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Abstract – The Assembly Line Balancing (ALB) problem is one of the subproblems of the Assembly 

Planning(AP) problem and is defined as the process of partitioning the assembly operations into a set of tasks 

and assigning them to assembly workstations such that all workstations approximately have equal times. The 

most basic model in ALB is the Simple Assembly Line Balancing Problem for type 2 (SALBP2). The mentioned 

problem is an NP-hard problem and thus many researchers in the field tried to find an effective and efficient 

solution for it. However, the fitness landscape of this problem has not been yet studied despite the existence of 

numerous works on solving it. In this article, different statistical correlation and distribution measures are used 

and calculated in order to analyze the fitness landscape of the SALBP2 problem for 44 test problems. The 

results reveal that the problem's landscape is approximately uniform based on the distribution of the locally 

optimal assembly sequences. Therefore, for obtaining an effective and efficient solution to SALBP2 a suitable 

Hybrid Iterated Local Search (HILS) is designated and used to solve a number of SALBP2 problems. 

Comparison results with the other approaches in the SALBP2 literature represent that the HILS produces the 

optimal or best known solutions on most problem instances, and it performs better than other algorithms. 

Keywords– Assembly Line Balancing (ALB), Hybrid Iterated Local Search (HILS), Landscape Analysis, Multi-

objective Optimization, Simple Assembly Line Balancing Problem for Type 2 (SALBP2). 
                 

I. INTRODUCTION 

The Assembly Line Balancing (ALB) problem consists of assigning n tasks i with times ti to an ordered sequence of 

m assembly workstations k stations such that the precedence relations among the tasks are satisfied and the assembly 

times of all workstations are nearly equal. 

In (Rashid et al., 2012) the studies in ALB that appeared in 2001–2011 and used soft computing approaches has been 

surveyed. Also, in (Battaïa and Dolgui, 2013)'s recent research on balancing flow lines within many different industrial 

contexts has been analyzed. Their survey covers about 300 studies on line balancing problems that appeared during 2007–

2012. The ALB problem is NP-hard (Scholl and Becker, 2006), and is divided into two classes:  

1. SALBP: Simple Assembly Line Balancing Problem is appropriate for single-sided assembly lines in which a 

unique model of a single product is created (Capacho Betancourt, 2007). SALB is categorized into some            

sub-problems. First, SALB for type 1 (SALBP1) minimizes the number of workstations (m) for a predefined 
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cycle time (c) (Sotskov et al., 2015). Second, type 2 (SALBP2) considers the minimization of cycle time with a 

given number of workstations (Sungur and Yavuz, 2015). It should be mentioned that problems such as general 

resources-constrained assembly line balancing problem (GRCALBP) which minimize cycle time and resource 

usage for a given number of stations (Alakaş, 2021) are an extension of SALBP2. The next problem is SALB 

for type E (SALBP–E) which maximizes the line efficiency (E)  by simultaneously minimizing c and m due to 

their mutual relationship (Esmaeilbeigi et al., 2015). Another class is SALB for type F (SALBP–F) which based 

on a given combination of m and c investigates the existence of a feasible line balance (Kriengkorakot and 

Pianthong, 2012).  

2. GALBP: Generalized Assembly Line Balancing Problem is appropriate for balancing two-sided assembly lines 

which are more complex than the single–sided assembly lines. GALB is categorized into some sub-problems. 

First, two-sided assembly line balancing (2S–ALB) in which almost all operating lines consist of a pair of head-

on workstations (Yadav et al., 2019, Sepahi and Naini, 2016). Second, the two-sided mixed-model assembly line 

balancing problem (MALB) produces several models of a basic product in an intermixed sequence (Razali et al., 

2019; Liu et al., 2021; Buyukozkan et al., 2016). Another class is the U–line assembly line balancing problem 

(UALBP) in which a single product is produced in the stations that are arranged within a narrow U 

(Chantarasamai and Lasunon, 2021; Alavidoost et al., 2016).  

In (Scholl and Becker, 2006) a comprehensive survey of the SALBP2 is completed. Also, A systematic review of hot 

topics and research themes in assembly line balancing during 1990–2017 is presented in (Eghtesadifard et al., 2020). 

Also, based on the literature review, the solution approaches to SALBP2 include three following categories: 

(1) Exact- Only a few exact solution approaches have been developed which directly solve SALBP2. These 

procedures include Lower bounds (McNaughton, 1959; Klein and Scholl, 1996; Merengo  et al.,1999), Branch 

and Bound (B&B) (Klein and Scholl, 1996; Li et al., 2021) and Logic-Based Benders Decomposition (Zohali et 

al., 2021) procedures.  

(2) Heuristic- These approaches include Constructive procedures (Hackman et al.,1989) and a constraint 

programming approach (Pinarbasi et al., 2019).  

(3) Metaheuristic- These approaches include Genetic algorithms (GA) (Anderson and Ferris, 1994; Watanabe et al., 

1995), tabu search (TS) (Heinrici, 1994; Chiang, 1998), simulated annealing (SA) (Heinrici, 1994), Ant Colony 

Optimization (ACO) (Zheng et al., 2013), and Variable Neighbourhood Strategy Adaptive Search (VaNSAS) 

(Jirasirilerd et al., 2020).  

The literature review revealed that several heuristic and metaheuristic approaches to SALBP2 have been proposed in 

the last two decades. However, to decide on a suitable metaheuristic for SALBP2, the fitness landscape characteristics of 

the problem must be investigated. Generally, fitness Landscape Analysis (FLA) is an efficient and important approach 

for finding the most appropriate metaheuristic for any problem (Eghtesadifard et al., 2020). FLA describes the amplitudes, 

correlation and distribution of the local optimal solutions to the problem.   

 In fact, in addressing any combinatorial optimization problem, no specific algorithm can perform better than all other 

algorithms. It is necessary to mention that although the FLA has been done for various issues and problems in articles 

such as (Malan and Engelbrecht, 2014; Beham et al., 2017; Jana et al., 2017; Wang et al., 2017), no research has been 

performed for analyzing the fitness landscape of the SALBP2 Problem. The only article which considered the fitness 

landscape of the SALBP is (Nourmohammadi et al., 2019) in which the landscape of SALBP1 has been analyzed for a 

precedence graph with 7 tasks. Based on the literature review, the contributions and/or innovations of this paper are as 

follows: 
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1- The landscape of the SALBP2 problem has not been studied and analyzed so far despite the large number of 

metaheuristics applied to solve it. On the other hand, the landscape properties affect the effectiveness of used 

metaheuristics for solving the problem. Therefore, in this paper, some statistical measures including correlation 

and distribution measures are used to analyze the landscape of the SALBP2 problem for the first time in the 

literature.  

2- A hill–climbing approach is developed and run on population U which is a set of 500 starting assembly line 

balances in order to generate the Population O which is a set of 500 local optimums. 

3- The correlation and distribution measures are calculated and analyzed for 14 sample assembly line balancing 

type 2 test problems with various workstations. Altogether 44 test problems have been analyzed.  

4- Based on the distribution and correlation measures analysis, the problem's nature is specified and an appropriate 

Hybrid Iterated Local Search (HILS) algorithm is implemented for the SALB2 problem. 

The rest of this paper is organized as follows: the fitness landscape of the SALB2 problem is analyzed in Section 2. 

In Section 3, the proposed HILS algorithm is described and illustrated for the SALBP2. In Section 4, computational 

results and discussion are presented. Finally, conclusions and summarizing remarks are prepared in Section 5. 

II. SALB2 PROBLEM FITNESS LANDSCAPE ANALYSIS 

The properties of the landscape must be considered in applying metaheuristics to a problem. Because the search space 

of that problem influences the efficiency and effectiveness of the metaheuristic to address the considered problem. These 

properties are the representation of the solution, neighborhood generation, and objective function. The search space of 

the problem could be assumed as a floor from a geographical point of view. Therefore the landscape of a problem is 

comprised of valleys, plains, cliffs, valleys, plateaus, peaks, canyons, basins, etc. as shown in Fig. (1) (Talbi, 2009). 

Depending on the landscape’s shape, specific types of metaheuristic algorithms will be more effective. 

III. METHODOLOGY 

This paper proposes a linear mathematical model for optimization decisions in production planning of AKBOR GRP 

Pipe Production Company which produces GRP pipes. AKBOR produces pipes from diameter 300-4200 mm with 

pressure range of 1-40 bar and stiffness range of 2500 N/m2 to 10000 N/m2. GRP pipes generally are being used in 

irrigation projects, sewage, and potable water projects. The better production planning will help company to produce 

more pipes with optimal costs. For this reason, paper makes the best multi period multi products model.  

The flow of material and product are assumed as shown in figure 1. As figure 1, five raw materials as silica sand, glass 

fiber, resin, cobalt and styrene are purchased and entered to the raw materials warehouse. The raw materials are then fed 

into the production line, and the finished product is delivered to the final product warehouses. The final customer will 

receive the order from the final warehouse after purchasing the merchandise. It is considered to produce only a single 

product with different diameters from 300-4200 mm.  

 

(a)             (b) 



28 Ghandi, S. et al.  / Landscape Analysis and a Hybrid Iterated Local Search (HILS) for Solving Simple Assembly…..   

                                                                     

(c)         (d) 

Fig 1. The geographical shape of different types of landscape, (a) Flat plain, (b) Rugged plain, (c) Basin valley, (d) Rugged 

valley (Talbi, 2009). 

In this paper, indices such as distribution and ruggedness of the fitness function are computed and analyzed. The 

local optima's distribution in the landscape of the SALBP2 is explained by these indices. Based on the results, a concept 

about the landscape shape is formed which guides us in selecting the appropriate type of metaheuristic in the considered 

context. Landscape studies are based on 14 sample assembly line balancing type 2 test problems with various 

workstations. Altogether 44 test problems have been analyzed. The test problems are taken from http://www.assembly-

line-balancing.de/sualbsp/data-set-of-scholl-et-al-2013, where many test problems are available for testing the 

developed approaches for solving the ALB problem. Also, a hill–climbing approach is developed and run on population 

U which is a set of 500 starting assembly line balances. For each starting solution in U, the Local Search is applied until 

achieving to a local optimum. Therefore, population O is generated which is a set of 500 local optimums. After that, 

statistical measures such as the correlation and distribution of local optimums in the search space of the SALB2 are 

calculated and finally, the fitness landscape analysis is performed based on the statistical measures for the studied test 

problems. The following subsections describe each component of the landscape analysis of the SALB2 Problem. 

A. SALBP2 symbols 

In order to manufacture a product, the total amount of work must be  partitioned into a set of n tasks. Each task j needs 

a task time tj to Perform. Considering the precedence relationships between the tasks is essential due to the technological 

and organizational conditions. These elements are visualized and summarized by a precedence graph, and its 

corresponding Assembly Precedence Matrix (APM). In the assembly precedence graph each task is presented by a node. 

Also, the task times are considered as the node weights and the precedence constraints are the arcs of this graph. Also, 

the APM is an n×n matrix in which each entry is defined by a binary variable apmij which takes value 1 if task i be the 

predecessor of task j and takes 0 otherwise.  

A precedence graph with n = 11 tasks and its corresponding APM is created by us and is shown in Fig. (2). The task 

times are between 1 and 9 (time units). For example, processing task 7 requires its direct predecessors (tasks 1 and 5) and 

its indirect predecessor (task 3) to be completed. On the other hand, task 7 must be completed prior to its direct successors 

(task 8) and its indirect successors (tasks 9, 10, and 11).  
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Fig 2. Precedence graph and its corresponding APM of 11 tasks, 5 stations, and a solution for SALBP2 (created by us). 

The notations and other nomenclature of the SALBP2 are represented in Table I. Based on this notations, the load of 

stations 1 and 4 is S1 = {1, 9} and S4 = {5, 6, 7} with the station times t(S1) = t1 + t9 = 5 + 8 = 13, and t(S4) = t5 + t6 + t7 

= 2 + 7 + 1 = 10. The optimal number of stations is 𝑐∗ = ⌈𝑡𝑠𝑢𝑚 𝑚⁄ ⌉ =  ⌈61 8⁄ ⌉ = 8 and the cycle time for the 

represented solution in Fig. (2) is c = max (t(S1), t(S2), t(S3), t(S4), t(S5)) = max (13, 16, 13, 10, 9) = 16. Also the idle 

time of stations 1 and 4 is I1 = c – t (S1) = 16 – 13 = 3 and I4 = c – t (S4) = 16 – 10 = 6.  

Table I. Notations And Symbols Of The Salbp2. 

N 

tj 

Pj (Pj*) 

Fj (Fj*) 

Sk  

m 

t (Sk) 

c 

c* 

Ik 

Number of assembly tasks; index j = 1,…, n 

The time of task j 

Set of direct (all) predecessors of task j 

Set of direct (all) successors of task j 

The load of station k (i.e., the set of tasks assigned to station k)  

Number of assembly workstations; 

The time of station k; t(Sk) =  ∑ tjjϵSk
, k = 1 , ... , m 

Cycle time; c = max(t(Sk)) 

Optimal cycle time; c∗ = ⌈tsum m⁄ ⌉ , tsum = ∑ tj 
n
j=1  

Idle time of station k; Ik = c – t(Sk) 

B. SALBP2 encoding 

In this article a solution s to the SALBP2 is represented by a row vector of pairs (πi, wi), in which πi {1, 2, …, n} is 

the i–th assembled task and wi {1, 2, …, m} is the workstation in which task πi is assembled. Fig. (3) shows the priority 

list L1 = [1, 3, 2, 5, 4, 7, 6, 8, 9, 10, 11] and the encoding {(1, 1), (3, 2), (2, 3), (5, 4), (4, 5), (7, 4), (6, 4), (8, 3), (9, 1 ), 

(10, 2), (11, 2)} of the solution in Fig. (2), which indicates that part π1 (= 1) must be assembled at station 1, then part π2 

(= 3) must be assembled at station 2, and so on. 

The total number of encodings for feasible and infeasible solutions for the SALB2 problem equals n! × (m)n . Because 

the number of sequences of n tasks is n! and the number of possible workstations to assemble the mentioned task is m. It 

is necessary to explain that two or more seemingly different encodings may all be related to the same solution and 

therefore the size of the whole search space of SALBP2 problem is smaller than n! × (m)n. 

 

Fig 3. The priority list and encoding of the solution in Fig. (2). 

2 11 2 10 1 9 3 8 4 6 4 7 5 4 4 5 3 2 2 3 1 1 , Sol1 11 10 9 8 6 7 4 5 2 3 1 L1 
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C. First Solution Generation  

In order to generate the starting solution in population U, two sets of Heuristic approaches are used with a probability 

of 0.5. These two sets are constructed as follows: 

 Approach 1: In this approach, a priority list of n tasks is generated based on the randomly determined sequence of 

tasks. Then in each iteration, the task in the first position of the priority list (e.g. task j) is assigned to the station with the 

minimum station time. In the case of a tie, the station with a smaller number is selected. For example, applying this 

approach to the randomly determined priority list L1 = [3, 9, 1, 4, 11, 5, 7, 6, 10, 8, 2] for the presented assembly line in 

Fig. (2) leads to the solution (3, 1), (9, 2), (1, 3), (4, 4), (11, 5), (5, 1), (7, 3), (6, 3), (10, 1), (8, 2), (2, 5) as shown in 

Table II. It should be noted that the created solutions by this approach are usually infeasible because in generating a 

solution from a specific list, the precedence relationships between tasks do not take into account. 

Table II. Approach 1 For Generating A Starting Solution From The Randomly Determined Priority List L1 = [3, 9, 1, 4, 11, 

5, 7, 6, 10, 8, 2] For The Presented Assembly Line In Fig. (2). 

Number of stations: m = 5 

priority list: L1 = [3, 9, 1, 4, 11, 5, 7, 6, 10, 8, 2] 

Iteration Candidate task 
Station time 

Candidate stations 
Chosen Station 

1 2 3 4 5 Number Time 

1 3 0 0 0 0 0 {1, 2, 3, 4, 5} 1 t(s1) = 0 + t3 = 5 

2 9 5 0 0 0 0 {2, 3, 4, 5} 2 t(s2) = 0 + t9 = 8 

3 1 5 8 0 0 0 {3, 4, 5} 3 t(s3) = 0 + t1 = 5 

4 4 5 8 5 0 0 {4, 5} 4 t(s4) = 0 + t4 = 9 

5 11 5 8 5 9 0 {5} 5 t(s5) = 0 + t11 = 8 

6 5 5 8 5 9 8 {1, 3} 1 t(s1) = 5 + t5 = 7 

7 7 7 8 5 9 8 {3} 3 t(s3) = 5 + t7 = 6 

8 6 7 8 6 9 8 {3} 3 t(s3) = 6 + t6 = 13 

9 10 7 8 13 9 8 {1} 1 t(s1) = 7 + t10 = 10 

10 8 10 8 13 9 8 {2, 5} 2 t(s2) = 8 + t8 = 17 

11 2 10 17 13 9 8 {5} 5 t(s5) = 8 + t2 = 12 

Approach 2: In this approach, a priority list of n tasks is generated based on the randomly determined sequence of 

tasks. Then the station determination process is done for the random priority list. In each iteration of the station 

determination process (e.g. iteration i), the task in the first position of the priority list (e.g. task πi =  j) is assigned to the 

station with the minimum station time (e.g. wi = arg{min (t(Sk))}) if all direct predecessors of task j (i.e., all tasks in the 

set Pj) have been assigned prior to this task. Otherwise, the next task in the list is selected. For example, applying this 

approach to the randomly determined priority list L1 leads to the solution (3, 1), (1, 2), (5, 3), (7, 4), (8, 5), (2, 4), (4, 3), 

(6, 1), (9, 2), (10, 4), (11, 4) as shown in Table III. 

D. Operators for neighborhood Generation  

In total 500 solutions are created using Approaches 1 and 2 as the initial population U for conducting the fitness 

landscape analysis. Then, a hill-climbing is performed on each initial solution to reach a local minimum. Four different 

operators are applied to the task list of the first solution to generate the neighboring task list. Then the station determination 

process is done for the newly generated task list. These neighborhood generation operators are as below: 
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Table III. Approach 2 For Generating A Starting Solution In U From The Randomly Determined Priority List L1 For The 

Presented Assembly Line In Fig. (2). 

Number of stations: m = 5 

priority list: L1 = [3, 9, 1, 4, 11, 5, 7, 6, 10, 8, 2] 

Iteration 
Candidate 

task 

Is candidate task 

assignable? 

Station time Candidate 

stations 

Chosen Station 

1 2 3 4 5 Number Time 

1 3 Yes 0 0 0 0 0 {1, 2, 3, 4, 5} 1 t(s1) = 0 + t3 = 5 

2 
9 No - 

1 Yes 5 0 0 0 0 {2, 3, 4, 5} 2 t(s2) = 0 + t1 = 5 

3 

9 No - 

4 No - 

11 No - 

5 Yes 5 5 0 0 0 {3, 4, 5} 3 t(s3) = 0 + t5 = 2 

4 

9 No - 

4 No - 

11 No - 

7 Yes 5 5 2 0 0 {4, 5} 4 t(s4) = 0 + t7 = 1 

5 

9 No - 

4 No - 

11 No - 

6 No - 

10 No - 

8 Yes 5 5 2 1 0 {5} 5 t(s5) = 0 + t8 = 9 

6 

9 No - 

4 No - 

11 No - 

6 No - 

10 No - 

2 Yes 5 5 2 1 9 {4} 4 t(s4) = 1 + t2 = 5 

7 
9 No - 

4 Yes 5 5 2 5 9 {3} 3 t(s3) = 2 + t4 = 11 

8 

9 No - 

11 No - 

6 Yes 5 5 11 5 9 {1, 2, 4} 1 t(s1) = 5 + t6 = 12 

9 9 Yes 12 5 11 5 9 {2, 4} 2 t(s2) = 5 + t9 = 13 

10 
11 No - 

10 Yes 12 13 11 5 9 {4} 4 t(s4) = 5 + t10 = 8 

11 11 Yes 12 13 11 8 9 {4} 4 t(s4) = 8 + t11 = 16 

 



32 Ghandi, S. et al.  / Landscape Analysis and a Hybrid Iterated Local Search (HILS) for Solving Simple Assembly…..   

(1) Exchange Operator: In this operator, two tasks of the list are selected randomly and their positions are 

exchanged. For example, assuming that the first solution of the SALBP2 is Sol1 = (3, 1), (1, 2), (5, 3), (7, 4), 

(8, 5), (2, 4), (4, 3), (6, 1), (9, 2), (10, 4), (11, 4) by the corresponding task list L1 = [3, 9, 1, 4, 11, 5, 7, 6, 10, 8, 

2]. Two tasks 2 and 4 are randomly selected and the new list after applying the Exchange operator is L2 = [3, 9, 

1, 2, 11, 5, 7, 6, 10, 8, 4]. Doing the station determination process to list L2 leads to the neighboring solution 

Sol2 = (3, 1), (1, 2), (2, 3), (5, 4), (7, 5), (8, 5), (4, 4), (6, 3), (9, 1), (10, 2), (11, 2), which is shown in Fig. (4). 

The neighborhood's size of this operator is C(n , 2)  = 𝑛(𝑛 − 1) 2⁄ . 

4 11 4 10 2 9 1 6 3 4 4 2 5 8 4 7 3 5 2 1 1 3 , Sol1 2 8 10 6 7 5 11 4 1 9 3 L1 

 

2 11 2 10 1 9 3 6 4 4 5 8 5 7 4 5 3 2 2 1 1 3 , Sol2 4 8 10 6 7 5 11 2 1 9 3 L2 

Fig 4. The Exchange Neighborhood Generation Operator. 

(2) Insertion Operator: In this operator, a task in the list is randomly selected and relocated to a different position in 

the list. Finally,  all tasks after the new position shift one position to the right. For example, for the first solution 

Sol1 = (3, 1), (1, 2), (5, 3), (7, 4), (8, 5), (2, 4), (4, 3), (6, 1), (9, 2), (10, 4), (11, 4) by the corresponding task list 

L1 = [3, 9, 1, 4, 11, 5, 7, 6, 10, 8, 2], the task 3 and the new position 6 are randomly selected and the new list after 

applying the Insertion operator is L2 = [9, 1, 4, 11, 5, 3, 7, 6, 10, 8, 2]. Doing the station determination process to 

list L2 leads to the neighboring solution Sol2 = (1, 1), (3, 2), (5, 3), (7, 4), (8, 5), (2, 4), (4, 3), (6, 1), (9, 2), (10, 

4), (11, 4) ), which is shown in Fig. (5).  The size of the neighborhood for this operator is n × (n − 1) since n 

tasks can be selected, and (n − 1) different positions can be selected as the relocation point.  

4 11 4 10 2 9 1 6 3 4 4 2 5 8 4 7 3 5 2 1 1 3 , Sol1 2 8 10 6 7 5 11 4 1 9 3 L1 

 

4 11 4 10 2 9 1 6 3 4 4 2 5 8 4 7 3 5 2 3 1 1 , Sol2 2 8 10 6 7 3 5 11 4 1 9 L2 

 

 

Fig 5. The Insertion Neighborhood Generation Operator. 

(3) Inversion Operator: This operator randomly selects two tasks in the list and reverses the position of tasks between 

them in the list. For example, for the first solution Sol1 by the corresponding task list L1, two tasks 5 and 2 are 

randomly selected and the new list after applying the Inversion operator is L2 = [3, 9, 1, 4, 11, 2, 8, 10, 6, 7, 5]. 

Doing the station determination process to list L2 leads to the neighboring solution Sol2 = (3, 1), (1, 2), (2, 3), 

(4, 4), (6, 5), (5, 3), (7, 1), (8, 2), (9, 1), (10, 3), (11, 5) ), which is shown in Fig. (6). The size of the neighborhood 

for this operator is ∏ (𝑛 − 𝑖 − 1)𝑛−2
𝑖=1 . 

4 11 4 10 2 9 1 6 3 4 4 2 5 8 4 7 3 5 2 1 1 3 , Sol1 2 8 10 6 7 5 11 4 1 9 3 L1 

 

 

 

Fig 6. The Inversion Neighborhood Generation Operator. 

 

5 11 3 10 1 9 2 8 1 7 3 5 5 6 4 4 3 2 2 1 1 3 , Sol2 5 7 6 10 8 2 11 4 1 9 3 L2 

Insertion position 

Inversion position Inversion position 
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(4) Cyclical shift Operator: In this operator, a task in the list is randomly selected and inserted into a different position 

after the position of its latest direct predecessor. For example, for the first solution Sol1 = (3, 1), (1, 2), (5, 3), 

(7, 4), (8, 5), (2, 4), (4, 3), (6, 1), (9, 2), (10, 4), (11, 4) by the corresponding task list L1 = [3, 9, 1, 4, 11, 5, 7, 6, 

10, 8, 2], the task 9 is selected randomly and the new position of this task (e.g. position 11) is selected after the 

position of the latest direct predecessor (task 8). The new list after applying the Cyclical shift operator is L2 = [3, 

1, 4, 11, 5, 7, 6, 10, 8, 2, 9]. Doing the station determination process to list L2 leads to the neighboring solution 

Sol2 = (3, 1), (1, 2), (5, 3), (7, 4), (8, 5), (2, 4), (4, 3), (6, 1), (9, 2), (10, 4), (11, 4)   which is similar to the first 

solution, that is shown in Fig. (7).  The size of the neighborhood for this operator is n × (n − 1), since n tasks can 

be selected, and at the best case (n − 1) positions (the positions after the latest direct predecessor) can be selected 

as the relocation position. In the best case, the selected task belongs to the tasks without any predecessors (i.e., 

elementary tasks). 

4 11 4 10 2 9 1 6 3 4 4 2 5 8 4 7 3 5 2 1 1 3 , Sol1 2 8 10 6 7 5 11 4 1 9 3 L1 

 

4 11 4 10 2 9 1 6 3 4 4 2 5 8 4 7 3 5 2 1 1 3 , Sol2 9 2 8 10 6 7 5 11 4 1 3 L2 

 

 

Fig 7. The Cyclical Shift Neighborhood Generation Operator. 

It should be noted that the neighborhood generation operators are sequentially used in order to avoid repeated 

neighboring solutions. Also, the connectivity property is an important trait for a neighborhood generating operator and 

guarantees that through successive application of the operators and from any given solution, a particular solution could 

be reached. It can be shown that the connectivity property for any two solutions is established by our used neighborhood 

generation operators. The number of neighbors on a list is: 

|𝑁(𝑠)| = 𝑚𝑎𝑥 {𝑛(𝑛 − 𝑛 و2/(1 × (𝑛 −   و (1
( )

2

1
1

n

i
n i

−

=
− −

𝑛 و  × (𝑛 − 1)  }   (1) 

The generated assembly lines for a SALB2 problem must be feasible and a good quality. In the following subsections, 

the quality and feasibility of a solution are described. 

1) Feasibility of a Solution  

A solution s = (π1, w1), (π2, w2), …, (πn, wn) to a SALB2 problem is feasible if the task πi (i = 2,…, n) does not 

belong to the set of all predecessors of any already–assembled task πj (j < i). Put more formally, a solution s is feasible 

if: 

∑ ∑ 𝑎𝑝𝑚𝜋𝑖و 𝜋𝑗

𝑖−1
𝑗=1

𝑛
𝑖=2 = 0          (2) 

Based on relation (2), in a feasible solution, none of the predecessors of a particular task are assembled before the 

mentioned task. Also, in this article, the Percent of UnSatisfied Precedence Constraints (PUSPC) is considered as below: 

𝑃𝑈𝑆𝑃𝐶 =
𝑈𝑆𝑃𝐶

(
𝑛
2
)

=
𝑈𝑆𝑃𝐶
𝑛(𝑛−1)

2

          (3) 

𝑈𝑆𝑃𝐶 = ∑ ∑ 𝑎𝑝𝑚𝜋𝑖,𝜋𝑗

𝑖−1
𝑗=1

𝑛
𝑖=2           (4) 

the position of the latest direct predecessor of task 9  
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in which USPC represents the ‘UnSatisfied Precedence Constraints’ and equals to the number of times that the 

precedence constraints between tasks are violated in a given solution and one of the precedences of a particular task is 

assembled after that task. Also, (
𝑛
2
) in relation (3) is the total number of precedence constraints which must be checked 

in order to determine the feasibility of a solution to the SALBP2. Therefore, dividing the number of unsatisfied precedence 

constraints by the total number of precedence constraints between tasks represents the percent of unsatisfied precedence 

constraints (PUSPC). It should be noted that for a feasible solution, USPC = 0 and respectively PUSPC = 0. 

2) Quality of a Solution 

The objective function is to minimize the Smoothness Index (SI) and cycle time (c). The smoothnessIndex which is 

expressed mathematically in (5) represents the line efficiency. The smaller SI means a closer processing time among 

workstations.  

𝑆𝐼 =  √
∑ (𝑐−𝑡(𝑆𝑘))

2𝑚
𝑘=1

𝑚
          (5) 

𝑐 = max
𝑘=1,…𝑚

𝑡(𝑆𝑘)           (6) 

In some works on SALBP2, infeasible solutions which violate precedence relations are discarded. But in this article 

to contain the feasibility of solutions in the objective function, the total fitness function is expressed as a weighted 

combination of the above objectives and is defined as:   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑠) =  (1 + 𝑊1 ∗ 𝑃𝑈𝑆𝑃𝐶)(𝑊2 ∗ 𝑆𝐼 + 𝑊3 ∗ 𝑐).      (7) 

The first term in (7) minimizes the total number of unsatisfied precedence constraints among all checked precedence 

constraints for solution s, and the second term minimizes the total weighted sum of smoothness index and cycle time in 

the assembly line. In order to guide the search toward feasible solutions, the values of the factors are set as W1 = 5, 

W2 = 1, and W3 = 2. 

F. Landscape Properties 

In order to describe the landscape properties of the SALBP2, two types of statistical measures are used and calculated 

for 44 test problems in this paper. These types are defined as below: 

 (1) Distribution measures present the spatial situation of local solutions in the objective space and over the problem 

search space. These measures contain: 

- The scatter of a population of solutions is represented by the Distribution measure. a population P has an average 

distance as: 

𝑑𝑚𝑚(𝑃) =
∑ ∑ 𝑑𝑖𝑠𝑡(𝑠,𝑡)𝑡∈𝑃,𝑡≠𝑠𝑠∈𝑃

|𝑃|⋅(|𝑃|−1)
           (8) 

where dist(s, t) is the Hamming distance of two solutions and || computes the size of population P. Also, a 

population P has an average normalized distance as: 

 𝐷𝑚𝑚(𝑃) =
𝑑𝑚𝑚(𝑃)

𝑑𝑖𝑎𝑚(𝑃)
            (9) 

where diam(P) = max dist(s, t); s, t  P represents the population's diameter. The number of different values of 

solutions s and t is used to calculate the distance dist(s, t). Also, the maximum distance between two solutions is        

diam(P) = 2n because the solution encoding has 2n cells. A small Dmm shows that solutions are concentrated at a small 
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area.  

The variation of the average difference between Dmm of population U and population O is as: 

𝛥𝐷𝑚𝑚 =
𝐷𝑚𝑚(𝑈)−𝐷𝑚𝑚(𝑂)

𝐷𝑚𝑚(𝑈)
                                    (10) 

- Entropy measures the scatter of the solutions and is an indicator of the diversity of solutions in the landscape of the 

problem. A novel entropy formulation for the SALBP2 is introduced in this article as follows: 

𝑒𝑛𝑡(𝑃) =
∑ ∑ ∑ 𝑁𝑖𝑗𝑑⋅(|𝑃|−𝑁𝑖𝑗𝑑)𝑚

𝑑=1
𝑛
𝑗=1

𝑛
𝑖=1

𝑚𝑛2⋅(|𝑃|−1)
                     (11) 

where Nijd represents the number of solutions in P in which task i is assembled in the assembly workstation 

k and is in the position j of the sequence, or mathematically, πj = i and wj = m. When Nijd = |P| we have 

ent(P) = 0. On the other hand, when Nijd =1 we have ent(P) = 1. The variation of entropy between populations 

U and O is defined as: 

𝛥𝑒𝑛𝑡 =
𝑒𝑛𝑡(𝑈)−𝑒𝑛𝑡(𝑂)

𝑒𝑛𝑡(𝑈)
  ≤   1                    (12) 

According to the measures of Dmm
 and ent

, three main topologies of local optima there are as shown in Fig. (8). 

For a ‘Uniform’ landscape, when a local search is applied to an initial solution, a nearby local optimum would rapidly be 

found. Since P–metaheuristics cover various solution clusters that are scattered across the search space, they are better 

choices In a ‘Multi–massif’ landscape. Finally, in a ‘One–Massif’ (or ‘Massif Central’) landscape, S–metaheuristics are 

more suitable than P–metaheuristics as they would waste less time searching relatively sparse areas of the space. 

𝛥𝑒𝑛𝑡   Low changs         High changs          High changs 

𝛥𝐷𝑚𝑚  Low changs         Low changs               High changs 

 

 

 

 

 

 

Uniform          Multi-massif      One-massif 

Fig 8. The Topology Of Local Optima In The Landscape According To The Entropy Variation And The Distribution 

Variation(Talbi, 2009).      

- The difference between the fitness values of best and worst solutions in the population P is defined by the amplitude 

indicator Amp(P) as shown in (13). For a partly smooth search space, the value of Amp(P) is small. 

𝐴𝑚𝑝(𝑃) =
|𝑃|⋅(𝑚𝑎𝑥𝑠∈𝑃 𝑓(𝑠)−𝑚𝑖𝑛𝑠∈𝑃 𝑓(𝑠))

∑ 𝑓(𝑠)𝑠∈𝑃
  ≥   0                  (13) 

Landscape 
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The variation of amplitude between populations U and O is defined as:  

𝛥𝐴𝑚𝑝 =
𝐴𝑚𝑝(𝑈)−𝐴𝑚𝑝(𝑂)

𝐴𝑚𝑝(𝑈)
  ≤   1                    (14) 

Also ‘Gap’ of the population O of locally optimal solutions is the average distance between this population and the 

best-found solution (s*) as defined below: 

𝐺𝑎𝑝(𝑂)  = 
∑ (𝑓(𝑠)−𝑓(𝑠∗))𝑠∈𝑂

|𝑂|⋅𝑓(𝑠∗)
                                             (15) 

For a problem which is easy to solve, the Gap of the mentioned problem is small.  

(2) Correlation measures analyze the correlation between the relative distance of the solutions and their fitness 

functions. The result of this analysis guides us to measure the ruggedness of the search space. These measures contain:  

- The ruggedness of the landscape is defined by the Average length of the walks of a population P. The length of the 

walks between a final locally optimum solution and an initial random solution is long in a smooth landscape. On the other 

hand, in an unsmooth landscape the length of walks is shorter. For the population O, the average length of the walks is 

defined as: 

𝐿𝑚𝑚(𝑂) =
∑ 𝑙(𝑠)𝑠∈𝑂

|𝑂|
                     (16) 

where l(s) is the number of times the neighborhood operators are applied to an initial solution to reach to 

the final local optimal solution s. 

- Autocorrelation function ρ(dH) investigates the effect of the distance between solutions on their fitness 

variation. For two neighboring solutions with different fitness values, we have |ρ(1)| ≈ 0, and so the landscape 

is unsmooth. For n pairs of solutions with distance dH, the autocorrelation function is as: 

−1   ≤   𝜌(𝑑𝐻) =
∑ (𝑓(𝑠)−𝑓̄)(𝑓(𝑡)−𝑓̄)𝑠,𝑡∈𝑆×𝑆,𝑑𝑖𝑠𝑡(𝑠,𝑡)=𝑑𝐻

𝑛,𝜎𝑓
2   ≤   1                (17) 

- Fitness Distance Correlation (FDC) analysis provides information about the correlation of the distance of a solution 

to the best–known or globally optimal solution and its fitness. At first, a population of n solutions are generated randomly 

and then the set of fitness function values F = {f1, f2, …, fn} and the associated set of distances to the best–known solution 

D = {dH1, dH2, …, dHn} are computed. Afterward, the coefficient r (i.e., the fitness distance correlation) is computed as: 

−1   ≤   𝑟 =
1

𝑛
∑ (𝑓𝑖−𝑓)𝑛

𝑖=1 (𝑑𝐻𝑖−𝑑𝐻)

𝜎𝑓⋅𝜎𝑑𝐻

  ≤   1                   (18) 

where  σdH and σf are the standard deviation of the distance and fitness measures. For an ‘misleading’ problem we 

have r ≈ −1. On the contrary, for an easy-to-solve problem, we have r ≈ 1. The hardest situation arises when we have 

| r | ≈ 0. For more information about the material in this subsection, one can refer to (Ghandi and Masehian, 2015). 

G. Results of Landscape Analysis 

Since the structure of a problem instance affects the fitness landscape of that problem, we implemented and used 14 

different SALB2 test problems and 44 scenarios of the general SALB2 problem with various stations that are usually 

studied for SALBP2. For each scenario, the hill-climbing approach was applied 500 times to reach locally optimal 

solutions (in total, 44 * 500 = 22000 runs). The results of calculating the statistical measures for each scenario are reported 
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in Table IV. The average values are shown below the values of that test problem in Table IV. Also, the average values of 

the used statistical measures in all scenarios are provided in the last row of this table. The critical analyses on the SALBP2 

landscape are provided in the following subsections. 

1) Distribution Measures 

The small values of ∆ent = 0.1547 and ∆Dmm = 0.0918 imply that the locally optima are uniformly scattered over 

the search space. Also, the large value of ∆Amp (= 0.8146) shows that the quality of locally optimal solutions is 

much better than initial solutions. Also the landscape is nearly plain. Also, the relatively small average amount 

of gap between the global solutions and the obtained local optimal solutions (nearly 5.95%) indicates that the 

neighborhood generation operators are suitable operators for SALBP2.  

2) Correlation Measures 

The relatively small amount of Lmm(O) for many test problems of the SALBP2 (= 6.45 on average) indicates that 

this problem has a rugged landscape and therefore, a local optimum is encountered within a few search iterations. 

However, as Table IV indicates, the value of Lmm(O) depends on the test problem and the considered m and c. 

In the studied scenarios, the ‘Jaeschke test problem’ has shorter walks compared to the other test problems which 

indicate that this test problem has a more rugged landscape than the others. Also, we calculate the autocorrelation 

measure for three Hamming distances of 2, 4, and 6. The results implied that on average, ρ(2), ρ(4), and ρ(6) are 

almost equal. This confirms that the problem’s landscape is rugged because the variation of fitness between 2–

neighbors, 4–neighbors, and 6–neighbors are on average equal to the change between any two solutions. Based 

on the amount of the correlation coefficient r = 0.7839, the problem is easy to solve because the correlation 

between the distance of the solutions to the best-known solution and their fitness is strong. 

Table IV. The Statistical Measures For 44 Salbp2 Instances. 

Test Problem m 
Distribution measures  Correlation measures 

Dmm(O) ∆Dmm ent(O) ∆ent Amp(O) ∆Amp Gap(O)  Lmm(O) ρ(2) ρ(4) ρ(6) r 

Bowman 

3 0.1793 0.4612 2.8785 0.5675 0.1219 0.9385 0.0103 

 

3.4240 0.5000 -0.3227 -0.1667 0.7958 

4 0.2382 0.3038 3.3966 0.4855 0.2927 0.8662 0.0279 4.5380 -0.1667 -0.3963 0.4820 0.8167 

5 0.2804 0.2127 4.0287 0.4013 0.3592 0.8384 0.0385 5.1240 -0.5000 0.3602 -0.3141 0.8391 

Average 0.2326 0.3259 3.4346 0.4848 0.2579 0.8810 0.0256  4.3620 -0.0556 -0.1196 0.0004 0.8172 

Buxey 

3 0.3807 0.0460 0.5450 0.0551 0.1410 0.8961 0.0262 

 

6.5260 0.5000 0.4962 0.5000 0.6893 

7 0.4263 0.0186 0.5644 0.0353 0.2908 0.7989 0.0516 7.9060 0.4993 0.4994 -0.3236 0.8828 

8 0.428 0.0172 0.5641 0.036 0.3428 0.7652 0.0699 7.6380 0.4999 -0.1354 0.3388 0.8840 

9 0.4313 0.0272 0.5643 0.0387 0.3721 0.7245 0.0733 7.4700 0.5000 -0.4618 0.5000 0.8891 

Average 0.4166 0.0273 0.5595 0.0413 0.2867 0.7962 0.0553  7.3850 0.4998 0.0996 0.2538 0.8363 

Gunther 

3 0.3957 0.0212 0.3788 0.049 0.1596 0.8872 0.0570 

 

7.5560 0.5000 0.4232 0.5000 0.5473 

6 0.4224 0.0272 0.3856 0.0378 0.3073 0.7852 0.0761 8.6280 0.5000 -0.4398 0.5000 0.8032 

7 0.4270 0.0300 0.3856 0.0399 0.3739 0.7656 0.0835 8.5320 0.5000 -0.0538 0.4995 0.8275 

8 0.4308 0.0247 0.3852 0.0403 0.4014 0.7201 0.0894 8.7060 0.5000 0.4986 -0.4998 0.8733 

Average 0.4189 0.0258 0.3838 0.0417 0.3105 0.7895 0.0765  8.3555 0.5000 0.1070 0.2499 0.7628 

Hahn 

3 0.3576 0.143 0.1555 0.0913 0.0994 0.9376 0.0105 

 

8.2940 0.5000 0.4954 0.5000 0.8149 

5 0.3878 0.0881 0.1621 0.0661 0.2964 0.8282 0.0154 7.7540 0.5000 0.4996 0.4279 0.9039 

6 0.3932 0.0896 0.1638 0.0588 0.3582 0.777 0.0095 7.2640 0.4986 0.4929 0.4959 0.9171 

Average 0.3795 0.0969 0.1605 0.0721 0.2495 0.8476 0.0118  7.7707 0.4995 0.4960 0.4746 0.8786 

Jackson 

3 0.3407 0.0528 3.1302 0.1718 0.3142 0.8562 0.0066 

 

3.3080 0.5000 0.5000 -0.1286 0.7065 

4 0.3539 0.0629 3.1586 0.1762 0.1631 0.9082 0.0228 4.8200 0.4800 -0.1667 -0.2331 0.7823 

5 0.3682 0.0376 3.1497 0.1852 0.4202 0.7839 0.0591 5.4560 0.5000 -0.0942 0.4560 0.8261 
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Test Problem m 
Distribution measures  Correlation measures 

Dmm(O) ∆Dmm ent(O) ∆ent Amp(O) ∆Amp Gap(O)  Lmm(O) ρ(2) ρ(4) ρ(6) r 
Average 0.3543 0.0511 3.1362 0.1777 0.2992 0.8494 0.0295  4.5280 0.4933 0.0797 0.0314 0.7716 

Jaeschke 

3 0.2584 0.2069 3.2035 0.3919 0.4938 0.7943 0.0538 

 

3.6540 0.4962 0.5000 -0.2457 0.8174 

4 0.2316 0.3427 2.6251 0.5075 0.5470 0.7619 0.003 3.4680 0.5000 -0.1450 -0.1461 0.8193 

5 0.2638 0.27 2.9314 0.4524 0.5848 0.7465 0.0480 4.2740 -0.1667 -0.1737 -0.4451 0.8715 

6 0.2875 0.1873 3.0493 0.4229 0.3452 0.8548 0.0002 2.5200 -0.1667 -0.1667 -0.0256 0.8913 

Average 0.2603 0.2517 2.9523 0.4437 0.4927 0.7894 0.0263  3.4790 0.1657 0.0037 -0.2081 0.8499 

Kilbridge 

3 0.4002 0.0253 0.2348 0.0316 0.0519 0.957 0.0136 
 

6.3220 0.4800 0.5000 0.5000 0.7078 

4 0.4088 0.0488 0.2374 0.0237 0.1764 0.8595 0.0381 8.0060 0.5000 0.5000 0.4296 0.5263 

5 0.4208 0.0266 0.2384 0.0223 0.2928 0.7713 0.0635 

 

8.2460 0.5000 0.5000 0.3389 0.7503 

6 0.428 0.0274 0.2389 0.0221 0.3885 0.7099 0.1089 8.7740 0.4999 0.4388 0.4984 0.7262 

7 0.433 0.0263 0.2393 0.0214 0.5012 0.6658 0.1471 9.3600 0.5000 0.5000 0.5000 0.7740 

Average 0.4182 0.0308 0.2377 0.0242 0.2822 0.7927 0.0742  8.1416 0.4959 0.4878 0.4534 0.6969 

Lutz1 

3 0.3528 0.1041 0.4248 0.0961 0.3139 0.8073 0.0150 

 

7.8540 0.5000 0.4935 0.3944 0.7561 

4 0.3609 0.1006 0.4328 0.0809 0.1437 0.9365 0.0227 8.1800 0.5000 0.4991 -0.3491 0.8401 

8 0.3862 0.0745 0.4384 0.068 0.229 0.8748 0.0949 8.5360 0.4800 0.4994 0.4850 0.9087 

Average 0.3666 0.0931 0.432 0.0816 0.6566 0.8728 0.0442  8.1900 0.4933 0.4973 0.1768 0.8349 

Mansoor 

3 0.3389 0.0518 3.3796 0.1431 0.3627 0.8264 0.0771 

 

4.8820 0.4800 0.4900 -0.1667 0.7002 

4 0.3470 0.0870 3.3792 0.1275 0.4581 0.7429 0.0843 6.4820 0.5000 -0.1667 0.0079 0.7642 

5 0.3199 0.1714 3.0866 0.2068 0.3964 0.7778 0.0020 4.3380 0.5000 0.4800 0.5000 0.7733 

Average 0.3353 0.1034 3.2818 0.1491 0.4057 0.7824 0.0545  5.2340 0.4933 0.2678 0.1085 0.7459 

Mertens 

3 0.3136 0.0597 6.3179 0.2914 0.4967 0.7530 0.0870 

 

5.3780 0.4978 0.5000 -0.0746 0.7464 

4 0.3132 0.1452 6.2220 0.3241 0.7894 0.6667 0.0301 4.6800 -0.2012 0.4998 -0.5000 0.7673 

5 0.3288 0.0738 6.2193 0.3132 0.4506 0.8028 0.0990 5.0900 0.5000 0.2984 -0.4800 0.8107 

Average 0.3185 0.0829 6.2198 0.3095 0.5789 0.7408 0.0720  5.0493 0.2655 0.4327 -0.3515 0.7748 

Mitchell 

3 0.3503 0.0712 0.9258 0.1294 0.2775 0.8365 0.1627 

 

6.1420 0.5000 0.4618 0.4141 0.7823 

4 0.3619 0.0862 0.9360 0.1241 0.3860 0.7704 0.1672 6.2680 -0.1827 -0.5000 -0.0183 0.6532 

5 0.3698 0.0772 0.9335 0.1227 0.4106 0.7642 0.1484 6.1400 0.5000 0.5000 0.3087 0.8468 

Average 0.3607 0.0782 0.9318 0.1254 0.3580 0.7904 0.1494  6.1733 0.2724 0.1539 0.2348 0.7608 

Roszieg 
3 0.3631 0.0464 0.6637 0.1210 0.1900 0.8863 0.0288 

 
5.1380 0.5000 -0.4600 0.3290 0.7549 

4 0.3751 0.0631 0.6545 0.1358 0.2466 0.8467 0.0433 5.5880 -0.4956 -0.1873 0.3308 0.8146 

Average 0.3691 0.0548 0.6591 0.1284 0.2183 0.8665 0.0361  5.3630 0.0022 -0.3237 0.3299 0.7832 

Sawyer 

 

3 0.3920 0.0276 0.5243 0.0330 0.1470 0.9066 0.0417 

 

7.8360 0.5000 0.4923 0.3196 0.6029 

7 0.4313 0.0178 0.5334 0.0277 0.3377 0.7749 0.1552 8.3340 0.5000 0.4996 0.5000 0.7899 

8 0.4333 0.0073 0.5328 0.0270 0.3646 0.7430 0.1688 8.1060 -0.0340 0.5000 0.4539 0.8558 

Average 0.4189 0.0176 0.5302 0.0292 0.2731 0.8082 0.1219  8.0920 0.3220 0.4973 0.4245 0.7495 

Warnecke  3 0.4092 0.0108 0.1407 0.0333 0.0925 0.9291 0.0147  7.1740 0.5000 0.4917 0.4335 0.6437 

Average 0.4020 0.0108 0.1407 0.0333 0.0925 0.9291 0.0147  7.1740 0.5000 0.4917 0.4335 0.6437 

Total 0.3618 0.0918 1.6502 0.1547 0.3233 0.8146 0.0595  6.4474 0.3636 0.2282 0.1866 0.7839 

III. HYBRID ITERATIVE LOCAL SEARCH (HILS) FOR THE SALBP2  

The analysis of the search space of the SALBP2 problem showed that the local optima are uniformly distributed in 

the search space and the landscape of this problem is a rugged plain. Therefore, a single solution based metaheuristic 

algorithm is suitable for this problem. Also due to the small average gap (about 5.95%) and the relatively large average 

correlation coefficient (= 0.7839), the problem is easy to solve and therefore a simple single solution based metaheuristic 

is suitable to solve this problem. The Iterative Local Search (ILS) algorithm which has been successfully applied to solve 

optimization problems like the constrained clustering problem (González-Almagro et al., 2020), the vehicle routing 

problem (Penna et al., 2016; Belver et al., 2017; Wang et al., 2020) and the job shop scheduling problem (Nagata and 

Ono, 2018) has such requirements. Based on the powerful exploration capabilities of the ILS and its fine results in those 
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domains, we selected it and used a set of 15 ‘priority rule-based constructive procedures’ with the same probability of 

selection in order to solve the SALBP2. This newly generated algorithm which is called Hybrid Iterative Local Search 

(HILS) uses one of the priority rule-based constructive procedures to generate the initial solution and then uses local 

search in each iteration for discovering a local optimum. Also in the iterative phase, the Inversion operator is used to 

perturb the last local optimum and then a new local search is conducted from this perturbed solution. Thus, applying the 

constructive procedures leads to the exploitation of good solutions, and continually and adaptively applying perturbations 

by the Inversion operator leads to the exploration of new search areas.  

In the following, the assumptions on the nature of the SALPB2 model and its solution approach are presented. The 

SALBP2 is one of the most–studied assembly line balancing problems in the literature. The aim of the SALBP2 is to 

minimize cycle time (c) due to a predefined number of stations (m). The following main characteristics are considered for 

this problem: 

• One homogeneous product is Mass– produced; 

• The production process of the product is known; 

• The number of workstations (m) is fixed; 

• The assembly times of tasks are integral and deterministic; 

• The only assignment restrictions are the precedence constraints; 

• The line layout is serial; 

• The machines and workers of all stations are equal; 

The main procedure and the Flowchart of the HILS method are presented in Fig. (9) and (10). 

A. The HILS subroutines 

The HILS algorithm requires two subroutines:  

(1) Initial_Solution() to generate a starting point (sequence) for the search. We use a set of 15 ‘priority 

rule-based constructive procedures with the same probability of selection for constructing the initial 

solution for the HILS algorithm as shown in Table V. In all procedures, the task times or the precedence 

relations between tasks or a combination of them have been used for computing the priority values for 

different tasks. Then, a priority list is created based on the sorted priority values of tasks. Finally, the 

station determination process is done for the generated priority list. By using this process, a ‘more 

feasible’ initial solution is created. 

(2) Local_Search() to improve the running solution by exploiting a part of the solution's neighborhood. A 

hill-climbing approach is utilized to an initial solution s0 to move towards a local optimum s* in the 

proposed HILS algorithm. In each iteration of the hill-climbing approach for obtaining a new solution, 

a neighborhood operator (Exchange, Insertion, or Cyclical shift operators with equal probability of 

selection) is applied to the running solution s. The neighboring solution is to replace the running 

solution in the case of improvement. If after Emax = 20 attempts no improvement was applied, the 
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running solution is considered as a local optimum. In this situation, the running optimum s* is perturbed 

by applying the Inversion operator in order to find a neighboring solution. In the next iteration of the 

local search approach, this perturbed local optimum is considered the starting point. The algorithm 

terminates when the optimal solution to the test problem is found or the number of iterations reaches 

the Maxiter. Fig. (11) shows the pseudocode of the executed local search approach (Algorithm 2). 

 

Fig 9. The Procedure Of The Hils Algorithm For The Salbp2. 

 

 

Algorithm 1 (Main). Hybrid Iterative_Local_Search (APM, n, ATT, c*, m, Emax, maxiter) 

Inputs: APM = The Assembly Precedence Matrix 

 n = Number of assembly tasks  

 ATT = The Assembly Task Times 

 c* = Optimal Cycle Time of the assembly line  

 m = number of workstations 

 Emax = Maximum number of attempts within a local search iteration 

 maxiter = The maximum allowed number of iterations of the HILS algorithm 

Output: sbest = Best solution found 

 
1. iter ← 0  // Initializes counter iter for enumerating the number of elapsed iterations 

2. s0 ← Initial_Solution (APM, n, ATT, m) // Generates the initial solution 

3. sbest ← s0               // Records the best founded solution  

4. fbest ← f(s0)              // Records the best objective value obtained so far 

5. s∗ ← Local_Search (s0, Emax, , APM, ATT, m)  // Applies a hill-climbing local search 

6. slo ← s*                  // Records the last founded local optimum 

7. While ((iter < maxiter) and (cbest > c*)) 

8. sp ← Inversion_Operator(s∗)          // Perturbs s* by applying Inversion Operator 

9. iter = iter + 1 

10. s∗ ← Local_Search(sp, Emax)         // Applies a local search on the perturbed solution sp 

11. slo ← s*            // Updates the last local optimum 

12. If f(s*) < fbest Then 

13. sbest ← s*          // Records the best founded solution  

14. fbest ← f(s*)          // Calculated in (7) 

15. cbest← c         // Records the cycle time of the best found solution  

16. End 

17. End 
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Fig 10. The Flowchart Of The Proposed HILS Algorithm For The SALBP2. 
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Table V. Priority Values For Generating The Initial Solution Of The Proposed Hils Algorithm. 

Priority value :Definition / Ascending (A) or 
Descending (D) 

Generated priority list and 
 its corresponding solution for presented assembly in Figure 2 

j : Task number / A 

L =  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] 

Sol = (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 5), (7, 2), (8, 1), (9, 

2), (10, 3), (11, 3) 

tj : Processing time / D 

L = [4, 8, 9, 11, 6, 1, 3, 2, 10, 5, 7] 

Sol = (1, 1), (3, 2), (2, 3), (4, 4), (6, 5), (5, 3), (7, 1), (8, 2), (9, 

1), (10, 3), (11, 5) 

tj : Processing time / A 

L =  [7, 5, 10, 2, 3, 1, 6, 11, 9, 8, 4] 

Sol = (3, 1), (5, 2), (1, 3), (7, 4), (2, 5), (4, 4), (6, 2), (8, 5), (9, 

1), (10, 3), (11, 3) 

|Fj*| : Number of all followers / D 

L = [1, 3, 2, 5, 4, 7, 6, 8, 9, 10, 11] 

Sol = (1, 1), (3, 2), (2, 3), (5, 4), (4, 5), (7, 4), (6, 4), (8, 3), (9, 

1), (10, 2), (11, 2) 

|Fj| : Number of immediate followers / D  

L =  [1, 8, 2, 3, 4, 5, 6, 7, 9, 10, 11] 

Sol = (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 5), (7, 2), (8, 1), (9, 

2), (10, 3), (11, 3) 

|Pj| : Number of immediate predecessors / D  

L = [7, 9, 10, 2, 4, 5, 6, 8, 11, 1, 3] 
Sol = (1, 1), (3, 2), (2, 3), (4, 4), (5, 5), (7, 5), (6, 5), (8, 4), (9, 

1), (10, 2), (11, 2) 

pwj = tj + ∑ 𝑡ℎℎ𝜖𝐹𝑗
∗  : Positional weight / D 

 

L = [1, 2, 3, 4, 5, 7, 8, 6, 9, 10, 11] 

Sol = (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (7, 5), (8, 5), (6, 2), (9, 

1), (10, 3), (11, 3) 

pwj* = tj + ∑ 𝑝𝑤ℎ
∗

ℎ𝜖𝐹𝑗
∗  : Cumulated positional weight 

/ D 

L = [1, 3, 2, 5, 4, 7, 8, 6, 9, 10, 11] 

Sol = (1, 1), (3, 2), (2, 3), (5, 4), (4, 5), (7, 4), (8, 4), (6, 3), (9, 

1), (10, 2), (11, 2) 

apwj = pwj*/|Fj*| : Average positional weight / D 

L = [11, 1, 3, 2, 5, 4, 7, 8, 6, 9, 10] 

Sol = (1, 1), (3, 2), (2, 3), (5, 4), (4, 5), (7, 4), (8, 4), (6, 3), (9, 

1), (10, 2), (11, 2) 

ubj = n + 1 − ⌈𝑝𝑤𝑗 𝑐⁄ ⌉ : Upper bound / A 

L = [1, 2, 3, 4, 5, 7, 8, 6, 9, 10, 11] 

Sol = (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (7, 5), (8, 5), (6, 2), (9, 

1), (10, 3), (11, 3) 

lbj = ⌈(𝑡𝑗 + ∑ 𝑡ℎℎ𝜖𝑃𝑗
∗ ) 𝑐⁄ ⌉ : Lower bound / A 

L = [1, 2, 3, 5, 7, 4, 6, 8, 9, 10, 11] 

Sol = (1, 1), (2, 2), (3, 3), (5, 4), (7, 5), (4, 5), (6, 4), (8, 2), (9, 

1), (10, 3), (11, 3) 

ub_nfj = ubj/|Fj*| : Upper bound / the number of all 

followers / A 

L = [1, 3, 2, 5, 4, 7, 8, 6, 9, 10, 11] 

Sol = (1, 1), (3, 2), (2, 3), (5, 4), (4, 5), (7, 4), (8, 4), (6, 3), (9, 

1), (10, 2), (11, 2) 

t_ubj = tj / ubj : Processing time divided by the upper 

bound / D 

L = [4, 8, 9, 1, 6, 11, 3, 2, 10, 5, 7] 

Sol = (1, 1), (3, 2), (2, 3), (4, 4), (6, 5), (5, 3), (7, 1), (8, 2), (9, 

1), (10, 3), (11, 5) 

slkj = ubj - lbj  : Slack / A 

L = [9, 10, 11, 1, 8, 2, 4, 6, 3, 5, 7] 

Sol = (1, 1), (2, 2), (4, 3), (6, 4), (3, 5), (5, 2), (7, 1), (8, 5), (9, 

1), (10, 2), (11, 4) 

nf_slkj = |Fj*|/slkj : Number of all followers / the 

task slack / A 

L = [11, 10, 6, 7, 8, 4, 9, 5, 2, 3, 1] 

Sol = (3, 1), (2, 2), (5, 3), (7, 4), (8, 5), (2, 4), (4, 3), (6, 1), (9, 

2), (10, 4), (11, 4) 
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Fig 11. The Applied Local Search Procedure Executed In Each Iteration Of The Main HILS Algorithm. 

B. Adjusting the parameters of the HILS algorithm  

Since the output of metaheuristic algorithms is strongly dependent on their input values, in this paper the Taguchi 

method is used to adjust the parameters of the HILS algorithm. Five adjustable parameters in this algorithm are the number 

of iterations of the HILS algorithm (Maxiter), the number of non-improving iterations with no improvement of the hill-

climbing (Emax), the probability of selecting the Exchange operator (PE), the Probability of selecting the Cyclical Shift 

operator (PCS) and the probability of selecting the Insertion neighborhood generation operator (PIs). It should be noted 

that since the total probability of selecting each of the three Exchange, Cyclical Shift, or Insertion operators for 

neighborhood generation is equal to 1, so by determining the optimal value of two of these parameters, the optimal value 

for the other parameter is determined automatically. Therefore, among these three parameters, only two parameters PE 

and PCS are considered and as a result, the total number of adjustable parameters is reduced from five to four. For each of 

these four parameters, 3 levels of different values were defined based on preliminary experiments and the proposed ILS 

in (González-Almagro et al., 2020; Penna et al., 2016) (Table VI).  

Table VI. The Adjustable Parameters Of The Proposed Hils Algorithm And Their Levels. 

Parameter Description Levels 

Maxiter Number of iterations of the HILS algorithm 

5 × n 

8 × n 

10 × n 

Emax Number of iterations with no improvement of the hill climbing 

20 

25 

30 

PE Probability of selecting the Exchange neighborhood generation operator 

0.22 

0.33 

0.44 

PCS Probability of selecting the Cyclical Shift neighborhood generation operator 

0.22 

0.33 

0.44 

 

 

Algorithm 2: Local_Search(s, Emax, APM, ATT, m) 

Output: s* = A local optimum solution  

 
1. ni = 0    //Initialize counter ni of enumerating non-improving iterations 

2. While ni < Emax 

3. Generating a random sʹ N(s)     // Generate a neighbor by randomly applying a neighborhood operator  

4. If f(s′) < f(s) Then  // Calculated in (7) 

5. s ← s′   // Replace s with the better neighbor s′ 

6. ni ← 0   // Reset ni 

7. Else 

8. ni ← ni + 1 

9. End 

10. End 

11. s* ← s′    // Record s* as the local optimum 
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Therefore, the number of created states is 34 or 81 states. For finding the best values of these parameters, these states 

have been reduced to 9 states as shown in Table VII by the Taguchi method and after executing these proposed states, the 

objective function values (relation (7)) were given to the Minitab software.  

Table VII. The Best-Suggested States By The Taguchi Method Among 81 States. 

State 
Parameter 

9 8 7 6 5 4 3 2 1 

10 × n 10 × n 10 × n 8 × n 8 × n 8 × n 5 × n 5 × n 5 × n Maxiter 

30 25 20 30 25 20 30 25 20 Emax 

0.33 0.22 0.44 0.22 0.44 0.33 0.44 0.33 0.22 PE 

0.22 0.44 0.33 0.33 0.22 0.44 0.44 0.33 0.22 PCS 

Finally, after analyzing this data based on the signal-to-noise ratio, the best state among 81 states was announced by 

this software as shown in Fig. (12). In the analysis of the signal-to-noise ratio, the best and strongest conditions are 

determined using the change in results. This ratio shows the scatter around a defined value. The higher amount of this 

ratio reveals the lower amount of the dispersion and, therefore the more importance of the effect of the relevant parameter. 

Based on the main effects plot in Fig. (12), the best parameters values of the proposed HILS algorithm are Maxiter = 10 

× n, Emax = 20, PE = 0.33 and PCS = 0.33 respectively. Also, since PE + PCS + PIs = 1, according to the best values of PE 

and PCS, the best value of PIs is equal to 0.33. 

 

Fig 12. The Main Effects Plot For The Signal To Noise Ratio Provided By The Taguchi Method. 

In order to perform the presented HILS algorithm, in the worst case, it must be run for maxiter iterations. Also, in 

each iteration of this algorithm, the local search method is applied and the worst-case number of attempts within a local 

search iteration equals to Emax. Therefore, in the worst case, the   time complexity of the presented HILS algorithm is O 

(maxiter * Emax). Of course, whenever the optimal solution to the test problem is found, the algorithm is stopped and the 

optimal solution is reported. 

IV. EXPERIMENTAL RESULTS 

The implementing results of the HILS algorithm for SALBP2 are presented in this section. The program was coded 

in Matlab™ and run on an Intel™ Core-i7 1.8 GHz CPU with 8 GB of RAM.  The performance of the HILS algorithm 
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was compared to the performance of several existing population-based algorithms in the SALBP2 literature which have 

the same situation as the considered problem in this paper. The compared population-based algorithms are: 

(1) MODE1: A Multi-Objective Differential Evolution (DE) algorithm with fixed weights in the objective 

function proposed in (Nearchou, 2008),  

(2) MODE2: A Multi-Objective DE algorithm with random weights in the objective function (Nearchou, 

2008), 

(3) MODE3: A Multi-Objective DE algorithm with adaptive weights in the objective function (Nearchou, 

2008). 

(4) MOGA1: A Pareto-niched Genetic Algorithm (GA) used in (Bautista and Pereira, 2007) for solving 

Multi-Objective SALBP2. 

(5) MOGA2: A Pareto weight-sum GA developed to address Multi-Objective Flow Shop Scheduling 

Problem (FSSP) and is extended and applied on SALBP2 in (Bautista and Pereira, 2007). 

(6) SPT-SWAP: A variable neighborhood strategy adaptive search (VaNSAS) method with the shortest 

processing time-swap (SPT-SWAP) neighborhood strategy (Pitakaso et al., 2021). This method is 

extended and applied to SALBP2 in this article. 

The following performance metrics are typically used in the SALBP2 literature and were considered for comparing 

the abovementioned algorithms: 

1- Minimizing the cycle time of the best-found solution attained by an algorithm; c in Eq. (4). 

2- Minimizing the mean relative deviation in percent (mrd%) from the best-known cycle times; mrd% = 

100 × ((c − c*) / c*), in witch c* is the existing best-known cycle time, and c the cycle time of the best 

solution generated by a specific algorithm. 

3- Minimizing the average Smoothness Index of the found optimal solution by an algorithm; SI in Eq. (3). 

4- Minimizing the average Balance Delay time of the founded optimal solution by a considered 

algorithm; 𝐵𝐷 = ∑ (𝑚
𝐾=1 𝑐 − 𝑡(𝑆𝑘))/𝑚. 

For comparisons, we solved 5 difficult test problems of the SALBP2 based on the precedence graph by the HILS 

method and compared the results with the obtained results by the MODE1, MODE2, MODE3 (Nearchou, 2008), MOGA1, 

MOGA2 (Bautista and Pereira, 2007) and SPT-SWAP (Pitakaso et al., 2021) population based metaheuristics, as showed 

in Tables VIII and IX. Because of the stochastic behavior of the methods, every test instance was solved by each method 

10 times and the average solution quality was reported. On the other hand, each method was run over (8 + 8 + 10 + 9 + 23) 

× 10 = 580 test instances. The results in Table VIII present the runs with the objective given by F1 = w1 × c + w2 × SI, and 

the presented results in Table IX show the runs with the objective given by F2 = w1 × c + w2 × BD.  The proposed self-

adapted method in (Nearchou, 2008) is used for estimation of the weights 𝑤1 =  λ × 𝑒−𝑑 + 𝜇 and 𝑤2 = 1 − 𝑤1 in which 

λ = μ = 0.5 and d = c − c*. The second and third columns of these Tables represent the number of the included tasks in the 

precedence graphs (i.e., n) and the number of test instances of the considered test problem (i.e., in#). The fourth column 

show two considered comparison metrics (i.e., mrd% and SI in Table VIII and mrd% and BD in Table IX). Also, the last 

seven columns contain the amount of these metrics for the best solution attained in 10 runs of every method for all 

instances of a specific test problem. Note that the best values of these performance metrics are shown in bold in Tables 
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VIII and IX. 

Based on the results of Table VIII, the HILS method has the best SI metric in all test problems thanks to its 

neighborhood generation operators. Also, it reaches the best amount of the mrd% metric in all except the Sawyer test 

problem for which the SPT-SWAP approach has achieved a better value. It should be noted that the difference between 

the obtained values for this metric by these two methods for the Sawyer test problem is very small. Therefore, the HILS 

method performs better than all other methods based on both comparison metrics, either mrd% or SI.  

Table VIII. Comparison Of The Mrd% And Si Metrics Of Mode1, Mode2, Mode3, Moga1, Moga2, And Hils Methods For 5 

Difficult Test Problems Of The Salbp2. 

Test problem n in# Metric MODE1 MODE2 MODE3 MOGA1 MOGA2 SPT-SWAP HILS 

Buxey 29 8 
mrd% 0.266 3.969 0.266 0.266 2.831 0.266 0.266 

SI 6.211 9.580 7.252 6.276 8.513 6.012 5.987 

Sawyer 30 8 
mrd% 1.712 4.372 0.669 2.562 2.910 0.579 0.745 

SI 5.997 9.704 6.911 7.002 8.161 5.365 4.962 

Gunther 35 10 
mrd% 1.139 2.610 0.750 1.139 1.139 0.543 0.210 

SI 14.717 19.301 18.454 14.902 15.424 13.298 12.123 

Kilbridge 45 9 
mrd% 0.000 0.881 0.000 0.302 3.572 0.000 0.000 

SI 2.796 5.027 3.786 0.820 4.756 2.796 1.865 

Tonge 70 23 
mrd% 1.093 3.726 0.977 1.755 1.989 0.977 0.977 

SI 22.800 52.931 23.274 27.858 30.690 22.639 22.639 

Table IX. Comparison Of The Mrd% And Bd Metrics Of Mode1, Mode2, Mode3, Moga1, Moga2, And Hils Methods For 5 

Difficult Test Problems Of The Salbp2. 

Test problem n in# Metric MODE1 MODE2 MODE3 MOGA1 MOGA2 SPT-SWAP HILS 

Buxey 29 8 
mrd% 0.712 3.936 0.266 2.226 3.579 0.266 0.266 

BD 18.250 25.625 15.252 22.500 26.750 14.219 13.453 

Sawyer 30 8 
mrd% 1.922 4.372 1.562 4.272 3.313 1.43 1.54 

BD 15.750 27.625 18.125 20.125 24.000 14.97 13.212 

Gunther 35 10 
mrd% 0.750 1.778 0.250 7.659 2.082 0.237 0.220 

BD 40.600 52.700 44.400 83.500 49.400 40.600 40.123 

Kilbridge 45 9 
mrd% 0.340 0.981 0.161 6.851 0.860 0.128 0.128 

BD 9.778 13.333 8.778 47.000 12.667 7.876 7.876 

Tonge 70 23 
mrd% 1.213 3.919 1.109 2.050 3.217 0.987 0.987 

BD 87.609 183.930 87.700 117.261 137.435 87.493 87.001 

Similar high performance for the HILS method is reported in Table IX. As specified in the Table, HILS obtained the 

best results based on the mrd% performance metric. The mean offset of the best generated solutions by this algorithm 

from optimum solutions is equal to 0.22% (BD≈40) for Gunther’s problems, 0.27% (BD≈13) for Buxey’s problems, 

1.54% (BD≈13) for Sawyer’s problems, etc. Again, the proposed HILS performs better than all the other methods by 

generating high quality solutions. For a better illustration of the generated results, Fig. (13) plots the mrd% and 

Smoothness Index SI of six algorithms for five test problems when F1 is used as the objective function. Also, the mrd% 

and Balance Delay BD of six algorithms for five test problems when F2 is used as the objective function are plotted in 

Fig. (14). These Figures show the outperformance of the HILS method over the others for all test problems and 

performance metrics. An important observation from these figures and tables is that considering SI as the second term in 

the objective function leads to generating better solutions than those obtained using BD as the second term.  
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(a)                                                                                 (b) 

Fig 13. (A) Average Mrd% (In Percent), And (B) Average Smoothness Index (Si) Of Six Algorithms For Five Test Problems 

When F1 Is Used As The Objective Function. 

 

                                        (a)          (b) 

 Fig 14. (A) Average Mrd% (In Percent), And (B) Average Balance Delay (BD) Of Six Algorithms For Five Test Problems 

When F2 Is Used As The Objective Function. 

Then again, in order to evaluate the performance of the HILS with other single-solution based metaheuristics, we 

solved eight SALB2 test problems with the various number of workstations by our designed HILS, as well as the PNA-

for (A forward version of the Petri Network Algorithm (PNA)), PNA-back (A backward version of the PNA algorithm) 

and  PNA-bid (A bidirectional version of the PNA algorithm) methods all of them were developed in (Kilincci, 2010). 

The comparison results are presented in Table X. Altogether 21 test problems were solved. Here the objective function is 

minimizing the cycle time (c) and the stopping criterion of the algorithms is set to 100 iterations.  

The number of tasks (i.e., n), the number of considered stations in the corresponding test problem (i.e., m), and the 

optimal cycle time for the specific test problem (i.e., c*) are given in the second, third and fourth columns of these Tables. 

Columns 5 to 10 show the cycle time and percent excess cycle time by three versions of the PNA, and the last two columns 

display the results by the proposed HILS method. Note that in this Table, the best optimal values of the performance 

metrics are shown in bold and with  green background. Also, the last row of this table includes the number of issues 

among the 22 considered test problems for which the corresponding algorithm has succeeded to reach the optimal 

assembly cycle time (i.e., c = c*) for them. The following observations are made from Table X: 

− Although 9, 12, and 12 of 22 problems are optimally solved by PNA-for, PNA-back, and PNA-bid, the proposed 

HILS algorithm finds optimal solutions for 18 out of 22 problems respectively.  
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− The average of percent excess cycle time for the proposed approach (i.e., 0.59%) is better than the three versions 

of the PNA (i.e., 3.07%.1.91%, and 2.38%). This is due to the heuristic procedures used to create the initial 

solution for the HILS algorithm. 

− HILS outperforms or equally fits other algorithms in all test problems. 

− The proposed HILS algorithm has not achieved the optimal cycle time for only 4 out of 22 test problems. Also, 

in these four problems, it has the same or better performance than other algorithms according to the generated 

cycle time and mrd% metrics. 

Table X. Comparison Results Of Hils Method And Three Versions Of Petri Network Algorithm For Salbp2. 

HILS PNA-bid PNA-back PNA-for 
c* M N Test problem 

mrd% c mrd% c mrd% c mrd% c 

0.00 7 0.00 7 0.00 7.0 0.00 7 7 5 
7 Merten 0.00 10 0.00 10 0.00 10 10.00 11 10 3 

0.00 15 0.00 15 0.00 15 0.00 15 15 2 
0.00 7 0.00 7 0.00 7 0.00 7 7 7 

9 Jaeschke 0.00 10 0.00 10 0.00 10 0.00 10 10 4 
0.00 13 0.00 13 0.00 13 7.69 14 13 3 
10.0 11 10.0 11 10.0 11 10.00 11 10 5 

11 Jackson 0.00 12 8.33 13 0.00 12 8.33 13 12 4 
0.00 16 0.00 16 0.00 16 0.00 16 16 3 

0.00 14 0.00 14 0.00 14 7.14 15 14 8 

21 Mitchell 0.00 21 9.52 23 9.52 23 0.00 21 21 5 

0.00 35 2.86 36 2.86 36 0.00 35 35 3 

0.00 205 0.00 205 0.00 205 1.46 208 205 5 
28 Heskiaoff 

0.00 256 0.00 256 0.00 256 0.39 257 256 4 

0.00 26 7.69 28 7.69 28 0.00 26 26 13 

30 
Sawyer 

 
0.00 41 0.00 41 0.00 41 9.76 45 41 8 

1.53 66 6.15 69 3.08 67 3.08 67 65 5 

0.00 56 1.79 57 1.79 57 1.79 57 56 10 

45 Kilbridge  0.00 92 2.17 94 2.17 94 1.09 93 92 6 

0.00 184 0 184 1.09 186 0.00 184 184 3 

0.63 322 2.19 327 2.19 327 4.06 333 320 11 
70 Tonge 

0.91 443 1.59 446 1.59 446 2.73 451 439 8 

18 12 12 9 Number of optimums 
0.59 2.38 1.91 3.07 Average mrd% 

 

For more comparisons, we used and solved the usual set of 302 benchmark instances from Armin Scholl's website, 

http://www.assembly-line-balancing.de. The benchmark set is composed of two subsets: Dataset1 is a set by 128 instances 

with the number of tasks between 29 to 111 based on 9 different precedence graphs and Dataset2 is a set by 174 instances 

with the number of tasks between 53 to 297 based on 8 different precedence graphs. The averages of instances of the 

same precedence graph and the averages of all instances of Dataset1 and Dataset2 for the HILS algorithm are compared 

with those obtained by the Iterative Beam Search (IBS) (Blum, 2011) and two versions of the Integer-coded Differential 

Evolution Algorithm (IDEA) (Zhang et al., 2016). Each version of this algorithm corresponds to one of the following 

mutation schemes: 

1- DE/rand/2/bin in which the best vector is considered as the base vector. This version was referred to with the 

abbreviation IDEA_rd2. 

2- self-adaptive double mutation in which mutation procedures were developed in order to increase the chance 



Journal of Quality Engineering and Production Optimization  / Vol. 7, No. 1, Winter & Spring 2022, PP. 25-53 49 

 

of finding better solutions. This version was referred to with the abbreviation IDEA_apt, respectively. 

The comparison metric is the mrd%. Here the objective function is to minimize the cycle time (c) and the proposed 

HILS algorithm is terminated, if the existing optimum solution is generated or the maximum number of iterations 

(Maxiter) is reached. The comparison results are shown in Tables XI and XII.  

Table XI. The Mrd% Of Hils And Ibs Algorithms For The 128 Instances Of Dataset1. 

Graph Buxey Sawyer Lutz1 Gunther Kilbridge Tonge Arcus1 Lutz2 Arcus2 Average 

A
lg

o
ri

th
m

 

IBS 0.0 0.0 0.0 0.0 0.0 0.0 0.0278 0.0 0.0066 0.0058 

IDEA_rd2 2.21 3.34 0.35 1.02 0.60 2.07 0.98 2.64 4.98 2.02 

IDEA_apt 3.07 3.52 0.71 1.27 0.60 1.78 0.78 1.99 4.64 2.04 

HILS 0.0 0.0 0.0 0.0 0.0 0.0067 0.0198 0.0 0.0034 0.0049 

Table XII. The Mrd% Of Hils And Ibs Algorithms For The 174 Instances Of Dataset2. 

Graph Hahn Warnecke Wee-Mag Lutz3 Mukherje Barthold Barthol2 Scholl Average 

A
lg

o
ri

th
m

 IBS 0.0 0.0579 0.0 0.0 0.0 0.0 0.0 0.0028 0.0094 

IDEA_rd2 0.0 3.98 1.63 2.88 _ 0.46 4.79 1.02 3.41 

IDEA_apt 0.0 3.51 1.39 1.57 _ 0.26 4.79 9.24 2.97 

HILS 0.0 0.0215 0.0143 0.0 0.0 0.0 0.0 0.0129 0.0077 

The following facts are revealed from the results in these Tables:  

1- The HILS outperformed or works the same as the other methods in 8 out of 9 different precedence graphs of 

Dataset1 and 6 out of 8 different precedence graphs of Dataset2. In the other 3 graphs, the value obtained by 

HILS is slightly different from the best-obtained results by the other algorithms. The reliability of this algorithm 

is shown by this fact. 

2- As shown in the last column of Tables XI and XII, the performance of the HILS algorithm is competitive with 

the compared algorithms in the  mrd% for the 128 instances of Dataset1and the 174 instances of Dataset2. 

The above results show that considering the cycle time alone as the objective function for the HILS algorithm leads 

to the achievement of  the minimal cycle time for Buxey, Sawyer, Gunther, and Kilbridge test problems. While for the 

same test problem, considering F1 = w1 × c + w2 × SI or 𝐹2 = 𝑤1 × c + 𝑤2 ×  𝐵𝐷 as the objective function does not lead 

to the optimal cycle time (as shown in Tables VIII and IX). This confirms that the intended objective function influences 

the shape of the search space of a considered test problem and thus the effectiveness and efficiency of the metaheuristic. 

Also single-solution-based metaheuristics, i.e. the HILS and IBS algorithms, significantly work better than the 

population-based metaheuristics. Another important result from Tables VIII to X is that the single-solution-based PNA-

for, PNA-back, PNA-bid, and HILS algorithms outperform the population-based MODE and MOGA algorithms based 

on the mrd% metric for the ‘Sawyer’, ‘Kilbridge’ and ‘Tonge’ test problems. These are in line with the results of the 

analysis of the landscape of the SALBP2. 

Based on these results, the performance of HILS outperforms other considered algorithms for the studied problem. 

Especially the proposed HILS algorithm is able to find the optimal or near-optimal assembly line balances based on the 

considered objective functions and performance metrics for a large number of considered and investigated test problems. 
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The reason for this is the used effective methods to generate the neighboring solutions, initial solutions, and perturbed 

solutions for this algorithm. 

Of course, it is necessary to mention that despite the good performance of the proposed HILS algorithm for SALBP2 

problem, the main restriction of this algorithm is that the perturbation strength has to be sufficient to lead the trajectory 

to a different local optimum. A too weak perturbation makes a small change in the current local optimal solution and 

therefore is unable to take the algorithm out of the current local optimum. On the other hand, in the case of a too strong 

perturbation strategy, the algorithm becomes the random restart local search. A good way is to use an adaptive perturbation 

strategy in which the perturbation strength is determined based on the search information. 

V. CONCLUSIONS AND FUTURE WORKS 

The Assembly Line Balancing (ALB) problem is used for work assignments in order to let operate with the same 

average production time for each workstation. This balancing leads to the flexibility of the process flow system, 

eliminating delays or bottlenecks, or mistakes during production and producing products correctly. The benefits of 

Assembly Line Balancing in the real-world application are improving the process efficiency, increasing the production 

rate, reducing the total processing time, minimizing the ideal time, increasing the profits and decreasing the costs. The 

SALBP problem is one of the categories of the ALB problem that is appropriate for modeling single–sided assembly 

lines. SALBP2 is one of the classes of the SALBP that partition the assembly operations into a set of tasks and assign 

them to assembly workstations such that the assembly time of all workstations is approximately equal. This problem's 

aim is to minimize cycle time (c) given a defined number of stations (m). This problem has been widely used in all single–

sided assembly lines including automotive and related industries (bus, truck, aircraft, heavy machinery, etc.). SALBP2 is 

appropriate for single–sided assembly lines in which a unique model of a single product is created. This problem considers 

the minimization of cycle time with a given number of workstations. As SALBP2 problem is proved to be NP-hard, 

several works in the literature have been dedicated to its solution. Nevertheless, the fitness landscape of this problem has 

not been analyzed previously. In this paper, several distributions and correlation measures have been used for analyzing 

the landscape of the SALBP2. This analysis helps to find the appropriate metaheuristic to address SALBP2 problem. 

Based on the results of the fitness landscape analysis, the SALBP2 problem's local optima are uniformly scattered in the 

search space and the landscape of this problem is rugged plain. As a result, it was concluded that for solving the SALBP2 

a local search method with effective exploration and exploitation capabilities is suitable. Therefore the Iterated Local 

Search method that is an efficient single-solution-based metaheuristic was selected for this purpose and combined with a 

number of constructive procedures to construct a Hybrid Iterated Local Search (HILS) algorithm and efficiently solve the 

SALBP2.  

The precedence graph and station determination process are used for generating feasible assembly line balances. 

Starting from initially generated sequences by a set of 15 ‘priority rule-based constructive procedures’ with the same 

probability of selection for constructing the initial solution for the HILS algorithm, we purposely use the Inversion 

operator to perturb a local optimum solution. In order to strengthen the neighborhood searching ability, efficient 

Exchange, Insertion, and Cyclical shift neighborhood generation operators of local search are incorporated. The 

distinctive characteristic of the HILS algorithm is its ability for perturbing local optimal solutions. By studying 58 test 

problems (5 test problems with the various number of stations) from the literature, our proposed method outperforms the 

former proposed population-based MODE1, MODE2, MODE3, MOGA1, MOGA2 and SPT-SWAP algorithms. Also, 

the proposed approach outperforms the considered single-solution-based algorithms including the PNA-for, PNA- back, 

and PNA- bid based on the generated cycle time and mrd% metrics for 22 studied test problems (8 test problems with the 

various number of stations). For more comparisons, we used and solved the usual set of 302 benchmark instances and 

compared the averages over instances and Dataset1 and Dataset2 results of the HILS algorithm with those obtained by 

the IBS, IDEA_rd2, and IDEA_apt. The results show the performance of the HILS algorithm over these three compared 

algorithms in the mrd% from the best-known upper bounds. Computational experiments showed the outperformance of  

HILS over nearly all of the competing methods, thanks to the careful selection of the initial solution, neighborhood 
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generation operators, Inversion operator and algorithm parameters. Therefore, the enhanced HILS algorithm leads to 

finding assembly lines balanced with higher quality. This can help to reduce the product's overall cost and the leading 

time. 

Although a large number of metaheuristics are applied for solving the Simple Assembly Line Balancing Problems 

(including SALBP1, SALBP-E and SALBP-F), and Generalized Assembly Line Balancing Problems (including 2S–ALB, 

MALB and UALB), the landscape of these problems has not been investigated in any research yet. Therefore, future 

research should include the landscape analysis of these problems. Also the evaluation of other efficient single-solution-

based metaheuristic algorithms against the proposed HILS algorithm for solving the SALBP2 is another potential future 

study that can be investigated. The algorithm could be extended to solve two-sided, U-type and mixed-model assembly 

lines in order to prove the performance of the proposed approach for other problems. In the future, we plan to extend our 

FLA and algorithm for the application to assembly line balancing problems that are closer to real industrial settings. Also, 

the quality of the proposed HILS algorithm could be improved by using an adaptive perturbation strategy in which the 

perturbation strength is determined based on the search information.  Applying the introduced concept to real-world 

applications such as SALBP-2 problem with a limit on the number of types of machines, SALBP2 with setup times and 

resource-constrained SALBP2 is another suggestion for future research.  
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