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Abstract – In this research, lifetime performance index (LPI) data are used to present a quick switching 

sampling (QSS) plan based on a type‐ II censoring life test and the assumption that the lifetime of units follows 

the Weibull distribution. In this proposed QSS plan, it is also assumed that the sample size (n) and the 

acceptance criterion (k) are the same for both the normal and the tightened inspections of the QSS plan, but 

the failures (r) during the normal and tightened inspections are different in number. The equations needed to 

calculate the operating characteristic (OC) curve are presented for the proposed QSS along with an 

optimization model to minimize the average failure number (AFN). In this regard, the constraints of producer 

and consumers' risks are incorporated into the model. To show the performance of the proposed QSS plan, 

numerical analyses are performed and the studies conducted in this field are compared. The introduced QSS 

sampling plan can significantly reduce the cost of manufacturers at the level of industrial organizations.   
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I. INTRODUCTION 

There are various statistical tools to analyze qualitative problems and improve the performance of production 

processes. According to Montgomery (Montgomery, 2020), there are three major statistical methods of quality control 

including (i) acceptance sampling plans, (ii) statistical process control (SPC) and (iii) design of experiment.   

The acceptance sampling plan is one of the oldest facets of quality assurance that's subject to examination and 

decision-making regarding the products. In the 1930s and 1940s, the acceptance sampling plan was a significant element 

of statistical quality control practically used to inspect input materials. This method often provides sufficient data about 

controlling production processes (Montgomery, 2020). There are many strategies to classify sampling plans. A basic 

classification depends on the kind of data and postulates variable and attribute sampling plans. In variable sampling plans, 

the quality characteristic is measurable and can be represented on a numerical measure. In attribute sampling plans, 

nevertheless, the taxonomies of units are just based on conforming or non-conforming. Attribute qualitative characteristics 

are the concepts that cannot be expressed numerically, hence expressed based on the method of acceptance and rejection 

(Montgomery, 2020). Both variable and attribute sampling plans can be implemented through different modes of 

sampling: single sampling, double sampling, multiple sampling, multiple state repetitive sampling, sequential sampling, 
dodge- Romig sampling, resubmitted sampling, repetitive group sampling, chain sampling, and quick switching sampling. 

http://jqepo.shahed.ac.ir/
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(Cha & Badía, 2021) proposed a variables acceptance reliability sampling plan for the units that are subject to the reverse 

Gaussian degradation process. (Fallahnezhad et al.,  2020)  proposed three mathematical models for the economic single-

sampling plans using Bayesian inferences, while inspection errors are taken into consideration. (FallahNezhad et al., 

2015) investigated a mathematical model for designing single-stage and double-stage sampling plans.  

Dodge (1967) was the first one to propose the Quick switching sampling plan as a new type of sampling method. In 

line with his study, the present research makes use of LPI data to develop a quick switching sampling plan QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) 

under a type‐ II censoring life test. The QSS plan consists of two subsets one of which is done based on normal inspection 

and the other one based on tightened inspection. A Quick switching sampling plan begins via normal inspection. The 

normal inspection of the submitted batch continues until the batch is rejected. Then, the plan switches to tightened 

inspection. The inspection based on tightened conditions continues long as a batch is accepted. Then, the plan switches 

back to normal inspection for the next batch. It should be noted that the conditions for the acceptance of a batch based on 

tightened inspection are tougher than those based on a normal inspection. QSS plans have been widely studied by 

researchers. For instance, Romboski (1969) investigated quick switching acceptance sampling systems AQSS-

1(𝑛, 𝑐𝑁 , 𝑐𝑇). Soundararajan & Arumainayagam (1990) discussed a set of master tables to select a reformed quick-

switching system indexed by different sets of parameters. Balamurali & Usha (2012) investigated a variable quick 

switching sampling system VQSS(𝑛, 𝑐𝑁 , 𝑐𝑇)  for measurable quality characteristics with double specification limits 

beyond which a unit would be considered non-conforming. Senthilkumar et al. (2012) designed a quick switching 

variables sampling system QSVSS(𝑛, 𝑘𝑁, 𝑘𝑇) indexed by crossover points. Liu & Wu (2016) developed a new QSS plan 

under the process yield index for batch determination and the quality characteristic followed normal distribution with two 

specification limits. Senthilkumar & Raffie (2015) designed a quick switching variable sampling system 

SSQVSS(𝑛𝑁 , 𝑛𝑇 , 𝑘) based on six sigma quality levels. 

Nowadays, the main goal of manufacturers who seek to make high-quality and reliable products is the adoption of 

policies to minimize consumers risk and producers' risks. A combination of reliability and acceptance sampling plans 

leads to a new class of acceptance sampling plans called reliability acceptance sampling plans (RASPs). A RASP is a 

reliability life test. The life test is a type of sampling plan in which the desired quality characteristic is the lifetime of the 

units. However, there are several challenges to reliability testing. A major challenge of a life test is its duration. There 

have been various methods proposed to decrease the time and cost of life tests. In this regard, one may refer to truncated 

life tests, type‐ II censoring, type‐ I censoring, progressive censoring, hybrid censoring, and sequential probability ratio 

life test. Rasay & Alinezhad (2022) developed a novel life test according to the sequential probability ratio test of the 

Bernoulli/binomial distribution. The test is simple, straightforward and effective enough to be adapted for the life testing 

of different continuous distributions. Mohammadipour et al. (2021) designed EWMA control charts based on type‐ II 

censoring reliability tests. Shrahili et al. (2021) presented acceptance sampling plans based on life tests and the percentiles 

of the new Weibull-Pareto distribution. Chakrabarty et al. (2020) made an optimal reliability acceptance sampling plan 

RASP using type-I generalized hybrid censoring plan for non-repairable products sold based on the general rebate 

warranty. Rasay et al. (2022) introduced resubmitted sampling plans for truncated life testing. Goodarzi & Amiri (2017) 

employed an accelerated failure time (AFT) model and two control charts are presented to monitor the quality 

characteristic in the second stage of a production process, while censored and non-censored reliability data are analyzed. 

Process capability indexes (PCI) play an important role in quality engineering. So far, various such indexes have been 

introduced to measure quality levels in production processes, i.e., to check the performance of operations  in 

manufacturing and service industries. Most PCIs are based on quality characteristics with normal distribution. Compared 

to these characteristics, lifetime is a qualitative feature distinct due to being a non-negative random variable and a larger-

the-better type of quality characteristic. (Montgomery, 2020) developed the LPI to measure this quality characteristic. 

LPI is a type of PCI that evaluates the performance of a process with a non-negative random variable of lifetime (T) for 

which a specification limit (L) is set. In general, it is necessary to have a lifetime performance index greater than L per 

unit time to have profitable and satisfactory customers. L is a lower lifetime limit. Many researchers have done life testing 

by considering LPI data. For example, Rasay et al.  (2020) presented two sampling plans, RGS and RS, based on the type-
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II censoring life test, and assumed that lifetime followed the Weibull distribution. Aslam et al. (2019) presented a multiple 

dependent state repetitive (MDSR) sampling plan under LPI data. Rasay & Naderkhani (2020) presented a quick 

switching sampling QSS(𝑟, 𝑘𝑁 , 𝑘𝑇) plan in the in the field of type‐ II censoring reliability tests by considering the LPI 

data. Abd El‐ Monsef & Hassanein (2020) evaluated the MLE of the lifetime performance index(𝐶𝐿) based on the failure 

progressive censoring sample for the normal Kumaraswamy distribution. Ahmadi & Doostparast (2019) sought to 

evaluate the performance of a process subject to a given lower specification limit. They performed a Pareto analysis for 

LPI under progressive first-failure-censored data that followed the Pareto distribution. Badr et al. (2019) considered the 

independent lifetimes of Chen products with specified one-shape parameters to evaluate the 𝐶𝐿 of the performance of a 

process. Wu et al. (2018) adopted a LPI to make acceptance-sampling plans for an exponential population with and 

without censoring. S.-F. Wu & Hsieh (2019) utilized the maximum likelihood estimator of 𝐶𝐿 to develop a hypothesis-

testing procedure with respect to lower specification limits through progressive type-I interval censoring. Hu & Gui (2020) 

obtained the MLE of 𝐶𝐿 with two unknown parameters in the Lomax distribution based on a progressive type-I interval 

censored sample. Bhattacharya & Aslam (2019) developed plans to sample variables under the LPI for the exponentially 

distributed hybrid censored data. Ahmadi et al. (2013) obtained the maximum likelihood estimate of LPI based on 

progressive first-failure-censored data. 

The present paper introduces a quick switching sampling (QSS) plan in the field of type‐ II censoring reliability life 

tests by considering lifetime performance index data. Lifetime is taken into consideration as a qualitative characteristic, 

and it is assumed that the lifetime of units follows the Weibull distribution. The purpose is to minimize the average 

number of failures (AFN) and to ensure that the lifetime, as a qualitative characteristic, meets the corresponding 

constraints of producer’s and consumer’s risks. Also, equations are presented to calculate OC curves. 

The paper is organized into several sections. The second section provides the equation of the LPI in the Weibull 

distribution as well as the minimum variance unbiased estimator of that index. Section 3 presents the equations for the 

single sampling (SS) plan. Then, a Quick switching sampling plan is developed in Section 4. Section 5 is dedicated to a 

case study, numerical analyses with two real examples, sensitivity analyses and comparisons with different sampling 

plans. In the end, the conclusion of the study is brought in Section 6.  

II. LIFETIME PERFORMANCE INDEX (LPI) FOR THE WEIBULL DISTRIBUTION 

At the beginning of this section, the life time performance index equations are formulated for the Weibull distribution. 

Next, a minimum variance unbiased estimator (MVUE) is provided for CL. 

The lifetime performance index CL for the random variable T is as follows: 

𝐶𝐿 =
𝜇𝑇−𝐿

𝜎𝑇
                                            (1) 

where  𝜇𝑇 and 𝜎𝑇 denote the mean and the standard deviation of T, and L is the lower lifetime limit specified for T. It 

is assumed that T follows the Weibull distribution and cumulative distribution function (c.d.f) for T is as follows: 

𝐹(𝑡; 𝜆, 𝜈) = 1 − 𝑒𝑥𝑝{−(𝜆𝑡)𝜈}          (2) 

where 𝑣 is the shape parameter and 𝜆 is scale parameter of the Weibull distribution. In this study, it is assumed that 

the shape parameter can be estimated based on historical data. As the numerical analyses in Section 5 show, several 

statistical tests have been proposed in this regard; goodness of fit tests are among them. The mean and the variance of the 

random variable T are as follows: 

μ =
Γ(

1

𝜈
)

νλ
                 (3) 
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𝜎2 =
1

λ
2 [Γ (1 +

2

𝜈
) − {Γ2 (1 +

1

𝜈
)}]         (4) 

where Γ(. ) represents the Gamma function. Substituting Equations (3) and (4) in Equation (1) yields to the following 

equations for 𝐶𝐿: 

𝐶𝐿 =
1

𝜆𝜎
(

Γ(
1

𝜈
)

𝜈
− 𝐿𝜆) =

1

𝐵
(

Γ(
1

𝜈
)

𝜈
− 𝐿𝜆)         (5) 

And 

𝐵 = (Γ (1 +
2

𝜈
) − {Γ2 (1 +

1

𝜈
)})

0.5

             (6) 

where  −∞ < 𝐶𝐿 <
Γ(

1

𝜈
)

𝐵𝜈
 . 

The lifetime of an unit is likely to be less than L, and the probability is calculated as follows: 

δ = 𝑃(𝑇 < 𝐿) = 1 − 𝑒𝑥𝑝 {− (
Γ(

1

𝜈
)

𝜈
− 𝐶𝐿𝐵)

𝜈

}        (7) 

The value of δ is generally referred to as the non-conforming rate in the QC literature. Accordingly, the value of the 

conforming rate is 1 − δ. Obviously, there is a positive relationship between the lifetime performance index 𝐶𝐿 and the 

conforming rate. Thus, the higher the 𝐶𝐿 index, the higher the conforming rate.  

At this stage, the MVUE of 𝐶𝐿 is computed. A test of type‐ II censoring life  is conducted in a certain procedure. For 

beginning, n units are randomly chosen from the batch and put to the test concurrently. The test continues long as the first 

r failures occure. In this case, 𝑟 ≤ 𝑛. During the test, the number of the failures is recorded for each unit as 𝑡(1) , 𝑡(2) ,…, 

𝑡(𝑟). It is axiomatic that the values of  𝑡(1) , 𝑡(2) ,…, 𝑡(𝑟) form the order statistics. Hence , the minimum variance unbiased 

estimator of 𝐶𝐿 is derived according to the characteristics of that order statistics. As (C.-W. Wu et al., 2018) proved, the 

MVUE of 𝐶𝐿 is as follows: 

�̂�𝐿 =
1

𝐵
[Γ (1 +

1

𝜈
) −

𝐿.Γ(𝑟)

𝐷
1
𝜈,Γ(𝑟−

1

𝜈
)

]          (8) 

where 

𝐷 = ∑ (𝑛 − 𝑖 + 1)(𝑡(𝑖)
𝜈 − 𝑡(𝑖−1)

𝜈 )𝑟
𝑖=1          (9) 

III. THE SINGLE SAMPLING (SS) PLAN 

The basis of designing a QSS plan is the single sampling (SS) plan. This section presents the equations of the SS plan 

for the type‐ II censoring life test. The design of this plan is based on LPI, as described in detail by (C.-W. Wu et al., 

2018). A brief review of the issue is presented here. For the variable SS plan, n units are randomly chosen from the batch 

and put to the test concurrently. The test continues as long as the first r (𝑟 ≤ 𝑛) failures occur. During the test, the number 

the failure is recorded for each unit. According to the test data and using Equation (8), the value of �̂�𝑳 is calculated. If it 

is bigger than or equal to an acceptance criterion, which is represented by k, the batch is accepted. Otherwise, the batch 

is rejected. So, the suggested SS plan has two main parameters including r and k. For a given value of 𝑪𝑳, the probability 

of acceptance of a batch can be computed as follows: 
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𝑃𝑎(𝑟, 𝑘|𝐶𝐿 = 𝑐) = 𝑃(�̂�𝐿 > 𝑘|𝐶𝐿 = 𝑐) = 𝑃 {𝜒2𝑟
2 >

2[Γ(1+
1

𝜐
)−𝐵𝑐]

𝜐
,Γ𝜐(𝑟)

[Γ(1+
1

𝜐
)−𝐵𝑘]

𝜐
Γ𝜐(𝑟−

1

𝜐
)
}                 (10) 

where 𝜒2𝑟
2  represented a chi-squared distribution with 2r degrees of freedom. According to Equation (7), the 

relationship of 𝐶𝐿 and the conforming rate 𝛿 can be presented as follows: 

𝑐 = 𝐵−1 [Γ(1 + 𝜐−1) − [−𝑙𝑛(1 − 𝛿)]
1

𝜐]                     (11) 

The probability of acceptance for a given value of the non-conforming rate δ can be calculated with placing Equation 

(10) into Equation (11), leading to the following equation: 

𝑃𝑎(𝑟, 𝑘|𝛿) = 𝑃 {𝜒2𝑟
2 >

−2𝑙𝑛(1−𝛿).Γ𝜐(𝑟)

[Γ(1+
1

𝜐
)−𝐵𝑘]

𝜐
Γ𝜐(𝑟−

1

𝜐
)
}                    (12) 

IV. THE QUICK SWITCHING SAMPLING PLAN (𝒓𝑵, 𝒓𝑻, 𝒌) 

The QSS plan contains two SS plans one of which is done under normal inspection and the other one based on 

tightened inspection. The QSS plan begins with a normal inspection, and the normal inspection of the submitted batch 

continues until a batch is rejected. Now, the plan switches to tightened inspection, and it continues as long as a batch is 

accepted. In the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) sampling plan based on the type‐ II censoring life test, it is assumed that the sample size 

n and the acceptance criterion k are the same in both normal and tightened inspections, but the number of failures r during 

the two types of inspections differs. So, 𝑟𝑁 is the number of failures in normal inspection, and 𝑟𝑇 is the one in tightened 

inspection. In this research, it is also assumed that the number of failures based on tightened inspection in the 

QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan is greater than that in normal inspection (𝑟𝑁 < 𝑟𝑇). The number of failures in normal and tightened 

inspections must be less than the sample size n. 

As widely discussed in the QC literature, the conditions for designing the sampling plans are according to the 

following: 

1. The acceptance probability of a batch at the acceptable quality level (AQL) must be bigger than the 

producer’s risk represented by 𝛼. It means a batch at the quality level AQL must be accepted with a minimum 

of (1 − 𝛼) %. 

2. The acceptance probability of a batch at the rejectable quality level (RQL) must be less than consumer's risk 

represented by 𝛽. It means a batch at the quality level RQL must be accepted with a minimum of 𝛽%. 

Therefore, in the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘), the values of (𝛼. 𝛿𝐴𝑄𝐿) and (𝛽. 𝛿𝑅𝑄𝐿) must be determined in advance. There are the 

two special points of (AQL, 1 − α) and (RQL, β) to consider on the OC curve. In this study, an optimal QSS plan is 

proposed under these two points in the OC curve to minimize the value of AFN as the objective function. 

The steps of implementing the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan based on the type‐ II censoring reliability test with LPI considered 

are explained below. Moreover, these steps are shown as a flowchart in Figure (1). 

1. Determine the values of producer's risk 𝛼, consumer's risk 𝛽, 𝛿𝐴𝑄𝐿 , and 𝛿𝑅𝑄𝐿. 

2. The QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan begins with a normal inspection, a sample with size n is randomly taken from the batch, 

and, based on the type‐ II censoring test, the units are tested concurrently as long as the first 𝑟𝑁 failures occur. 

According to the test data, the value of �̂�𝐿 is calculated with the following equation (Rasay & Naderkhani, 2020): 
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�̂�𝐿 =
1

𝐵
[Γ (1 +

1

𝜈
) −

𝐿.Γ(𝑟𝑁)

𝐷
1
𝜈.Γ(𝑟𝑁−

1

𝜈
)

]                      (13) 

where 

𝐷 = ∑ (𝑛 − 𝑖 + 1)(𝑡(𝑖)
𝜈 − 𝑡(𝑖−1)

𝜈 )
𝑟𝑁
𝑖=1                      (14) 

Also, B is calculated using Equation (6). 

3. If the relation �̂�𝐿 ≥ 𝑘 is established, the batch is accepted and the normal inspection continues for the next batch. 

Otherwise, if �̂�𝐿 < 𝑘, the batch is rejected and the plan switches to tightened inspection for the next batch. 

4. Under tightened inspection, n units are randomly chosen from the batch. According to the type‐ II censoring 

reliability test, the units are tested concurrently as long as the first 𝑟𝑇 failures occur. According to the test data, 

the value of �̂�𝐿 is calculated with the following equation (Rasay & Naderkhani, 2020):  

�̂�𝐿 =
1

𝐵
[Γ (1 +

1

𝜈
) −

𝐿.Γ(𝑟𝑇)

𝐷
1
𝜈.Γ(𝑟𝑇−

1

𝜈
)

]                      (15) 

where 

𝐷 = ∑ (𝑛 − 𝑖 + 1)(𝑡(𝑖)
𝜈 − 𝑡(𝑖−1)

𝜈 )
𝑟𝑇
𝑖=1                      (16) 

Also, B is calculated using Equation (6) 

5. If the relation �̂�𝐿 ≥ 𝑘 is established, the batch is accepted and the plan switches back to the normal inspection 

for the next batch. Otherwise, if �̂�𝐿 < 𝑘, the batch is rejected and the tightened inspection is still applied for the 

following batch. 

The overall acceptance probability of a batch for the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) sampling plan can be calculated by either of two 

methods, namely the use of the lifetime performance index 𝐶𝐿 or the non-conformance rate δ.  

The acceptance probability of a batch in normal and tightened inspections, represented by 𝑃𝑎
𝑁 and 𝑃𝑎

𝑇 , for a given 

value of 𝐶𝐿 are computed as follows: 

𝑃𝑎
𝑁(𝑟𝑁 , 𝑘|𝐶𝐿 = 𝑐) = 𝑃(�̂�𝐿 > 𝑘|𝐶𝐿 = 𝑐) = 𝑃 {𝜒2𝑟𝑁

2 >
2[Γ(1+

1

𝜐
)−𝐵𝑐]

𝜐
,Γ𝜐(𝑟𝑁)

[Γ(1+
1

𝜐
)−𝐵𝑘]

𝜐
Γ𝜐(𝑟𝑁−

1

𝜐
)
}                 (17) 

𝑃𝑎
𝑇(𝑟𝑇 , 𝑘|𝐶𝐿 = 𝑐) = 𝑃(�̂�𝐿 > 𝑘|𝐶𝐿 = 𝑐) = 𝑃 {𝜒2𝑟𝑇

2 >
2[Γ(1+

1

𝜐
)−𝐵𝑐]

𝜐
,Γ𝜐(𝑟𝑇)

[Γ(1+
1

𝜐
)−𝐵𝑘]

𝜐
Γ𝜐(𝑟𝑇−

1

𝜐
)
}                 (18) 

Finally, the overall acceptance probability of a batch for the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) according to a given value of the life 

performance index, 𝐶𝐿 = 𝑐 is calculated as follows: 

𝜋𝑎(𝑟𝑁 , 𝑟𝑇 , 𝑘|𝐶𝐿 = 𝑐) =
𝑃𝑎

𝑇(𝑟𝑇 , 𝑘|𝐶𝐿 = 𝑐)

1−𝑃𝑎
𝑁(𝑟𝑁 , 𝑘|𝐶𝐿 = 𝑐)+𝑃𝑎

𝑇(𝑟𝑇 , 𝑘|𝐶𝐿 = 𝑐)
                  (19) 
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Fig 1. The flowchart of the QSS(𝒓𝑵, 𝒓𝑻, 𝒌) plan 

In QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘), the acceptance probability of a batch in the normal inspection for a given value of 𝛿  can be 

computed by the substitution of Equation (11) in Equation (17) as follows: 

𝑃𝑎
𝑁(𝑟𝑁 , 𝑘|𝛿) = 𝑃(�̂�𝐿 > 𝑘|𝛿) = 𝑃 {𝜒2𝑟𝑁

2 >
−2𝑙𝑛(1−𝛿),Γ𝜐(𝑟𝑁)

[Γ(1+
1

𝜐
)−𝐵𝑘]

𝜐
Γ𝜐(𝑟𝑁−

1

𝜐
)
}                 (20) 

Similarly, the acceptance probability of a batch in the tightened inspection for a given value of 𝜹 is computed by the 

substitution of Equation (11) in Equation (18) as follows: 

𝑃𝑎
𝑇(𝑟𝑇 , 𝑘|𝛿) = 𝑃(�̂�𝐿 > 𝑘|𝛿) = 𝑃 {𝜒2𝑟𝑇

2 >
−2𝑙𝑛(1−𝛿),Γ𝜐(𝑟𝑇)

[Γ(1+
1

𝜐
)−𝐵𝑘]

𝜐
Γ𝜐(𝑟𝑇−

1

𝜐
)
}                  (21) 
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Finally, the overall acceptance probability of a batch, according to a given value of the non-conformance rate 𝛿, for 

QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) is calculated as follows: 

𝜋𝑎(𝑟𝑁, 𝑟𝑇 , 𝑘|𝛿) =
𝑃𝑎

𝑇(𝑟𝑇 , 𝑘|𝛿)

1−𝑃𝑎
𝑁(𝑟𝑁 , 𝑘|𝛿)+𝑃𝑎

𝑇(𝑟𝑇 , 𝑘|𝛿)
                   (22) 

The operating characteristic (OC) curve is one of the important criteria for evaluating sampling plans. This curve 

shows the power of differentiation of sampling plans. The OC curve of the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan represents the overall 

acceptance probability of a batch with regard to its quality. This probability can be calculated by two methods, using 

either the lifetime performance index ( 𝐶𝐿) or the non-conforming rate (δ). Therefore, Equation (19) or (22) can be 

employed to calculate the overall acceptance probability of a batch in the OC curve. The steps for drawing the OC curve 

of the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan are as follows: 

1. Determine the values of producer's risk 𝛼, consumer's risk 𝛽, 𝛿𝐴𝑄𝐿  and 𝛿𝑅𝑄𝐿 as well as the shape parameters of 

the Weibull distribution 𝜐. 

2. The overall acceptance probability of a batch in the OC curve of the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan can be calculated using 

Equation (19) or (22).  

Considering that the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan includes the two quality levels of AQL and RQL, the optimization model of 

the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan should be presented preferably by the use of the average quality level 𝛿𝑀 to calculate the AFN. 

The average quality level is obtained through the following equation: 

𝛿𝑀 =
𝛿𝐴𝑄𝐿+𝛿𝑅𝑄𝐿

2
                       (23) 

Finally, the optimization model of the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan can be expressed as follows: 

min 𝐴𝐹𝑁(𝑟𝑁 , 𝑟𝑇 , 𝑘) =
𝑃𝑎

𝑇(𝑟𝑇 , 𝑘|𝛿𝑀),𝑟𝑁+(1−𝑃𝑎
𝑁(𝑟𝑁 , 𝑘|𝛿𝑀)),𝑟𝑇

1−𝑃𝑎
𝑁(𝑟𝑁 , 𝑘|𝛿𝑀)+𝑃𝑎

𝑇(𝑟𝑇 , 𝑘|𝛿𝑀)
        

St: 

𝜋𝑎(𝑟𝑁 , 𝑟𝑇 , 𝑘|𝛿𝐴𝑄𝐿) ≥ 1 − 𝛼  

𝜋𝑎(𝑟𝑁 , 𝑟𝑇 , 𝑘|𝛿𝑅𝑄𝐿) ≤ 𝛽  

𝑛 > 𝑟𝑇 ≥ 𝑟𝑁  

𝑐𝑅𝑄𝐿 < 𝑘 <
Γ(

1

𝑣
)

𝐵,𝑣
                         (24) 

In this model, minimizing the average failure number represented by AFN is considered the objective function. There 

are four constraints in this model. The first constraint ensures that, for a batch with the non-conforming rate 𝛿𝐴𝑄𝐿 , the 

acceptance probability is more than 1 − 𝛼. The second constraint ensures that the acceptance probability at the non-

conforming rate 𝛿𝑅𝑄𝐿 is less than the consumer’s risk 𝛽. The third constraint regards the relationship between the number 

of failures in normal and tightened inspections. It also takes into account the condition that the number of defects in both 

normal and tightened inspections is smaller than the sample size n. The fourth constraint determines the lower and upper 

bounds for k. The decision variables of the model that describe the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan are k, 𝑟𝑁, and 𝑟𝑇. 
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V. CASE STUDY AND NUMERICAL ANALYSIS 

To show the actual application and advantage of the suggested QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan, two real datasets are derived from 

the Weibull distribution with the shape parameters 𝑣 = 1 and 𝑣 = 2.102. The data specify the period within which each 

specimen fails (or breaks down) in a life test. 

There are 19 pieces of data recorded for electrical insulating fluids. The data are adapted from (C.-W. Wu et al., 2018). 

They include 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71 

and 72.89. Based on the goodness-of-fit test, the Weibull distribution with 𝑣 = 1 is an appropriate distribution to fit the 

data. 

Table I. Input parameters for 𝑣 = 1 

𝑣 𝜹𝑹𝑸𝑳 𝜹𝑨𝑸𝑳 𝜷 𝜶 parameters 
1 0.2 0.05 0.05 0.05 value 

Based on the input parameters presented in Table 1, the optimization problem is solved for the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan to 

achieve the following results: 

Table II. Output results for 𝑣 = 1 

AFN k 𝒓𝑻 𝒓𝑵 output 
5.5228 0.8949 6 5 value 

The QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan begins with a normal inspection, a sample size of 19 is randomly taken from the batch, and 

the units are tested concurrently as long as the first 𝑟𝑁 = 5 failures occur. This is done by means of a type‐ II censoring 

reliability test. Based on the test data and using Equation 22, the lifetime performance index (�̂�𝐿) during the normal 

inspection is found to be 0.9074. According to the flowchart in Figure (1), since �̂�𝐿 > 𝑘 and  0.9074 > 0.8949, the batch 

is accepted and the normal inspection continues for the following batch. 

Besides, 23 failures of deep-grove ball bearings (in millions of revolution) are recorded based on the case study 

presented by (C.-W. Wu et al., 2018). The failure times are 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 

54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 27.92, 128.04, 173.40. Based on the 

goodness-of-fit test, the Weibull distribution with 𝑣 = 2.102 is an appropriate distribution to fit the data. 

Table III. Input parameters for 𝑣 = 2.102 

𝑣 𝜹𝑹𝑸𝑳 𝜹𝑨𝑸𝑳 𝜷 𝜶 parameters 
2.102 0.025 0.005 0.01 0.01 value 

Based on the input parameters presented in Table 3, the optimization problem is solved for the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan to 

achieve the following results: 

Table IV. Output results for 𝑣 = 2.102 

AFN k 𝒓𝑻 𝒓𝑵 output 
9.6514 1.7216 10 9 value 

The QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan begins  with a normal inspection, a sample size of 23 is randomly taken from the batch, and 

the units are tested concurrently as long as the first 𝑟𝑁 = 9 failures occur. This occurs through a type‐ II censoring 

reliability test. Based on the test data and using Equation 22, the value calculated for the lifetime performance index (�̂�𝐿) 

during the normal inspection is found to be 1.4125. According to the flowchart in Figure (1), since �̂�𝐿 < 𝑘 and 1.4125 <

1.7216, the batch is rejected and the plan switches to the tightened inspection for the following batch. 
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The values of the important parameters in the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan have been changed, and the effects of the change 

on the variables and the average number of failures (AFN) have been investigated based on the various values of the 

shape parameters of the Weibull distribution (𝑣 = 1, 2, 3). The results are shown in Tables (5) to (7). It should be noted 

that to solve the designed optimization model, a grid search algorithm is used and coded in MATLAB software. The 

following results are inferred from the sensitivity analyses reported in the tables:  

 For various values of 𝛿𝐴𝑄𝐿  and 𝛿𝑅𝑄𝐿, an increase in the (α) and (𝛽) risks causes to a decrease in the values of 

AFN, rN and rT. 

 An increase in the (α) risks causes an increase in the value of k. 

 An increase in  the (𝛽) risks causes a decrease in the value of k. 

 An increase in the value of 𝛿𝐴𝑄𝐿  causes an increase in the values of AFN, rN and rT but a decrease in the 

value of k. 

 An increase in the value of 𝛿𝑅𝑄𝐿 decreases the values of AFN, rN, rT and k. 

 An increase in the values of the shape parameters in the Weibull distribution causes an increase in k. 

In this research, first, the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan is compared to QSS(𝑟, 𝑘𝑁 , 𝑘𝑇) proposed by (Rasay & Naderkhani, 

2020), and then a comparison is performed of the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan and the SS plan suggested by Wu et al (2018).  

The results of the QSS(𝑟, 𝑘𝑁 , 𝑘𝑇)  plan for the Weibull distribution with 𝑣 = 2 are presented in Table 8. The 

comparisons suggest the following: 

 For the same values of α, β, 𝛿𝐴𝑄𝐿 , 𝛿𝑅𝑄𝐿and 𝑣, the AFN has decreased in the QSS(𝑟, 𝑘𝑁 , 𝑘𝑇) plan, as compared 

to the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan. For example, for 𝑣 = 2,  𝛼 = 0.01, 𝛽 = 0.05, 𝛿𝐴𝑄𝐿 = 0.005 and 𝛿𝑅𝑄𝐿 = 0.025, the 

AFNs in QSS(𝑟, 𝑘𝑁, 𝑘𝑇) and QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) are 4 and 7.4897, respectively. 

 For the same values of α, β, 𝛿𝐴𝑄𝐿 , 𝛿𝑅𝑄𝐿and 𝑣, the acceptance criterion k in the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan is equal to 

something between the values of the normal and tightened acceptance criteria of the QSS(𝑟, 𝑘𝑁 , 𝑘𝑇) plan. For 

example, for 𝑣 = 2,  𝛼 = 0.01 , 𝛽 = 0.05 , 𝛿𝐴𝑄𝐿 = 0.005  and 𝛿𝑅𝑄𝐿 = 0.025 , the acceptance criterion in the 

QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan is equal to 1.6586. For QSS(𝑟, 𝑘𝑁 , 𝑘𝑇), the acceptance criterion in the normal and tightened 

inspections is 1.5936 and 1.7022, respectively. 

 The number of failures in QSS(𝑟, 𝑘𝑁 , 𝑘𝑇) is lower than that in the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan. 

To provide more comparison, the results of the SS plan in the Weibull distribution with 𝑣 = 2 are reported in Table 9. 

The comparison suggests the following: 

 For the same values of α, β, 𝛿𝐴𝑄𝐿 , 𝛿𝑅𝑄𝐿and 𝑣, the AFNs in the QSS(𝑟, 𝑘𝑁 , 𝑘𝑇) plan have slightly decreased 

compared to the SS plan. For example, with𝛼 = 0.01, 𝛽 = 0.01, 𝛿𝐴𝑄𝐿 = 0.01 and 𝛿𝑅𝑄𝐿 = 0.03, the AFNs in the 

QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) and SS plans are 18.6060 and 19, respectively. 

 For the same values of α, β, 𝛿𝐴𝑄𝐿 , 𝛿𝑅𝑄𝐿 and 𝑣, the acceptance criterion k in the QSS (𝑟𝑁 , 𝑟𝑇 , 𝑘)  plan is 

approximately equal to that in SS plan. For example, with 𝑣 = 2, 𝛼 = 0.05, 𝛽 = 0.05, 𝛿𝐴𝑄𝐿 = 0.02 and 𝛿𝑅𝑄𝐿 =

0.06, the acceptance criterion in the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) and SS plans is 1.502 and 1.501, respectively.  

 For the same values of α, β, 𝛿𝐴𝑄𝐿 , 𝛿𝑅𝑄𝐿and 𝑣, the number of failures (r) in the SS plan is higher than that in the 
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normal inspection ( 𝑟𝑁)  and lower in the tightened inspection (𝑟𝑇). For example, there are 𝑟𝑁 = 4 and 𝑟𝑇 =

6 calculated for 𝑣 = 2, 𝛼 = 0.05, 𝛽 = 0.05, 𝛿𝐴𝑄𝐿 = 0.005 and 𝛿𝑅𝑄𝐿 = 0.025, and five failures (r) are recorded 

for the SS plan. 

Table V. Different QSS(𝒓𝑵, 𝒓𝑻, 𝒌) plans (𝒗 = 1) 

𝑣=1 
𝜹𝑹𝑸𝑳 𝜹𝑨𝑸𝑳 𝜶 = 𝟎. 𝟎𝟓 and 𝜷 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟎𝟏 and 𝜷 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟎𝟏 and 𝜷 = 𝟎. 𝟎𝟏 

AFN k 𝒓𝑻 𝒓𝑵 AFN k 𝒓𝑻 𝒓𝑵 AFN k 𝒓𝑻 𝒓𝑵 
6.6238 0.9898 8 5 10.0955 0.9878 13 8 12.2120 0.9894 13 11 0.02 

0.005 4.8874 0.9877 7 3 7.4727 0.9867 8 7 9.6547 0.9882 10 9 0.025 
4.0893 0.9875 5 3 6.9431 0.9845 8 6 7.6484 0.9867 8 7 0.03 
9.8866 0.9815 13 7 14.6948 0.9800 17 14 18.5962 0.9821 19 18 0.03 

0.01 4.9742 0.9757 7 3 7.9369 0.9727 9 7 9.2490 0.9757 10 8 0.05 
3.7179 0.9723 6 2 6.3232 0.9681 8 5 7.6433 0.9731 8 7 0.06 
9.4377 0.9631 12 7 14.3020 0.9601 16 13 18.1703 0.9636 19 17 0.06 

0.02 6.0503 0.9586 7 5 9.4565 0.9526 10 9 11.6215 0.9576 12 11 0.08 
4.5371 0.9506 5 4 7.2851 0.9426 9 6 9.2484 0.9506 10 8 0.1 

Table VI. Different QSS(𝒓𝑵, 𝒓𝑻, 𝒌) plans (𝒗 = 2) 

𝑣=2 
𝜹𝑹𝑸𝑳 𝜹𝑨𝑸𝑳 𝜶 = 𝟎. 𝟎𝟓 and 𝜷 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟎𝟏 and 𝜷 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟎𝟏 and 𝜷 = 𝟎. 𝟎𝟏 

AFN k 𝒓𝑻 𝒓𝑵 AFN k 𝒓𝑻 𝒓𝑵 AFN k 𝒓𝑻 𝒓𝑵 
6.5641 1.6916 7 6 9.4865 1.6782 10 9 12.6417 1.6902 13 12 0.02 

0.005 5.0818 1.6716 6 4 7.4897 1.6586 8 7 9.6505 1.6736 10 9 0.025 
4.6702 1.6563 6 3 6.4980 1.6413 7 6 7.6650 1.6603 8 7 0.03 
9.5515 1.6243 10 9 14.4662 1.6093 15 14 18.6060 1.6223 19 18 0.03 

0.01 5.1233 1.5742 6 4 7.4891 1.5517 8 7 9.6724 1.5762 10 9 0.05 
4.0908 1.5511 5 3 6.4937 1.5261 7 6 7.6533 1.5521 8 7 0.06 
9.5487 1.5021 10 9 14.3371 1.4773 16 13 18.6008 1.4991 19 18 0.06 

0.02 6.5589 1.4627 7 6 9.4712 1.4352 10 9 11.6277 1.4627 12 11 0.08 
4.5642 1.4374 5 4 7.5015 1.4014 8 7 9.2929 1.4284 10 8 0.1 

Table VII. Different QSS(𝒓𝑵, 𝒓𝑻, 𝒌) plans (𝒗 = 3) 

𝑣=3 

𝜹𝑹𝑸𝑳 𝜹𝑨𝑸𝑳 
𝜶 = 𝟎. 𝟎𝟓 and 𝜷 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟎𝟏 and 𝜷 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟎𝟏 and 𝜷 = 𝟎. 𝟎𝟏 

AFN k 𝒓𝑻 𝒓𝑵 AFN k 𝒓𝑻 𝒓𝑵 AFN k 𝒓𝑻 𝒓𝑵 

6.5666 2.0723 7 6 9.6981 2.0433 11 9 12.6531 2.0733 13 12 0.02 
0.005 5.5882 2.0277 7 4 7.5078 2.0107 8 7 9.6433 2.0357 10 9 0.025 

4.5689 2.0052 5 4 6.5306 1.9812 7 6 7.6780 2.0132 8 7 0.03 
9.5570 1.9432 10 9 14.4751 1.9172 15 14 18.6123 1.9412 19 18 0.03 

0.01 5.1520 1.8516 6 4 7.5103 1.8166 8 7 9.6680 1.8536 10 9 0.05 
4.6022 1.8205 5 4 6.4004 1.7528 8 5 7.6753 1.8178 8 7 0.06 
9.5510 1.7278 10 9 14.4685 1.6948 15 14 18.6145 1.7278 19 18 0.06 

0.02 6.5509 1.6603 7 6 9.4772 1.6203 10 9 11.6327 1.6653 12 11 0.08 
4.5717 1.6192 5 4 57.5072 1.5662 8 7 9.6580 1.6112 10 9 0.1 
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Table VIII. Different QSS(𝒓, 𝒌𝑵, 𝒌𝑻) plans (𝒗 = 2) 

𝑣=2   QSS(𝒓, 𝒌𝑵, 𝒌𝑻) 
𝜹𝑹𝑸𝑳 𝜹𝑨𝑸𝑳 𝜶 = 𝟎. 𝟎𝟓 and 𝜷 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟎𝟏 and 𝜷 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟎𝟏 and 𝜷 = 𝟎. 𝟎𝟏 

AFN r 𝒌𝑻 𝒌𝑵 AFN r 𝒌𝑻 𝒌𝑵 AFN r 𝒌𝑻 𝒌𝑵 
3 3 1.7402 0.9798 5 5 1.7142 1.6222 5 5 1.7342 1.6242 0.02 

0.005 2 2 1.7502 0.9747 4 4 1.7022 1.5936 4 4 1.7262 1.5856 0.025 
2 2 1.7302 1.5993 3 3 1.7032 1.5533 3 3 1.7292 1.5413 0.03 
4 4 1.6827 0.9715 7 7 1.6257 1.5423 7 7 1.6767 1.5363 0.03 

0.01 2 2 1.6827 0.6927 4 4 1.6107 1.4722 4 4 1.6447 1.4702 0.05 

2 2 1.6507 1.4801 3 3 1.6127 1.4091 3 3 1.6497 1.3981 0.06 
4 4 1.5842 0.9481 7 7 1.5402 1.3941 7 7 1.5742 1.3881 0.06 

0.02 3 3 1.5582 0.9166 5 5 1.5062 1.3377 5 5 1.5482 1.3377 0.08 
3 3 1.7402 0.9798 4 4 1.4772 1.2954 4 4 1.5282 1.2794 0.1 

Table IX . Different single sampling (SS) plans (𝒗 = 2) 

𝑣=2    
𝜹𝑹𝑸𝑳 𝜹𝑨𝑸𝑳 𝜶 = 𝟎. 𝟎𝟓 and 𝜷 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟎𝟏 and 𝜷 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟎𝟏 and 𝜷 = 𝟎. 𝟎𝟏 

AFN k AFN k AFN k 
23 1.731 35 1.725 46 1.73 0.01 

0.005 7 1.691 10 1.678 12 1.692 0.02 
5 1.679 8 1.658 9 1.677 0.025 

23 1.655 35 1.647 46 1.654 0.02 
0.01 10 1.624 15 1.61 19 1.623 0.03 

5 1.58 7 1.558 9 1.577 0.05 
23 1.546 34 1.535 45 1.545 0.04 

0.02 
10 1.501 14 1.484 18 1.502 0.06 

6 1.473 9 1.442 12 1.463 0.08  

Here is a point to make about parameter n in the proposed QSS. According to Equations (17) to (24), which calculate 

the overall acceptance probability of a batch and the average failure number (AFN), it is clear that sample size (n) does 

not impact these two basic characteristics of QSS plans. The proposed QSS model (Equation 24) determines the values 

of 𝑟𝑇 , 𝑟𝑁 and 𝑘 as the output of the model, so that AFN can be minimized. After that, the value of n can be arbitrarily 

chosen to satisfy  𝑛 ≥ 𝑟𝑇  and 𝑛 ≥ 𝑟𝑁. Hence, the value of n does not affect the other parameters of the QSS.  

For examine the performance of the suggested QSS (𝑟𝑁 , 𝑟𝑇 , 𝑘)  plan, the OC curves of the QSS (𝑟𝑁 , 𝑟𝑇 , 𝑘)  and 

QSS(𝑟, 𝑘𝑁 , 𝑘𝑇) plans are compared. The graphs in Figure 2 show the overall acceptance probability of a batch against 

various values of the non-conforming rate δ. As it can be seen,the overall acceptance probability of a batch in the 

QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan is lower than that in the QSS(𝑟, 𝑘𝑁 , 𝑘𝑇) plan, but the difference is not significant. For the same value 

of the non-conforming rate δ, the overall acceptance probability is almost equal in the two plans. The values of the input 

and output parameters corresponding to Figure 2 are presented in Tables 10 and 11, respectively. 

Table X. Input parameters 

𝑣 𝜹𝑹𝑸𝑳 𝜹𝑨𝑸𝑳 𝜷 𝜶 parameters 
1 0.2 0.05 0.05 0.01 value 
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Table XI. Output results  

r 𝒌𝑻 𝒌𝑵 AFN k 𝒓𝑻 𝒓𝑵 output  
plan 

- - - 8.8449 0.8729 10 8 QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan 

4 0.9247 0.8019 4 - - - QSS(𝑟, 𝑘𝑁 , 𝑘𝑇) plan 

 

Fig 2. OC curves of the QSS(𝒓𝑵, 𝒓𝑻, 𝒌) and QSS(𝒓, 𝒌𝑵, 𝒌𝑻) plans 

VI. CONCLUSION 

This study has been conducted to evaluate the quality of a batch of units with a focus on lifetime as a qualitative 

characteristic. A hypothesis test should be performed on the average lifetime of the units in the batch to determine whether 

the average lifetime of the units is greater than or less than a specified limit. For this purpose, a QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan is 

used based on type‐ II censoring life test. It is assumed that the lifetime of units follows the Weibull distribution. With 

the aim of minimizing the AFN, a mathematical model is also presented along with the equations to calculate the OC 

curve for the proposed QSS (𝑟𝑁 , 𝑟𝑇 , 𝑘). This plan is then compared with a QSS(𝑟, 𝑘𝑁 , 𝑘𝑇) plan. The results show that, for 

the same value of the non-conforming rate δ, the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan has a lower overall acceptance probability, but the 

difference is not significant; the OC curves of these two sampling plans are not significantly different. Moreover, the 

AFN in the QSS(𝑟, 𝑘𝑁 , 𝑘𝑇) plan is found lower than that in the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan. Finally, using two real datasets from 

the Weibull distribution with the shape parameters of 𝑣 = 1 and 𝑣 = 2.102, the performance of the QSS(𝑟𝑁 , 𝑟𝑇 , 𝑘) plan is 

examined.  
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