 = 1         

Step 4: Determine the worst alternative 𝐴−and the best alternative 𝐴+  

𝐴+ = {(𝑚𝑎𝑥 𝑉𝑖𝑗|𝑗 ∈ 𝐽+), (𝑚𝑖𝑛 𝑉𝑖𝑗|𝑗 ∈ 𝐽−)|𝑖 = 1,2 … , 𝑚} = {𝑉1
+ , 𝑉2

+ , … , 𝑉𝑛
+}                (54) 
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𝐴− = {(𝑚𝑖𝑛 𝑉𝑖𝑗|𝑗 ∈ 𝐽+), (𝑚𝑎𝑥 𝑉𝑖𝑗|𝑗 ∈ 𝐽−)|𝑖 = 1,2 … , 𝑚} = {𝑉1
− , 𝑉2

− , … , 𝑉𝑛
−}                (55) 

Step5: Calculate the distance between alternative i and the best 𝐴+ and the worst 𝐴− alternative 

𝑑𝑖
+ = √∑ (𝑉𝑖𝑗 − 𝑉𝑖

+)
2𝑛

𝑗=1      i=1,2,…,m                (56) 

𝑑𝑖
− = √∑ (𝑉𝑖𝑗 − 𝑉𝑖

−)
2𝑛

𝑗=1      i=1,2,…,m                (57) 

Step6: Calculate the similarity to the worst condition 

𝐶𝐿𝑖
∗ =

𝑑𝑖
−

𝑑𝑖
−+𝑑𝑖

+       i=1,2,…,m                (58) 

Step7: Ranked the alternatives 

According to four criteria (first, second and third objective functions and CPU time) and two alternatives (solution 

methods), TOPSIS method results show that the Augmented epsilon-constraint method (rank one) is a better solution than 

the LP-metric method (rank two). 

VI. SENSITIVITY ANALYSIS 

The impact of changes in the weights of objective functions and the entry rate on the values of the objective functions 

are specified using sensitivity analysis in this section. The augmented epsilon-constraint approach is utilized to do the 

sensitivity analysis based on the results of the preceding section. 

A. Changes in the weights of objective functions 

The weights of the two objective functions are adjusted, while the third objective function's weight remains constant. 

According to Tables IX-XI, the weights of the first objective versus the second objective, the first objective versus the 

third objective, and the second objective versus the third objective are tested, respectively. All three tests are performed 

with the Augmented epsilon-constraint method, selected in section 5 as a better solution, and problem no 8.  

Table IX. Computational results for test 1. (problem no.8) 

Scenario 

Weights  Objective function  

CPU-time 

W1 W2 W3  Z1 Z2 Z3  

1 0.8 0.1 0.1  5940906 243 5.1558  37.49 

2 0.7 0.2 0.1  5940906 243 5.1558  37.03 

3 0.6 0.3 0.1  5950231 318 6.5061  37.32 

4 0.5 0.4 0.1  5950231 318 6.5061  37.29 

5 0.4 0.5 0.1  6756921 558 11.2192  37.18 

6 0.3 0.6 0.1  6851204 586 11.9892  37.39 

7 0.2 0.7 0.1  7237377 642 13.1350  37.85 

8 0.1 0.8 0.1  7237377 642 13.1350  37.58 
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Table X. Computational results for test 2. (problem no.8) 

Scenario 

 Weights  Objective function  

CPU-time 
 W1 W2 W3  Z1 Z2 Z3  

1  0.8 0.1 0.1  5940906 243 5.1558  37.49 

2  0.7 0.1 0.2  6000315 245 5.1558  38.54 

3  0.6 0.1 0.3  6059724 250 5.1558  38.39 

4  0.5 0.1 0.4  6089429 252 5.1558  38.51 

5  0.4 0.1 0.5  6101310 267 5.3627  38.35 

6  0.3 0.1 0.6  6119133 280 5.5286  38.50 

7  0.2 0.1 0.7  6125074 292 5.5842  38.43 

8  0.1 0.1 0.8  6335106 362 7.4063  38.23 

Table XI. Computational results for test 3. (problem no.8) 

Scenario 

 Weights  Objective function  

CPU-time 
 W1 W2 W3  Z1 Z2 Z3  

1  0.1 0.8 0.1  7237377 642 13.1350  38.46 

2  0.1 0.7 0.2  7237377 642 13.1350  38.47 

3  0.1 0.6 0.3  7227942 567 11.2092  37.99 

4  0.1 0.5 0.4  7227942 567 11.2092  38.19 

5  0.1 0.4 0.5  7127087 539 11.0854  37.87 

6  0.1 0.3 0.6  7086745 527 10.9800  38.54 

7  0.1 0.2 0.7  7066574 521 10.9800  38.50 

8  0.1 0.1 0.8  6335106 363 7.4063  38.47 

The value of the first objective function rises with the steady drop of w1 and growth of w2 in test 1 (Figure 11). The 

value of the objective function rose in the second test (Figure 12) by reducing w1 and increasing w3. The weight of the 

objective function (w1) is deemed fixed in the third test (Figure 13); yet, its value, which has an almost constant slope at 

first, declines towards the conclusion. The numerical findings for the first objective function include mean values and 

standard deviations of 6483144.125 and 598115.3107 in test 1, 6096374.625, and 115355.4012 in test 2, and 7068268.75 

and 304611.6362 in test 3. Therefore, the highest dispersion of the first objective function is related to test 1, and the 

lowest is in test 2. 

 
Fig 11. First objective function values in test 1 
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Fig 12. First objective function values in test 2 

 
Fig 13. First objective function values in test 3 

According to test 1 (Figure 14), the second objective function value increased by increasing w2= 0.1 to 0.8 and 

declining w1. In test 2 (Figure 15), the amount of the second weight is considered fixed, but the value of the second 

objective function grows when w1 decreases to 0.1 and w3 increases to 0.8. In test 3 (Figure 16), the second objective 

weight is reduced, and the third objective weight increases.  

Although the second objective function's value remains constant at the start, it decreases significantly at the end. The 

numerical findings for the second objective function had mean values and standard deviations of 443.75 and 178.9339 in 

test 1, 273.875 and 39.66804 in test 2, and 546 and 87.69916 in test 3. Thus, the highest dispersion of the second objective 

function is in test 1, and the lowest one is in test 2.  
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Fig 14. Second objective function values in test 1 

 
Fig 15. Second objective function values in test 2 

 
Fig 16. Second objective function values in test 3 
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In contrast to its constant weight, the value of the third objective function in test 1 (Figure 17) displays an increasing 

tendency. 

In test 2 (Figure 18), by increasing w3 and declining w1, the value of the third function is approximately constant, and 

just, in the end, the value increased. In test 3 (Figure 19), by increasing the third objective weight from 0.1 to 0.8 and (w2 

from 0.8 to 0.1), The value of the third objective function decreased. However, it has a constant slope in the middle. The 

numerical findings for the third objective function include mean values and standard deviations of 9.10 and 3.585102 in 

test 1, 5.563 and 0.765589 in test 2, 11.1425 and 1.771351 in test 3, respectively. The third objective function has the 

highest dispersion in test 1, and the lowest is in test 2. 

The second, first, and third objective functions significantly influenced the dispersion of objective function values 

when the objective function weights were connected. 

 
Fig 17. Third objective function values in test 1 

 
Fig 18. Third objective function values in test 2 
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Fig 19. Third objective function values in test 3 

B. Changes in the parameter λ 

The impact of modifications in the entry rate parameters(λ
𝑗
, λ𝑘, λ𝑙)  on the objective functions is studied in this section 

(Figures 20-28). All tests are performed with the Augmented epsilon-constraint method, selected in Section V as a better 

solution, and problem no 9. 

Increasing the value of the parameter λ𝑗 at all of the rates increased all three objective function values.  

The mean values and standard deviations for the first, second, and third objective function values are 8434292.02 and 

20194.28, 549 and 14.468, 8.808 and 0.233, respectively (Figures 20-22). 

 
Fig 20. First objective function values by the changes in parameter λ𝒋 

5.00

7.00

9.00

11.00

13.00

15.00

0 1 2 3 4 5 6 7 8 9T
h
ir

d
 o

b
je

ct
iv

e 
v
al

u
e 

(t
im

e)

Weights iterations

z3

8390000

8410000

8430000

8450000

8470000

8490000

0 1 2 3 4 5 6 7 8 9 10 11F
ir

st
 o

b
je

ct
iv

e 
v
al

u
e 

(c
o

st
)

Parameter rate change

z1



Journal of Quality Engineering and Production Optimization  / Vol. 7, No. 2, Winter & Spring 2022, PP. 60-92 87 

 

 
Fig 21. Second objective function values by the changes in parameter λ𝒋 

 
Fig 22. Third objective function values by the changes in parameter λ𝒋 

By increasing the value of the parameter λ𝑘  the first objective function value increased, moreover, the second and 

third objective function values increased slightly. The mean values and standard deviations for the first, second, and third 

objective function values are 8066351.97 and 16844.25, 506.3 and 1.059, 8.844 and 0.011, respectively (Figures 23-25). 

The first objective function value grew when the value of the parameter  λ𝑘  was raised, and the second and third 

objective function values also increased marginally. The mean values and standard deviations for the first, second, and 

third objective function values are 8066351.97 and 16844.25, 506.3 and 1.059, and 8.844 and 0.011, respectively (Figures 

23-25). 
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Fig 23. First objective function values by the changes in parameter λ𝒌 

 
Fig  24. Second objective function values by the changes in parameter λ𝒌 

 
Fig 25. Third objective function values by the changes in parameter λ𝒌 
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and 0.012, respectively (Figures 26-28). 

Increasing the value of the parameter λ𝑙 has roughly the same outcome as increasing the value of the parameter λ𝑘. 

The values of the second and third objective functions rose somewhat, but the value of the first objective function 

increased. For the first, second, and third objective function values, the mean values and standard deviations are 

8060170.70 and 16892.89, 505.7 and 0.675, and 8.850 and 0.012, respectively (Figures 26-28). 

 
Fig 26. First objective function values by the changes in parameter λ𝒍 

 
Fig 27. Second objective function values by the changes in parameter λ𝒍 
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Fig 28. Third objective function values by the changes in parameter λ𝒍 

VII. CONCLUSIONS AND FUTURE STUDY 

The optimum placing healthcare facilities problem was explored in this research, as well as the relevance of this issue 

in decreasing expenditures and enhancing equality at the strategic level for decision-makers. As a result, a hierarchical 

structure placement model that considers congestion is presented. The issue is described as a mixed-integer non-linear 

model with three goal functions: decrease overall expenditures (establishing, operating, and transportation costs) and 

waiting time while concurrently increasing the number of insured patients. Two queuing systems are used for facility 

levels: M/M/1/K and M/M/C/K.  The hierarchy structure consists of three levels of the facility, level one for the physician, 

level two for Clinics and General hospitals, and level three for Special and Super-special hospitals, and considering three 

types of patients (outpatient, inpatient, patient with special treatment).  Furthermore, patients within the coverage 

distances of institutions may be referred to all levels and moved from a lower to a higher level. 

The number of patients is considered uncertain about making the model more realistic.  

The following sections solve the model using LP-metric and Augmented epsilon-constraint techniques. Twenty 

different hypothetical problems are employed to evaluate the efficacy of the solution methods regarding the objective 

function values and CPU time. The Pareto optimal points are obtained to show the conflict between the objective 

functions. Then, paired t-tests and TOPSIS methods are used to compare the solution methods. The first objective function 

indicated no significant difference, but the second, third, and CPU time showed substantial differences. The TOPSIS 

results also illustrate that the augmented epsilon constraint is better than the LP-metric method. In the end, the influence 

of modifying the entry rate parameters and the objective function weights on the model results is tested via sensitivity 

analysis. According to the findings, the admission rate to the facility level one ( λ𝑗 ) had a greater impact on the values of 

the objective functions, whereas the entry rates to the facility level two and three ( λ𝑘 and λ𝑙) had almost the same impact. 

The changes in the weights of the first and second objective functions (test 1), the second and third objective functions 

(test 3), and the first and third objective functions (test 2), respectively, caused the most dispersion in the objective 

function values. 

It is worth considering some recommendations to investigate for future research of the present work. In this study, the 

number of patients as the main parameter considers uncertain. Other elements to consider in this respect include patient 

travel costs, fixed installation costs, and queue characteristics (service time, entrance rate, capacity) would be uncertain. 

According to patient conditions, different transport mods could take into account to transfer patients from demand points 

to healthcare facilities and between facilities levels. Results indicate that the solution approach can only solve the 

suggested model with small-size instances in a fair amount of time, which is the study's primary restriction.  As a result, 

using metaheuristic algorithms to deal with large-scale cases is advantageous. 
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