
Journal of Quality Engineering and Production Optimization 

   Vol. 1, No. 2, PP. 1-18, July – Dec. 2015 

Manuscript Received: 06-June-2014  and  revised: 26-Sep-2015                                                                                                             ISSN: 2423-3781 
Accepted on: 15-Oct-2015 

 

A Genetic Algorithm Approach for A Dynamic Cell Formation Problem 

Considering Machine Breakdown and Buffer Storage 
 

Masoud Rabbani1,Saeed Elahi2, Hamed Rafiei3, Amir Farshbaf-Geranmayeh3 
1
 Professor, School of Industrial and System Engineering, College of Engineering,  

University of Tehran, Iran 
2 
MSc Student, School of Industrial and System Engineering, College of Engineering,  

University of Tehran, Iran 
3
 Ph.D. Candidate, School of Industrial and System Engineering, College of Engineering,  

University of Tehran, Iran 

 

*Corresponding Author: Masoud Rabbani (E-mail: mrabani@ut.ac.ir) 

 

 

Abstract- Cell formation problem mainly addresses how machines should be grouped and parts be processed 

in cells. In dynamic environments, product mix and demand are changed in each period of the planning 

horizon. Incorporating such assumption in the model increases flexibility of the system to meet customers’ 

requirements. In this model, to ensure the reliability of the system in presence of unreliable machines, 

alternative routing process as well as buffer storage are considered to reduce detrimental effects of machine 

failure. This problem is presented by a nonlinear mixed integer programming model attempting to minimize 

the overall cost of the system. To solve the model in large scale for practical purposes, a genetic algorithm 

approach is adopted as the model belongs to NP-hard class of problems. Sensitivity analysis is used to show 

the validity of the proposed model. Besides, numerical examples are used both, for small-sized and large-

sized instances to show the efficiency of the method in finding near optimal solution.    

 

Keywords: Buffer storage, Dynamic cell formation problem, Genetic algorithm, Machine breakdown, 

Mathematical programming. 

 

 

I. INTRODUCTION 

 

Group technology (GT) is a manufacturing philosophy by which similar parts are identified and dedicated to part 

families and machine groups into cells. One of the most dominant application of the GT is cellular manufacturing 

system (CMS) which has been identified as a hybrid system taking advantages of both job shop (flexibility) and mass 

production (efficient and high production rate) simultaneously (Papaioannou & Wilson, 2010). Cell formation (CF), cell 

layout, and intracellular machine sequencing are three steps adopted in the design of CMS (Chang et al., 2013). CF is 

the infrastructure of CM design where cells are formed according to machine groups and part family of similar 

characteristics so that a minimal inter-cell interaction can be obtained  to satisfy market demand of various products. 

Because of product demand and mix fluctuations and extension of consumer goods in today’s markets, dynamic cellular 

manufacturing systems (DCMS) are developed to meet the product demand requirements and overcome the probable 

disruptions of manufacturing organizations. Manufacturing cells reconfiguration is considered in DCMS, which is 

relocation of existing machines between cells, to take care of demand rate variations over multi-period planning 

horizon. ”Machines are the key elements in the design of manufacturing systems” (JabalAmeli et al., 2008). 

Conventionally cell formation problems (CFP) assume that machines are completely reliable which is not the case in the 

manufacturing environments, moreover, absence of reliability consideration in CM design, expose system to vulnerable 

noise or failure in the manufacturing process. In addition machine breakdowns can dramatically affect system 

performance measures and lead to detrimental impact on due date performance as well as productivity of the overall 
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system; hence, reliability considerations play an important role in the performance improvement of a system. 

Traditionally, CFP assume that each part has only one process plan which dramatically decreases flexibility of the entire 

system. Generalized cell formation problem (GCFP) is a modified version of CFP where a number of alternative 

process routings (APR) is considered for each part (Arkat et al., 2011). Adequate consideration of APR brings about 

additional flexibility, most reliable process plan selection, and performance improvement of the CMS design. 

Moreover, dealing with machine breakdowns, APR efficiently tackle disturbances of unreliable machines so that lower 

failure cost can be achieved. 

In this paper a model  is proposed concentrating on the integration of machine breakdown issues and CFP so that 

total cost of the system, such as inter-cell movement cost, machine failure cost, production time loss cost, production 

operation and etc. are minimized through a comprehensive model. To the best of the authors’ knowledge this is the first 

mathematical model incorporating buffer storage problem as well as APR in CF design to increase system flexibility 

and reduce detrimental effects of unreliable machines on the performance of the system. A buffer is allocated to each 

machine to preserve work in process (WIP) inventory of products in every production stage. Buffer storage cost in this 

model is assumed to be dependent on part volume. This model attempts to present and optimize solution based on 

tradeoff between buffer storage cost and cost saving obtained through higher reliability of the system.  

The remainder of this paper is organized as follows. Section II reviews the relevant literature. In section III the 

problem formulation of the proposed model is formulated. The developed genetic algorithm is elaborated in section IV. 

Section V provides numerical examples of the proposed model and illustrates the computational efficiency of the 

algorithm. Section VI presents a sensitivity analysis for model validation. Finally, conclusion and future research 

directions are given in section VII.       

 

II. LITERATURE REVIEW  

 

A. Cellular manufacturing systems  

 

Literature body of CMS is quite extensive. Reviews and classifications of this issue can be found in (Wemmerlov & 

Hyer, 1986); (Kusiak & Chow 1988); (Mansouri et al., 2000); (Ghosh et al., 2011).    

Other important works in this context can be found in (Nsakanda et al., 2006), where a comprehensive model for 

designing a cellular manufacturing system was presented. The model correlated several known problems in that it 

integrated the cell formation problem, the machine allocation problem, and the part routing problem. A solution 

methodology based on a combination of a genetic algorithm (GA) and large-scale optimization (LSO) techniques was 

developed for solving the presented model. The first particle swarm optimization (PSO) algorithm which was devoted 

to part-machine grouping is the one presented in (Carlos & Sebastia, 2006). The criterion used to group the machines in 

cells was based on the minimization of inter-cell movements. Also, a comprehensive model for the design of CMS was 

presented by (Ahkioon et al., 2009), where production planning and system reconfiguration decisions are incorporated 

in the presence of APR, operation sequence, duplicate machines, machine capacity and lot splitting via a mixed integer 

non-linear programing. (Won & Currie, 2006) adopted a new p-median formulation considering real-world production 

factors such as the operation sequences and production volumes for parts in order to organize machine cell/part family 

(MC/PF) formation in CMS design. Despite previous p-median models, which rely on the classic binary part-machine 

incidence matrix (PMIM), this one adopts a new similarity coefficient based on production factors that dramatically 

impact the MC/PF formation. (Safaei et al., 2008) developed a mixed-integer programming model to design CMS under 

a dynamic environment. They considered the batch inter/intra-cell material handling by considering the sequence of 

operations, considering alternative process plans for part types, as well as machine replication. An efficient hybrid 

meta-heuristic based on mean field annealing (MFA) and simulated annealing (SA) were used to solve the model. 

(Ghezavati & Saidi-Mehrabad , 2011) proposed a new version of stochastic model based on queuing theory towards 

CMS design, in which processing time of parts on machines and arrival time of parts to cells are described by a 

continuous distribution. The model was solved by a hybrid GA and SA algorithm where SA is a subordinate of GA. The 

proposed algorithm was validated compared with branch and bound algorithm and a benchmark algorithm existing in 

the literature. (Nouri & Hong, 2013) adopted the bacteria foraging optimization (BFO) algorithm to address CFP 
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considering cell load variation and exceptional elements. The performance of BFO algorithm was compared with a 

number of commonly used algorithms from the literature such as K-mean clustering and C-link clustering. 

 

B. Dynamic cellular manufacturing systems  

 

There is a considerable amount of literature devoted to newly designed CMS under dynamic situation referred to as 

dynamic cellular manufacturing system (DCMS). One of the most comprehensive with more integrated approach 

models in DCMSs was presented to generate manufacturing cells over multiple time periods by (Saxena & Jain, 2011). 

Additionally, important manufacturing attributes in existing model (e.g. alternative process plan and routing, machine 

breakdown effect, transfer batch size, system reconfiguration, machine in same cell constraint, system reconfiguration, 

sequence of operation and etc.) was compromised in the model. (Ahkioon et al., 2009) considered the design of DCMS 

with production factors including multi-period production planning, dynamic system reconfiguration, duplicate 

machine, machine capacity, and machine procurement flexibility considerations in addition to APR to overcome 

machine breakdown disruptions. A mixed integer programming approach was employed to deal with this problem. 

(Safaei et al., 2008) developed an integration of explicit uncertainty for a CFP with a dynamic condition in CMS. They 

utilized a fuzzy programming-based approach to solve an extended mixed-integer programming model of the DCFP. 

(Aramoon Bajestani et al., 2009) introduced a multi-objective DCMS where the total load variation and sum of the 

different costs such as machine cost, inter-cell material holding cost, and relocation cost are minimized simultaneously. 

A new multi-objective scatter search (MOSS) was employed because of the problem NP-hard nature. (Balakrishnan & 

Cheng , 2007) proposed a comprehensive mathematical programming model for an integrated dynamic cell formation 

and a multi-item multi-level capacitated lot sizing problem considering the impact of lot size on the product quality. A 

linear programming embedded GA was developed to solve the model owing to NP-complexity of the problem. Saidi-

(Mehrabad & Safaei, 2007) proposed a new DCMS approach with the aim of minimizing the material handling cost. 

Dynamic production assumptions combined with alternative process plans and a sequence of operations was 

compromised in the proposed model. Due to the complexity of the model, a neural approach based on mean field theory 

(NAMFT) was applied to solve the desired model. (Rafiei & Ghodsi, 2013) incorporated human-related issues, which 

were mostly neglected in previous researches, in dynamic CFP. In that context they developed a new bi-objective 

mathematical model; the first objective function minimized the overall production costs (e.g. machine procurement cost, 

machine relocation cost an etc.), while the second objective function maximized labor utilization of the model. They 

proposed an ant colony optimization (ACO) meta-heuristic validated by randomly generated test problems to tackle 

with the problem. (Sakhaii et al., 2015) developed a robust optimization approach to cope with processing time 

uncertainty in DCMS. They considered different manufacturing issues consisting of machine reliability, production 

planning, APR and etc. (Renna & Ambrico, 2015) addressed CMS with reconfigurable machines to handle market 

changes. They developed three mathematical models concerning design, reconfiguration and scheduling of 

manufacturing systems. They also conducted simulations in several scenarios ranging from a steady demand and mix to 

a very dynamic environment in order to test the proposed algorithm.  

 

C. Machine breakdowns and reliability consideration 

 

Literature review on machine breakdowns and reliability considerations in CMS design reveals that only a small 

amount of efforts have been devoted to this case. The following is a brief review of researches taking machine 

breakdowns into account. 

(JabalAmeli & Arkat , 2008) focused on the configuration of machine cells with respect to production volume and 

APR to address machine reliability. A pure integer linear programming (PLIP) was applied to formulate the situation. 

While, Chung & Chang (2010) proposed a tabu search (TS) algorithm other than PLIP based on a similarity coefficient 

to deal with APR and machine reliability considerations. Contrary to previous works in which reliability consideration 

was taken into account by using multiplying rules, (JabalAmeli et al., 2008) presented a new approach to handle 

reliability consideration. They modeled the effects of machine breakdown including cost and time-based effect to 

overcome the obstacles. A bi-objective linear programming was developed to deal with the proposed generalized CF 



4                                                M. Rabbani, S. Elahi, H. Rafiei, A. Farshbaf-Geranmayeh. A Genetic Algorithm Approach  … 

 

problem. Model was solved through a numerical example using ε-constraint method. (Arkat et al., 2011) addressed 

machine reliability in GCF under stochastic situation. They used chance constrained programming (CCP) to model the 

problem other than expected value (EV) which is a straightforward procedure but incur some serious drawbacks (e.g. 

EV degrades the information of a probabilistic distribution to a single quantitative measure irrespective of inherent 

variation of the parameters). Compared with the traditional GCF model and the EV model, the superiority of the 

proposed model was revealed through some numerical examples. (Das et al., 2007) proposed a bi-objective mixed 

integer programming model of cellular manufacturing system (CMS) in which the total system cost is minimized and 

machine reliability is maximized along the selected process routes. The proposed approach yields, for each part, the 

process plans which have lower probabilities of machine failures. The most appropriate combination of cost and system 

reliability was obtained through the ε-constraint method with a range of solution to choose from. (Diallo et al., 2001) 

studied the design of cell reconfiguration for flexible manufacturing systems (FMS) in presence of unreliable machines. 

They utilized Markov chain model to address different states of system originated from availability or non-availability 

of unreliable machines and used them to build efficient cell reconfigurations. One of the important issues in terms of 

reliability considerations in CFP is preventive maintenance (PM) planning addressed in (Das et al., 2007) for the 

performance improvement of CMS. They determined a PM policy on each machine in such a way that the total 

maintenance cost and overall probabilities of machine failures are minimized simultaneously assuming that machine 

failure times follow a weibull distribution. To solve the model, a multi-objective approach was exploited to determine 

the PM interval by taking into account both the costs and the machine reliability. (Bagheri et al., 2015) proposed a 

mathematical model for DCMS by considering different production factors such as APR and machines reliability with 

stochastic arrival and service time. Due to the complexity of the given problem, a Benders’ decomposition approach 

was applied to solve the problem efficiently. Then, the performance of the proposed approach was tested via some 

numerical examples generated randomly in hypothetical limits and solved by the proposed solution approach. 

 

D. Buffer storage 

 

Generally speaking, there are only few research works devoted to buffer storage problem in the presence of 

unreliable machines within a CMS. (Lee, 2000) proposed a buffer sizing problem with the purpose of prescribing a 

cost-based approach to determine the total buffer storage and the buffer allocation in the cellular manufacturing 

environment. They used a three-phase approach to handle the aforementioned problem. First, steady-state queuing 

statistics was served to determine approximate buffer size, which is then assigned to each machine. Then a one-

dimensional, line-search based procedure was used to find the minimal cost buffer design. Finally, a local improvement 

method was utilized for the cost minimization.    

Looking at Table I; where a brief review of last decade on CFP is reported, the lack of contribution for CMS design 

in terms of buffer storage as an instrument to hold WIP inventory and sustain the systems whenever breakdowns occur 

is clear. This characteristic of production environments for CMS design is tackled in the current work.  

 

III. PROPOSED MODEL  

 

In this section a mathematical model addressing DCFP is developed in which machines employed to process 

different parts are exposed to breaking down. To reduce the detrimental effect of machines breakdown, buffer storage is 

incorporated to the CMS model in addition to APR. A buffer is allocated to each machine in order to keep WIP 

inventory of different processing stages of each part. This assumption increases reliability of the production system and 

cope with the variability of breakdowns among different machines.  

The overall objective is to minimize the system costs  including inter-cell movements, system reconfiguration, 

machines operation, production loss time, part outsourcing, setup, part holding, machine repair, and machine 

procurement cost for the entire horizon. 
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TABLE I. A brief review on CFP  
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Diallo et al. (2001)              MCM 

Lee (2000)              CBA 

Won & Currie (2006)              p-median 

Nsakanda et al. 

(2006) 
            

 
GA & LSO 

Carlos & Sebastia´n, 

(2006) 
            

 
PSO 

Balakrishnan & 

Cheng (2007) 
            

 
LP & GA 

Saidi-Mehrabad & 

Safaei (2007) 
            

 
NAMFT 

Das et al. (2007a) 
            

 BOMIP + ε-

constraint 

Das et al. (2007b)              MOHA 

JabalAmeli & Arkat 

(2008) 
            

 
PLIP 

JabalAmeli et al. 

(2008) 
            

 BOLP + ε-

constraint 

Safaei et al. (2008a)              MIP 

Safaei et al. (2008b)              MFA & SA 

Aramoon Bajestani et 

al. (2009) 
            

 
MOSS 

Ahkioon et al. 

(2009a) 
            

 
MINLP 

Ahkioon et al. 

(2009b) 
            

 
MIP 

Chung & Chang 

(2010) 
            

 
TS 

Ghezavati & Saidi-

Mehrabad(2011) 
            

 
GA & SA 

Saxena & Jain (2011)              MIP 

Arkat et al. (2011)              CCP 

Nouri & Hong (2013)              BFO 

Rafiei & Ghodsi 

(2013) 
            

 
ACO 

Sakhaii et al. (2015)              RO 

Renna & Ambrico 

(2015) 
            

 
Simulation 

Bagheri et al. (2015)              BDA 

Proposed model              GA 

Abbreviations 

equivalent: 

LSO, Large-scale optimization; MFA, Mean field annealing; BFO, Bacteria foraging optimization; MOSS, Multi-objective scatter 

search; NAMFT, Neural approach based on mean field theory; RO, Robust optimization; CCP, Chance constrained programming; 

MCM, Markov chain model;  MOHA, Multi-objective heuristic approach; BDA, Benders’ decomposition approach; CBA, Cost-

based approach       
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A. Assumptions 

 

The proposed model includes the following assumptions: 

1. The demand for each part type per period is known. 

2. The operating times for all part type operations on different machine types are known. 

3. The manufacturing system is supposed to operate for a number of time periods. 

4. The capability and capacity of each machine type is known and constant over the time period. 

5. Machines can be replicated to meet capacity requirements. 

6. All machines of type m can perform all part type p operations  

7. Relocation cost of each machine type from one cell to another between periods is known. 

8. Parts are moved between cells as batches. 

9. Inter-cell batches have different costs and sizes for each part type regardless of traveled distance. 

10. Procurement cost of each machine type is known in each period. 

11. Maximum number of cells is constant over time. 

12. The limitation and quantity of machines in each cell need to be specified in advance for each period of time. 

13. Each machine type can perform one or more operations (machine flexibility). Likewise each operation can be done 

on one machine type with different times (routing flexibility). 

14. Part inventory is assumed to have constant unit cost over the time period. 

15. Backorders are not allowed. All demands must be satisfied in the given period.  

16. No queuing in production is allowed. 

17. Breakdown time for a machine type m is assumed to have an exponential distribution with a known failure rate of 

(m), so mean time between failure (MTBF) is 1/(m). 

18. Repair time for each machine follows an exponential distribution with a known failure rate of μ(m), so mean time to 

repair (MTTR) is 1/(m). 

19. Buffer storage is considered to handle production loss cost of unreliable machines. 

20. Holding cost of work in process inventory kept in the buffer is considered in the model. 

21. All work in process inventories are outsourced to an external supplier with specified capacity and production cost.   

Assumptions (1-18) have been extensively considered by many researchers. However assumptions (19-21) are 

related to the novelty of the proposed model. 

B. Indices 

Time period index: t=1, 2,…, T 

Part type index: p=1, 2, … , P 

Index of operations of part p: o=1, 2,…,Op 

Machine type index: m=1, 2,…, M 

Cell index: c=1, 2,…, C. 

 

C. Parameters 

 

T  Number of planning periods 

P  Number of part types 

pO
 

Number of operations for part type p 

M  Number of machine types 

C  Maximum number of cells that can be formed 

( )pD t
 

Demand of part type p during time period t 

inter

pV
 

Inter-cell movement cost per transfer batch of part type p 

inter

pB
 

Transfer batch size for inter-cell movement of part type p 
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p

pB
 

Process batch size for part type p 

( )MTBF m
 Mean time between failures of machine type m in period t 

( )MTTR m
 Mean time to repair of machine type m in period t 

mR 

    
Cost of installing one unit of type m machine 

mR 

 
Cost of removing one unit of type m machine 

( )mN t
 

Maximum number of machine m that can be procured at time period t 

mC
 

Time capacity of machine type m 

pOS
 

Outsourcing cost of part type p 

opmSC
 

Setup cost for operation o of part type p on machine type m 

opmOC
 

Operating cost of operation o of part p processed on machine m  

pH
 

Unit inventory holding cost of part type p 

mBC
 

Machine repair cost of machine type m per hour 

mP
 

Procurement cost of machine type m 

opBH
 

Work in process inventory cost of operation o of part type p stored in the buffers.  

WIP

opP
 

Procurement cost for the work in process inventory of operation o of part p  

WIPC
 

Maximum capacity of work in process inventory that can be outsourced to a supplier 

opmt
 

Processing time of operation o of part type p on machine type m 

L  A large positive number 

( )cLB t
 

Minimum number of machines in cell c at time period t. 

( )cUB t
 

Maximum number of machines in cell c at time period t. 

 

D. Variables 

Continuous 

( )opmcX t
 

Number of part type p processed by operation o on machine type m in cell c during time 

period t 

( )pX t
 

Number of part type p to be outsourced at time period t. 

int ( )er

pD t
 

Demand of part type p for internal production in time period t 

( )pI t
 

Number of part inventory of type p kept in time period t and carried over to period (t+1) 

 

( )opmcWIP t
 

Work in process inventory of stage o of part p available at the buffer m at cell c at time period 

t 

( )opmcWIP t

 
Work in process inventory of stage o of part p added to the buffer m at time period t 

( )opmcWIP t

 
Work in process inventory of stage o of part p removed from the buffer m due to machine 

failure at time period t 

 

General integer 

( )mcY t

 
Number of type m machines added to cell c at time period t 

( )mcY t

 
Number of type m machines removed from cell c at time period t 
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( )mcN t
 

Number of machine type m in cell c during period t 

Binary variables 

( ) 1,opc t 
 

If operation o for part type p is carried out in cell c 

           
0,

          
Otherwise 

( ) 1,p t 
 

If part p is produced in time period t 

         
0,

 
Otherwise 

 

E. Model formulation 

 

The mathematical formulation for the proposed cell formation problem is presented as follows: 

Minimize 

Z=  

1 int

1int1 1 1 1

( )1
. ( ) ( )

2

pT C P O opmcer

opco pcert c p o
p

X t
V t t

B
 



   
   

 

(1) 

  
1 1

. ( ) . ( )
T C

m mc m mct c
R Y t R Y t   

 
  

 
 

1 1 1 1 1

( )
( ) ( ) ( ). . .

( )

pT C M P O

opmc opmc opmc opm opmt c m p o

MTTR m
X t X t WIP t t OC

MTBF m


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  
    

  
    

 
 

1 1 1 1 1 1 1

( )
. ( ) .pT P T C M P O opmc

p p opmpt p t c m p o
p

X t
OS X t SC

B      
       

 
 

1 1 1 1 1 1 1

( ).
. ( ) .

( )

pT P T C M P O opmc opm

p p mt p t c m p o

X t t
H I t BC

MTBF m      
       

 
  1 1 1

( ) (0)
M C C

m mc mcm c c
P N T N

  
   

 
 

1 1 1 1 1
( ). ( )pT C M P O WIP

op opmct c m p o
P t WIP t

    
    

 
 

1 1 1 1 1
( ). ( )pT C M P O

op opmct c m p o
BH t WIP t

    
    

 
Subject to: 

1
( ) ( )

C

opc pc
t t 




 

( , , , , )o p m c t
 

(2) 

( ) . ( )opmc pX t L t
 

( , , , , )o p m c t
 

(3) 

 
1 1

( ) ( ) ( )
C Mi

p opmc opmcc m
D t X t WIP t

 
  

 

( , , )o p t
 

(4) 

( ) ( 1) ( ) ( ) ( )i

p p p p pD t I t I t X t D t    
 

( , )p t
 

(5) 

1 1
( ) ( 1) ( )

C C

mc mc mc c
N t N t N t

 
   

 

( , )m t
 

(6) 

1 1
( ). . ( )pP O

opmc opm m mcp o
X t t C N t

 
 

 

( , , )m c t
 

(7) 

1 1 1 1
( )pC M P O WIP

opmcc m p o
WIP t C

   
   

 

( )t
 

(8) 

( ) ( 1) ( ) ( )mc mc mc mcN t N t Y t Y t    
 

( , , )m c t
 

(9) 

1
( ) ( ) ( )

M

c mc cm
LB t N t UB t


   

( , )c t
 

(10) 

 1 1 1 1 1 1 1
( ). ( ).p pM P O C M P O

opmc opm opmc opmm p o c m p o

q
X t t X t t

c      
      

 

( , )c t
 (11) 
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   11 1 1 1
( ) ( ) ( )

C M C M

opmc opmco pmcc m c m
X t X t WIP t

   
    

 
( , , )o p t

 (12) 

( ) ( 1) ( ) ( )opmc opmc opmc opmcWIP t WIP t WIP t WIP t    
 

( , , , , )o p m c t
 

(13) 

 ( ), ( ), ( ) 0,1,2,..mc mc mcY t Y t N t  
 

( , , , , )o p m c t
 

(14) 

( ), ( ), ( ), ( ), ( ), ( ), ( ) 0i

opmc p p p opmc opmc opmcX t X t D t I t WIP t WIP t WIP t  
 

( , , , , )o p m c t
 

(15) 

 ( ), ( ) 0,1opmc mct t  
 

( , , , , )o p m c t
 

(16) 

 

F. Model objective function 

 

The objective function given in Eq. (1) is utilized to minimize the overall cost of the proposed model. The first term 

of the objective function represents inter-cell movement cost. Machine relocation cost is expressed by the second term. 

The first part of the third term represents machines operation cost and the second part illustrates production loss time 

cost of the broken machines. The forth term is part outsourcing cost. The fifth, sixth, seventh and eighth terms are 

machine setup cost, part holding cost, machine repair cost and machine procurement cost respectively. The ninth term 

represents work in process holding cost. Finally the last term of the objective function is the procurement cost of work 

in process inventories. It is noticeable that terms 4, 9 and 10 of the objective function is due to buffer storage 

assumption as considered in this paper.   

 

G. Model constraints 

 

Eqs. (2) and (3) show that the number of part produced internally can be positive when part type p is produced 

internally by operation o on machine type m in cell c. Eq. (4) indicates that the number of part type p produced 

internally can be required by the sum of all cells and machines adopted to perform operation type o. Eq. (5) is related to 

inventory balance constraint. The maximum numbers of machines type m in access to process operate at the beginning 

of time period t are expressed in Eq. (6). Eq. (7) ensures that the production time of parts do not exceed maximum 

capacity of the machines. Capacity in access to procure WIP of different stages of products which should be added to 

buffers at the beginning of each period is expressed in Eq. (8). Eq. (9) implies that the number of machines type m in 

current period is equal to the number of machines in the previous period, adding the number of machines moved in and 

subtracting the number of machines moved out of the cell c. Eq. (10) specifies the lower and upper bounds on size of 

cells. Workload balance among cells is enforced in Eq. (11). Eq. (12) is adopted to incorporate material flow 

conservations in the model. Eq. (13) is related to work in process inventory balancing kept in the buffer of machine type 

m in cell c. Eqs. (14), (15) and (16) are integrality constraints. Equations (8), (11), (12) and (13) are constraints related 

to the buffer storage assumptions as considered in this paper. While, other constraints have been developed by other 

researchers.     

 

F. Linearization of the model 

 

As exact solutions of small-sized instances for the proposed model are calculated using GAMS-CPLEX 

mathematical programming software to validate the proposed GA, linearization of the model seems to be crucial. 

Linearization reduces complexity of solving the model by CPLEX solver to validate the proposed model. Also, optimal 

solutions are compared with those of the same size solutions obtained by the GA to verify the performance of the 

developed algorithm. The presented model is a nonlinear integer programming due to the first term of the objective 

function. To transform the non-linear term  1( ). ( ) ( )opmc opco pc
X t t t 


  into a linear one, binary variable Zopc(t) is 

introduced and term of  1( ). ( ) ( )opmc opco pc
X t t t 


  is replaced with the quadratic term of Xopmc(t).Zopc(t). In the 

next step, Xopmc(t).Zopc(t) is replaced by a continuous variable ( )opmcT t  with additional constraints given below. 
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(0 1) ( ) ( ) ( )pc opc opct t Z t   
 

( , , , )o p c t
 

(17) 

(0 1) ( ) ( ) ( )pc opc opct t Z t   
 

( , , , )o p c t
 

(18) 

( ) ( ) . ( )opmc opmc opcT t X t L Z t L  
 

( , , , , )o p m c t
 

(19) 

( ) ( )opmc opmcT t X t
 

( , , , , )o p m c t
 

(20) 

( ) . ( )opmc opcT t L Z t
 

( , , , , )o p m c t
 

(21) 

 ( ) 0,1,2,... , ( ) 0opc opmcZ t T t 
 

( , , , , )o p m c t
 

(22) 

Equations (17)-(22) are added to the proposed nonlinear model and a mixed integer linear programming is obtained. 

The linearization procedure utilized in this paper, is adopted from (Defersha & Chen, 2008). 

 

IV. SOLUTION METHODOLOGY  

 

Biologically motivated approaches has gained increasing popularity in solving complex optimization problem in the 

last decades. GA which was first introduced in 1970s by (Holland, 1975) is one of the optimization approaches 

constructed based on evolutionary processes occurring in the natural systems. GA strives to synthesize the good features 

of different individuals within a population to create individuals who are better suited. For this purpose, GA operators 

such as crossover, mutation, and selection are utilized to evolve individuals in order to reach desired solutions. In 

contrary to other stochastic searches, GA encompasses noticeable features, such as implicit parallelism, population-

based search and flexibility to be hybridized with domain-dependent heuristics which make researchers prefer it over 

traditional heuristics. 

GAs have been widely used to solve the CFP. (Venugopal & Narendran, 1992) applied GA to tackle CFP based on 

the minimization of total cell load variation. Uddin & Shanker (2002) formulated generalized grouping problem as an 

integer programming problem and used GA as a solution methodology. (Mahdavi et al., 2009) utilized GA for the CFP 

aiming at minimization of voids and exceptional elements. 

 

A. Chromosome representation   

 

The chromosome representation or encoding of a solution is the first task when utilizing a genetic algorithm. Each 

chromosome referred to an initial population represents a solution to the problem. To encode the proposed model, 

independent chromosomes are defined involving variables:  

( ),  ( ),  ( ),  ( ),  N ( ),  ( )opmc p opmc opmc mc pX t X t WIP t WIP t t t   and 
opC . A five dimensional matrix of size  o×p×m×c×t 

is defined for each continuous variable excluding  ( )pX t which is encoded by a chromosome of size p×t. A three 

dimensional matrix of size m×c×t corresponding to Nmc(t) is defined in which each gene takes a positive integer number 

representing the number of machines type m installed in cell c in period t. The other chromosome is a matrix of size p×t 

related to the binary variable p(t) which takes an integer value in {0,1} to show whether part p is produced in period t. 

Finally a chromosome of size o×p is represented in which the gene Cop takes the value in {1,2,…,C} to show the index 

of cell in which operation o of part p is to be produced. 

 

B. Chromosome decoding 

 

The values of all continuous variables and integer variables Nmc(t), p(t) are directly obtained from the chromosome, 

while the variable opc(t) is specified by Eq. (23). From this equation, it is clear that the constraint in Eq. (2) is satisfied 

by any randomly generated solution as illustrated in Eq. (24). 
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( )opc t 
    

( )  the subscript 

 0;        otherwise

p opt If c C 

 
(23) 

 1
( ) ( ) ( ) 0 ( )

op

C

opc opc p pc c C
t t t t   

  
    

 
(24) 

 

C. Fitness function 

 

 The fitness function is calculated to evaluate the candidate solutions in the population with respect to the objective 

function and constraints of the model. For a given solution, the fitness value of the proposed model, which is given in 

Eq. (25) is calculated by the sum of model objective function and the penalty term defined to prevent constraint 

violation of Eq. (10). Also the factor Wc is used to scale the penalty term, which is determined by trial and error. 

 1 1 1 1

Model objective function 

      + . max 0, ( ), ( )
c

T C M M

c c mc mct c m m

F

W LB N t N t UB
   



    
 

(25) 

 

D. Genetic operators   

 

Genetic operators are employed to create better solution and replace them with those which existed in initial 

population to obtain near optimum solution. Generally, genetic operators are classified as selection, crossover and 

mutation. In the proposed genetic algorithm roulette wheel operator is used to probabilistically select the parents within 

the initial population to construct new children. The main operator of the GA is crossover which reproduces individuals 

by combining the information of randomly selected parents such that created offsprings share the characteristics of both 

parents. These offsprings are compared with respect to fitness function and passed onto the next generation. The 

crossover operator used in the proposed GA is uniform crossover. For integer variables, a binary chromosome namely 

  with the same size of corresponding integer variable is generated. Offspring1 adopts those genes of parent1 whose 

corresponding genes of   take value of 1 and adopts the rest of genes from parent2. The reverse procedure is applied to 

create offspring2. For continuous variables however,   is a value randomly selected between [,1+]. The equations of 

uniform crossover are given as follows. 

 1 1 1 2offspring Parent Parent     
 

       (26) 

 2 2 1 1offspring Parent Parent     
 

(27) 

 The other genetic operator is mutation. This operator is mainly used to avoid local optimization by randomly 

changing individual genes and increasing the search space. In this study binary operator for mutation process. This 

operator is applied to the randomly selected individual as follows: parameter  is defined between [0,1] and the number 

of genes within the selected parent that should be replaced to create new offspring is obtained as follows: 

Number of replaced genes=[×Number of genes within a chromosome] + 1 (28) 

Then the number of genes specified above are randomly selected from the parent and replaced with an appropriate 

random integer with respect to the chromosome type. 

 

V. EXPERIMENTAL RESULTS 

 

In this section the performance of the proposed GA is evaluated through numerical examples. Table II includes the 

parameters of the model, which are randomly generated to perform the test problems. In this regard, the algorithm was 

run on a computer with Intel® Core 5 CPU, 2.67 GHz speed and 4 GB RAM. The experiments were implemented in 

two categories; firstly for small-sized instances and secondly for large-sized instances. 
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A. Small-sized problems 

 

The first set of experiments are carried out on 10 small-sized instances. Here, small-sized instances are referred to 

problems which are solvable optimally in GAMS software using CPLEX solver in reasonable CPU time. The solutions 

obtained from the GA, which is coded in MATLAB software, are compared with optimal solutions of these instances to 

verify the efficiency of the proposed algorithm. 

Based on trial and error, the population size of GA and total number of generations are set to 75 and 50 respectively. 

Table III represents the data for the test problems and a comparison between exact solutions obtained from the GAMS 

and those resulted from the proposed GA approach in terms objective function values. Table IV includes the optimal 

cell configuration of the small-sized problems. The reasonable gap of the optimal solution and GA solution presented in 

Table III permits us to generalize the proposed algorithm for large-sized instances which are not solvable optimally by 

the CPLEX solver.  

 

 

TABLE II. Randomly generated data 

Parameter Cost Parameter Cost 

interV  [25 50] pOS
 

[4000 5000] 

inter

pB
 

[25 50] opmSC
 

[100 250] 

p

pB
 

[100 150] opmOC
 

[30 50] 

( )MTBF m
 

[4000 5000] pH
 

[500 600] 

( )MTTR m
 

[200 350] mBC
 

[1500 2000] 

mR 

 

[650 750] opBH
 

[50 120] 

mR 

 
[650 750] Pm  [1300 1600] 

mC
 

[5000 8000] 
WIP

opP
 

[50 120] 

ptD
 

[1500 2500] opmt
 

[20 35] 

 

 

 

 

TABLE III. Small-sized test problems 

Problem 

No. 
O×P×M×C×T 

Exact 

Solution 

GA 

Solution 

Gap 

(%) 

1 3×4×4×2×2 78540342 79474972 1.19 

2 3×5×5×2×2 82706141 84624923 2.32 

3 3×5×4×2×3 105167848 107344822 2.07 

4 3×7×8×3×2 131509601 136072984 3.47 

5 3×6×5×2×3 148409845 161173091 1.86 

6 3×6×6×3×3 169629549 175821028 3.65 

7 4×7×7×3×2 181580872 190950445 5.16 

8 4×7×6×3×3 194186340 203662633 4.88 

9 4×8×8×3×2 187540389 192603980 2.70 

10 4×8×8×3×3 207569320 219047903 5.53 
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B. Large-sized problem 

 

Another set of experiments are performed for large-sized instances. Since the authenticity of GA procedure was 

proven in previous section. To establish the desired experiments, 6 large-sized instances, as presented in Table V, are 

designed and implemented in MATLAB software. In accordance with enhancement of problem sizes, we increase the 

population size of GA and total number of generations to 200 and 150 respectively. Results consisting objective 

function values are presented in Table V. Besides, column III of Table V represents the objective values of large-sized 

instances after running for an hour in GAMS-CPLEX solver as a lower bound of GA solutions. The gap of every pair of 

solutions reported in column V of Table V proves the efficiency of the proposed GA for large-sized instances. Also, cell 

configurations of the large-sized problems, obtained from GA procedure, are indicated in Table VI.    

 

VI. SENSITIVITY ANALYSIS AND MODEL VALIDATION 

 

In this section, the validation of the proposed model is examined by changing model parameters to see if model is 

reasonably sensitive to the changes of parameters. Besides the performance of WIP inventory and buffer storage 

concept in CMS is analyzed. 

 

 

 

 

TABLE IV. Cell configuration of small-sized instances 

Problem 

No. 

H=1 H=2 H=3 

C=1 C=2 C=3 C=1 C=2 C=3 C=1 C=2 C=3 

1 1,2 3,4  2 1,3,4     

2 2,4,5 1,2,3,4  2,4,5 1,4,5     

3 2,3 1,4  1,2 3,4  1,2 3,4  

4 2,3,7 1,4,5,6 3,5,7 4,5,6 1,3,7 2,3,5,6    

5 2,4 1,3,5  2,3,4 1,5  4,5 1,2,3  

6 1,4,6 3,4,5 1,2,5,6 1,5,6 3,4,6 2,3,5 2,3,5 1,2,4,5 1,3,6 

7 2,4,7 1,3 5,6 2,5 1,3 4,6,7    

8 3,5 1,4,7 2,6 2,4,7 1,6 3,5 4,6,7 2,5 1,3 

9 2,8 3,4,7 1,5,6 1,7 3,5,8 2,4,6    

10 2,6,7 4,8 1,3,5 3,4 1,2,6 5,7,8 1,2,5 6,8 3,4,7 

 

 

 

 

 

TABLE V. Large-sized test problems 

Problem 

No. 
O×P×M×C×T 

Lower bound after 

an hour 

GA 

Solution 

GAP (%) 

1 4×10×8×3×3 330492763 334789169 1.30 

2 4×10×10×3×3 321834748 328110526 1.95 

3 5×15×10×4×2 804146778 822802984 2.32 

4 5×15×12×4×3 1421492358 1451201549 2.09 

5 5×20×15×4×3 2440900805 2510710568 2.86 

6 5×25×20×4×3 4132889013 4253982661 2.93 
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TABLE VI. Cell configuration of larged-sized instances 

Problem 

No. 

H=1 H=2 H=3 

C=1 C=2 C=3 C=4 C=1 C=2 C=3 C=4 C=1 C=2 C=3 C=4 

1 1,3,4,6 4,7,8 2,3,5,7  1,5,8 4,6,7 2,3,4,8  3,5,6,7 

8 

2,3,6,7 1,4,5,8  

2 3,7,8 2,5,9 1,4,5,6 

10 

 4,7,8,10 2,3,5,6 

9 

1,4,6,10  1,6,9 5,8,10 1,4,7,8  

3 4,6,7 1,5,6,8 

10 

3,5,6,9 4,6,7,8 

10 

2,5,7, 4,7,8,9 1,3,5,8 

10 

2,4,6,9 

10 

    

4 4,7,10 

11 

3,5,8 

10,11 

5,6,8,9 

12 

1,4,6,7 

9,11,12 

8,9,11 2,5,7 

10 

4,6,8,9 2,5,6,7 

11 

5,8,9 

12 

1,2,6,8 

10,12 

3,4,6 

11 

4,9,10 

12 

5 3,8,10 

11,14 

6,9,12 

13 

4,6,7,10 

14,15 

1,5,8,12 

13 

2,5,7,8,10 

12,13 

1,7,9,10 

11,12,15 

3,7,10 

14 

1,2,4,6,9 

11,13 

4,5,8 

10,12 

1,3,9 

15 

3,4,6,7 

9,10,13 

5,6,9 

11,15 

6 1,4,7,11 

14,15 

17 

2,5,9,12 

13,16 

19 

 

2,6,8,11 

16,20 

1,5,9,13 

14,17 

19 

2,5,7,10 

15,18 

4,8,14 

17,20 

3,6,7,9 

13,15,19 

 

4,5,6,10 

12,13,17 

18,20 

1,6,7 

10,14 

15,16 

20 

2,3,7,9 

11,12 

19 

1,5,6,8 

10,13 

15,16 

17,18 

3,4,8 

10,14 

16,19 

20 

 

 

In this regard, the proposed model is compared to the classic CMS model in terms of objective function values. To 

acquire classic CMS model, new assumptions added in this paper (assumptions (19-21)) are omitted. Subsequently, the 

ninth and tenth terms of objective function and Eq. 1 are omitted and the rest of objective terms and constraints are 

modified by omitting variables; ( )opmcWIP t  , ( )opmcWIP t  and ( )opmcWIP t .   

For the analysis mentioned above, test problem number 5 of small-sized instance is selected. For the model without 

new assumptions, by setting number of parts ( P ) from 3 to 8. However, for the proposed model, in addition to P , 

procurement cost of WIP inventories ( WIP

opP ) is set in four different values; WIP

opP , 2 WIP

opP  3 WIP

opP and 4 WIP

opP . Then, 

objective function values of two models are used as the base of the comparison.  

Eq. (27) calculates the change in the objective function for a given combination, where ( )wOFV P is the objective 

function value for the model without new assumptions with P parts and ( , )WIP

p opOFV P P is the objective function value 

for the proposed model with P parts in WIP

opP level of WIP inventory procurement cost. 

( ) ( , )
% 100

( , )

WIP

w p op

WIP

p op

OFV P OFV P P

OFV P P



 

 

(27) 

Table VII shows the values of OFVw, OFVp and % for different combinations of P and 
WIP

opP .Also, results are 

illustrated in different plots of figure 1, where the x-axis is number of parts and y-axis is objective function value of 

models in different levels of 
WIP

opP . 

It is inferred from figure 1 that the proposed model is reasonably sensitive to the change of number of parts. In other 

words 
pOFV increases as the result of increase in P . Hence, the model is validated. Besides, It is obvious that the 

proposed model is preferred to the model without new added assumptions of this paper, as it results in lower cost in all 

levels of WIP

opP , while approaching to the former model as WIP

opP level increases. The proximity of the proposed model 

with the classic model in higher level of WIP

opP indicates that the efficiency of the model decreases facing of machine 

failure costs in higher level of WIP

opP .            
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TABLE VII. Sensitivity analysis results 

Number 

of parts 
wOFV

 

 ( %)pOFV 
  

WIP procurement cost level 

WIP

opP
 

2 WIP

opP
 

3 WIP

opP
 

4 WIP

opP
 

3 84196031 90617436 (7.63) 88901468 (5.58) 87134507 (3.49) 
85997826 

(2.14) 

4 99361298 107957614 (8.65) 105198401 (5.87) 102649214 (3.31) 
101279368 

(1.93) 

5 125167848 134734091 (7.64) 131914675 (5.39) 129174095 (3.20) 
128153226 

(2.39) 

6 148409845 159285618 (7.32) 156101692 (5.18) 153681996 (3.55) 
151926965 

(2.37) 

7 165398765 178863023 (8.14) 176402058 (6.65) 171375106 (3.61) 
169660271 

(2.58) 

8 180273610 195965177 (8.70) 191852913 (6.42) 186923922 (3.68) 
185143673 

(2.70) 

                                                            

 

Fig. 1.1. WIP procurement cost level = 
WIP

op
P                            Fig. 1.2. WIP procurement cost level = 2

WIP

op
P  

 

 

            

Fig. 1.3. WIP procurement cost level = 3
WIP

op
P                               Fig. 1.4. WIP procurement cost level = 4

WIP

op
P  

Fig. 1. Sensitivity analysis results 
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VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS  

 

We presented a new approach to dynamic cell formation problem in which a comprehensive model consisting of 

different aspects of the cell formation problem is proposed to minimize the overall costs of the system such as machine 

repairing cost, inter-cell movement cost, work in process inventory cost, machine relocation cost and etc. The model 

encompasses alternative routing process and buffer storage to heighten the reliability of the system. Work in process 

inventory of each production stage are kept in the buffers to prevent the fraction of production flow. Other attributes 

and practical constraints include workload balancing, dynamic system reconfiguration, cell size limit and etc. were 

considered. It is obvious that the mathematical programming model for manufacturing cell problem is NP-hard. Hence, 

a genetic algorithm is utilized to solve the problem. 10 small-sized instances as well as 6 large-sized instances have 

designed and implemented and the performance of the genetic algorithm to reach near optimum solutions has been 

verified. Also, the validation of the proposed model as well as the applicability of new assumptions are proven by 

sensitivity analysis. To continue the current research directions, developing a simulation optimization based approach 

might be of great interest. Also, it is highly recommended to consider queuing in production as a novel assumption in 

CFP context as a related future work. 
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