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Abstract – Today, the concept of JIT production has usage in production management and inventory control 

widely. In such an environment, tardiness or earliness is essential. Therefore, scheduling tries to minimize the 

sum of earliness and tardiness, which represents customer satisfaction, as well as inventory control. Most 

studies in scheduling adopt the assumption that machines are continuously available during the planning 

horizon. But in the real world, some machines may be temporarily unavailable for reasons such as 

breakdowns or preventive maintenance activities. So, considering the unavailability as a constraint is 

necessary for scheduling problems in the JIT production system. In this study, the unavailability constraint 

has been investigated with two flexible modes on a single machine. In each period, the duration of 

unavailability corresponding to the continuous working time of the machine changes in a discrete manner 

and can adopt two different values. Since the objective function is irregular, unforced idleness may be useful, 

increasing the complexity of the problem. First, a binary integer mathematical programming model is 

presented. Due to the NP-Hardness of the problem under consideration, a genetic algorithm is proposed to 

solve the problem in large dimensions. To examine the performance of the Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO), several problem instances are generated and solved, and the obtained 

results are compared with those obtained from solving the mathematical model with the GAMS software. The 

computational results indicate the proposed algorithm has a good performance with an average deviation of 

0.87% and a reasonable computational time. 

 

Keywords– Single machine scheduling, Earliness and Tardiness, Flexible periodic availability constraints, 

Genetic Algorithm. 
                  

I. INTRODUCTION 

Nowadays, in a competitive global market, having effective scheduling industrial advances is necessary. Scheduling 

models with earliness and tardiness metrics have a close relationship with JIT production and supply chain concepts in 

production systems. Determining the sequence and scheduling of jobs is a type of decision variable that plays an 

important role in industrial and service environments. Tardiness costs cause losing the customer and finishing the job 

early, causing maintenance costs, warehouse space, insurance and taxes, stagnant capital, and product corruption. 

Therefore, machines must be inspected and checked periodically to be imposed low cost to the system. Therefore, the 

issue of unavailability as a constraint in JIT production to minimize earliness and tardiness in the single machine 

environment, which is the most basic and in practice a special case of other environments, is essential in scheduling.      
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Tsai (2007) considered minimizing the sum of earliness and tardiness in a single machine scheduling problem with 

distinct delivery time and setup time. They proposed a genetic algorithm for finding the best solution for the proposed 

model.  Benmansour et al. (2014) examined minimizing the maximum earliness and tardiness weighted in the single 

machine scheduling problem with the periodic preventive maintenance periodic with normal and limited delivery dates. 

They used a CPLEX 12.4 for finding the solution of the proposed model. Ahmadizar and Farhadi (2015) presented a 

single machine scheduling problem in which jobs are published at different times and presented to the customer in 

batches. They provided a mathematical model for the minimized sum of earliness, tardiness, holding, and delivery costs. 

Lou et al. (2015) examined a single machine scheduling problem with variable maintenance activity; while maintenance 

should begin before a certain deadline and the maintenance period increases with the start time, preemption is not 

allowed. They proposed a heuristic algorithm in polynomial time for minimizing the maximum tardiness and makespan 

and the number of tardy jobs, and the total completion time. M’Hallah and Alhajraf (2016) considered a single machine 

scheduling problem with the objective function of minimizing the sum of weight earliness and tardiness. They used Ant 

Colony Algorithm (ACO), Approximation Solving (ASV), Variable Neighborhood Search (VNS) for solving the 

proposed model.  Low et al. (2016) examined single machine scheduling for minimizing the sum of earliness and 

tardiness with common delivery date and the unavailability of distance and solve the problem. They proposed an integer 

linear programming model and used dynamic programming for solving this model. Sajadi et al. (2009) proposed a 

dynamic programming approach for lot sizing scheduling problems with periodic demand and finite horizon time. 

Niroomand et al. (2016) used a hybrid greedy algorithm for minimization tardiness/earliness in a single machine 

scheduling problem with a fuzzy delivery date.  

Ganji et al. (2017) examined a single machine scheduling with minimizing maximum earliness and also minimizing 

the number of tardy jobs with a period of flexible unavailability with resumable jobs. They used a heuristic and branch-

and-bound algorithm that was able to solve problems. Jayanthi and Anusuya (2017) proposed a PSO algorithm to 

minimize the sum of weight earliness and tardiness in single machine scheduling by considering the constraint of the 

size jobs. Touat et al. (2017) studied the problem of single machine scheduling with flexible availability constraints 

with the limited human resource with objective functions minimizing the total tardiness while preemption is not allowed 

and used a genetic algorithm for finding the optimal solution. Yuce et al. (2017) used a hybrid genetic-bee algorithm for 

minimizing earliness and tardiness penalties in the single-machine scheduling problem. Genetic algorithm operators 

have been used in the overall global search phase to increase bee algorithm (BA) search. Ahmadizar and Eteghadipour 

(2017) studied the two-agent single-machine scheduling problem with the objective function of minimizing the sum of 

earliness and tardiness. They used two greedy improvement algorithms to solve the proposed problem.  

Xiong et al. (2018) considered a single-machine scheduling problem and due date assignment. The objective 

function in this paper includes the earliness, tardiness, and due date assignment costs. They used the pseudo-

polynomial-time solution algorithms and randomized adaptive search algorithms to solve the proposed model. Pacheco 

et al. (2018) used a heuristic method based on the Variable Neighborhood Search (VNS) for sequencing jobs in a single 

machine with programmed preventive maintenance and sequence-dependent set-up times. Sadeghi (2019) considered 

the single machine production planning with periodic demand, operation cost, and periodic order quantity policy. Lin et 

al. (2019) considered a single machine with a restrictive common due window to minimize the total weighted earliness-

tardiness penalties, which conform to just-in-time (JIT) manufacturing. They used the simulated annealing (BSA) 

algorithm for solving the proposed model.  

Kellerer et al. (2020) studied a single machine scheduling problem to minimize the total weighted earliness and 

tardiness about a nonrestrictive common due date. They presented a fully polynomial-time approximation scheme 

(FPTAS). Unavailability of the machine is one of the constraints that manufacturing systems always face. Mozaffariyan 

and Sahraeian (2020) studied single-machine scheduling with linear earliness and tardiness costs considering the work 

failure, energy consumption restriction, and the allowed idleness. They presented a nonlinear mathematical model and 

used a genetic algorithm for solving this problem. Khanh Van and Van Hop (2021) studied the scheduling problem of 

parallel machines with minimizing the sum of weight earliness and tardiness and the maximum completion time. They 
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proposed a genetic algorithm based on sequence-dependent preparation time.  Sadeghi et al. (2021) applied a small lot 

delivery strategy through the JIT system for an integrated production-inventory model with multiple discrete deliveries. 

Chen et al. (2021) investigated the problem of single-machine scheduling with minimizing total tardiness, unavailability 

of the machine, and preventive maintenance constraints. They presented a genetic algorithm and showed the results of 

computational tests, the effectiveness and efficiency of the algorithm. Wang et al. (2021) investigate the single-machine 

common due-window assignment problem with generalized earliness/tardiness penalties and a rate modifying activity 

with two types of processing time for jobs, one with constant values and another with time-dependent processing times, 

also considering the constant maintenance activity and the goal of obtaining the optimal sequence. The Objective 

function and solution algorithms of existing research for single-machine scheduling are summarized in Table I. 

Table I: Summary of the features of surveyed publications 

Author Availability 
Non 

resumable 
Objective function Approach Denote 

Feldmann and 

Biskup (2003) 
- - 

total earliness and tardiness 
penalties 

Simulated 
Annealing 

1|    |∑  𝐸       

Mahnam et al. 

(2013) 
- - 

the sum of maximum earliness 
and tardiness 

Branch and 
bound-GA-

PSO 
1|rj,dj,I| ETmax 

Ahmadizar and 

Farhadi (2015)  
- - 

Sum of earliness, tardiness, 

holding, and delivery costs 

Combined 

algorithm 

1|𝑠𝑖𝑗 , B, 

D|Σ 𝑖𝑗𝐸𝑖𝑗+ 𝑖𝑗 𝑖𝑗+ℎ𝑖𝑗𝐻𝑖𝑗+𝑦𝑖𝑏𝐷𝑗 

Lou et al. (2015)  
Variable 

Maintenance 
 

tardiness and makespan, total 

completion time 
Heuristic 1|nr-v|L𝐿𝑚𝑎𝑥,Σ 𝑗, 𝐶𝑚𝑎𝑥, Σ𝐶𝑗 

Mashkani and 

Moslehi (2016) 
flexible bimodal 

periodic 
 the total completion time 

Branch and 
bound 

1|nr-fpa, bm|∑𝐶  

M’Hallah and 

Alhajraf (2016) 
- - 

Sum of weight earliness and 

tardiness 

(ACO), 

(ASV), 

(VNS) 
1|dj|Σ𝑤𝑗𝐸𝑗+Σ𝑤𝑗 𝑗 

Shahriari et al. 

(2016 ) 

Periodic 

preventive 

maintenance 
 

Total earliness and tardiness, 

and makespan 
MOPSO  

Low et al. (2016) - - 
the sum of earliness and 

tardiness 
ILP 1,h1|dj =d | ∑(Tj + Ej) 

Jayanthi and 

Anusuya (2017) 
- - 

the sum of weight earliness 

and tardiness 
PSO 1||Σ( 𝑗𝐸𝑗+ 𝑗 𝑗) 

Yuce et al.  

(2017) 
- - 

earliness and tardiness 

penalties 
GA- BA 1||Σ( 𝐸𝑗+  𝑗) 

Ahmadizar and 

Eteghadipour 

(2017) 

- - 
the sum of earliness and 

tardiness 

Greedy 

Algorithms 
1||Σ(𝐸𝑗+ 𝑗) 

Ganji et al.  

(2017) 

Flexible 

activity 
 maximum earliness Heuristic 1|nr-fa|Emax 

Touat et al. 

(2017) 

Flexible 

Periodic 

Activities 
 total tardiness GA 1|nr-fpa,ri,di|Σ  𝑖 

Kellerer et al. 

(2020) 
- - 

total weighted 

earliness-tardiness 
(FPTAS) 

1|dj = d, p(N) ≤ d| 

∑wj(Ej + Tj) 
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Continue Table I: Summary of the features of surveyed publications 

Author Availability 
Non 

resumable 
Objective function Approach Denote 

Mozaffariyan and 

Sahraeian (2020) 
- - 

total earliness and tardiness 

penalties 
GA 1|| ∑( 𝐸𝑗+  𝑗) 

Khanh Van and 

Van Hop (2021) 
-  

total earliness and tardiness 

and makespan 
GA-ISETP M||λ𝐶𝑚𝑎𝑥 + ∑(𝐸𝑗+ 𝑗) 

Chen et al.  
(2021) 

Preventive 

maintenance 
- total tardiness GA 1| PM |∑Ti 

Wang et al. 

(2021) 

Fixed 

maintenance 
- 

sums of earliness/tardiness 

penalties, the weighted 

number of early/delayed jobs 

Heuristic 
1|pj = aj, pj = λjaj, CONW|∑ (αEj 

+ βTj + θjuj + δjvj + γ d1 + ωD) 

This article 

Flexible 

bimodal 

periodic 
 

Sum of earliness and 

tardiness 
GA 1|fpa,bm| Σ(𝐸𝑗+ 𝑗) 

                  

This paper considers single-machine scheduling with the aim of minimizing the sum of earliness and tardiness with 

flexible periodic availability constraints. This paper assumed that the maximum time for jobs is fixed, and two different 

values are considered for it. Therefore, based on the mentioned cases, two different values for the maximum continuous 

working time and the period of unavailability have two different modes. These modes are called periodic dual-mode 

available restrictions. Tasks scheduled between two periods of unavailability are called categories. Due to the high 

complexity of the problem, the genetic optimization algorithm is used to solve the proposed model, and to find the 

efficiency of the genetic algorithm, minor problems are modeled and solved in GAMS software. The results are 

compared with the results of the genetic algorithm. Therefore, based on what has been said, the innovation of the 

paper can be summarized as follows. 

1.  It is considered a coordinated production system in which goods and services are delivered just in time when needed. 

2.  Reducing the costs of maintaining products in the production line and reducing defective products and reprocessing 

by having a stop in the production line. 

3.  Reduce delay times due to inaccessibility of the machine and stoppage of the production line 

4.  Use just in time strategy with production line stops 

5.  Controlling stops and preventing breakdowns due to a minor breakdown and reducing the number of equipment 

failures and unplanned expectations. 

II. PROBLEM DESCRIPTION AND MODEL FORMULATION       

This paper examines to minimize the sum of earliness and tardiness with flexible periodic availability constraints. In 

each period, the duration of the unavailability period changes according to the continuous working time of the machine 

in a discrete manner and can adopt two different values. The concept of flexibility is defined as the interval for 

unavailability period occurrence and the start time of unavailability in this interval is a decision variable. In this model,  

it is assumed that the maximum continuous working time of the machine and the duration of unavailability have fixed 

and predetermined values that the unavailability time is proportional to the continuous working time of the machine. A 

set of n independent jobs {J1,  J2, . . . , Jn} is processed in a machine at zero times. During each period, the maximum 

continuous working time of the machine can adopt two values T1 and T2, which is (T2 > T1), and the duration of each 

unavailability period, which depends on the maximum continuous working time of the machine, can adopt two values, 

take W1 and W2, which are (W2 > W1). In each period, since the maximum continuous working time of the machine and 

the duration of unavailability have two different modes, these modes are called bimodal flexible periodic availability 
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constraints. The scheduled jobs between any two unavailability periods are called batches. The objective function is to 

minimize the sum of earliness and tardiness. The problem of a single machine scheduling with the flexible bimodal 

periodic availability constraints is shown in Figure 1. The values of q1 to q4 are the sum of the processing times of the 

scheduled jobs, which represent the first to fourth batches, respectively (Mashkani and Moslehi, 2016). Therefore, the 

problem of scheduling a single machine with the objective function of minimizing the sum of earliness and tardiness 

with the flexible bimodal periodic availability constraints in the condition which preemption is not allowed is 

represented by the symbol 1|fpa, bm|∑     𝐸  
 
   , which in that bm shows the unavailability constraint of two-modes. 

 

 

 

 

 

          
Fig.1. The problem of single machine scheduling with the flexible bimodal periodic availability constraints 

       

It is possible flexible bimodal availability constraints to the flexible multiple-modes availability constraints 

 |𝑓𝑝𝑎 𝑚𝑚|∑    𝐸 
 
    generalized. In this case, it is assumed that during each period, the maximum continuous 

working time of the machine can take several values of Tp, that Tp+1 > Tp, and the duration of each period of 

unavailability, which depends on the maximum continuous working time of the machine, can take the values Wp that Wp 

+ 1 > Wp. So as the maximum working time of the machine increases so does the unavailability period. Since each period 

has a maximum continuous working time of the machine and a period of unavailability, there have several different 

modes, and these modes are called multi-mode flexible periodic availability constraints. 

The assumptions made in this paper are as follows: 

   Jobs are available in zero time. 
   Only one machine is available for processing jobs. 

   The machine can only process one job at any time. 
   Preemption is not allowed from the start to the end of the machining process on the machine. 

   The machine is not constantly available for processing during the schedule. 
   Setup times are independent of sequence and are included in processing times. 

   Each job has a determined due date. 
   Tardies and earlies have punishable, and costs depend on the time of tardies and earlies. 

   Unforced idleness may be useful. 

   All data are deterministic. 
             

Property 1. Problem 1|fpa,bm|∑     𝐸  
 
    is strongly NP-hard. 

 

Researchers have long considered the computational complexity of the problem  || ∑    until they proved the 

nonlinearity and complexity of this problem in 1989 (Du and Leung, 1990). Years later, Wan and Yuan (2013) proved 

that the problem of a single machine with minimizing the sum of earliness and tardiness with the symbol  ||∑   𝐸  is 

a strongly NP-hard problem. Since the Van and Yan problem is a special case of minimizing the sum of earliness and 

tardiness with flexible bimodal periodic availability constraints problem in the single machine environment with 

resumable jobs, then the complexity of the problem under study in this paper is With the addition of constraint at least 

that’s the size of Van and Jan's problem. It can be concluded that problem 1|fpa, bm|∑ Ti +Ei ∑        
 
    is a strongly 

NP-hard problem. 
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Notations that are used in the model are listed as below: 

In this section, the symbols and variables used in the problem are first defined, and then a linear mathematical model 

of the integer is presented. 

Index 

i  Index for jobs, i =1,…, n. 

k  Index for batches, k=1… K. 

P  Index for unavailability, P=1,2. 

 

Parameters 

𝑤   The duration of the unavailability period  

    The maximum continuous working time 

𝑝   Processing time of job i 

𝑑   Due date of job i 

M  A very large positive number. 

Decision variables 

𝑠   The starting time of kth batch  

𝑐   The completion time of job i 

    The tardiness of job i 

𝐸   The earliness of job i 

     A binary variable equal to 1 If the job j  in the sequence within the batch is before job 

i; otherwise, it is 0.  i,j = 1,2,…,n   and     j≠i 

 

𝑥 
   A binary variable. If job i is scheduled in batch k, its value will be 1; otherwise, it is 0.  

i = 1,2,…,n     and    k = 1,2,…,K  
 

𝑦 
   A binary variable equal to 1 if the maximum continuous working time of the machine 

in kth batch equals   ; otherwise, it is 0.   P = 1,2      and      k = 1,2,…,K 

According to the introduced symbols and the expressed assumptions, the mathematical model of the problem is 

formulated as follows. 
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        ∑    𝐸  

 

   

 

    s.t 

(2)  𝑖          𝑛  ∑𝑥 
 

 

   

      

(3)  𝑘             ∑𝑝 𝑥 
    

 

   

∑  𝑦 
 

 

   

 

(4)            

(5)  ꓯ 𝑘                ∑∑𝑝 𝑥 
   ∑ ∑𝑤 𝑦 

   

 

   

   

   

   

   

 

   

 

(6)  ꓯ 𝑘                       

(7) ꓯ𝑖          𝑛 ꓯ 𝑘             𝐶        𝑝   (  𝑥 
 ) 

(8) ꓯ 𝑖          𝑛 ꓯ 𝑘               𝐶          ∑𝑤 𝑦 
   (  𝑥 

 )

 

   

 

(9) ꓯ 𝑖          𝑛 ꓯ 𝑗          𝑛  𝐶    𝐶   𝑝   (   ) 

(10) ꓯ 𝑖          𝑛 ꓯ 𝑗          𝑛  𝐶    𝐶   𝑝   (     ) 

(11)  ꓯ 𝑘             ∑𝑦 
     

 

   

 

(12) ꓯ 𝑖          𝑛          {  𝑑   𝐶 } 
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(13) ꓯ 𝑖          𝑛   𝐸     {  𝐶   𝑑 } 

(14) ꓯ 𝑖          𝑛 ꓯ 𝑘                   𝑥 
  𝑦 

       {   } 

        

Constraint (1) indicates the objective function of minimizing the sum of earliness and tardiness. Due to constraints 

(2), each job can only be scheduled in one batch. Due to constraint (3), the sum of processing times for scheduled in the 

kth batch is less than the maximum continuous working time of the machine in that batch. Constraint (4) indicates that 

the start time of the first batch is zero. Constraint (5) calculates the start time for the kth batch, where k = 2,3, ..., K, and 

constraint (6) prevent interference from jobs within batches. The set of constraints (7) and (8) calculate the completion 

time of job i, which is equal to the sum of the start times of the kth batch and the processing time of the i job, and 

ensures that the jobs do not interfere with the unavailability time. The set of constraints (9) and (10) prevents the 

interference of two jobs on the machine and determines the order of jobs in the sequence. In these constraints, M is a 

very large positive value. Constraints (11) The maximum continuous working time of the machine in each batch can 

have a certain amount. Constraints (12) and (13) calculate the earliness and tardiness times. Finally, constraint (14) 

indicates that the decision variables are binary.   

 In this model, the maximum number of k that represents the number of batches for n jobs is equal to n. The 

minimum job that can be scheduled in a batch is obtained by dividing the shortest time of work continuity time by the 

largest time of processing job. The maximum job that can be scheduled in a batch is equal to setting the processing time 

to ascending order and the number of jobs in which the total processing time is equal to or less than the largest 

continuous working time. The following formula is used to obtain M, which is a large positive value (Mashkani and 

Moslehi, 2016). 

M = ∑ 𝑝 
 
        𝑛     (15) 

        

The proposed model is solved by GAMS software using the CPLEX solver, and its accuracy has been verified. The 

GAMS is able of optimal solution for a small size, then for solving the problem in a larger size, the genetic algorithm is 

used, and the results are examined. 

III. PROPOSED ALGORITHM APPROACH 

Evolutionary algorithms are part of optimization algorithms, most of which are random and inspired by nature. 

These algorithms are suitable for searching in complex and very large spaces and are less likely to be trapped in local 

optimal. The genetic algorithm is a general method of metaheuristic for discrete optimization that is suitable for solving 

scheduling problems. This method was invented in 1975 by Holland. Genetic algorithms use Darwin's principles of 

natural selection to find the optimal formula for predicting or matching a pattern. This method is a kind of neighbor 

search method that uses genetic evolution as a problem-solving pattern. As shown, the problem of a single machine 

with the objective function minimizing the sum of earliness and tardiness with flexible bimodal periodic availability 

constraints is an NP-hard problem. The mathematical model is only able to solve the problem in small dimensions, so a 

metaheuristic is used to solve the problem in large dimensions. Here, the steps of the genetic algorithm are fully 

explored and used to optimize the problem. 

 



Journal of Quality Engineering and Production Optimization  / Vol. 6, No. 2, Summer & Autumn 2021, PP. 59-78 67 

 

A. Chromosome structure 

 The first step in the genetic algorithm is to show the answers to the problem in the form of a chromosome. Each 

chromosome is a string or sequence of bits that represents a feasible solution problem. In most cases, the initial answer 

is randomly generated, and in some cases, it is generated using a heuristic algorithm, and in this case, it is random. In 

this paper, the coding method is that there is a chromosome with two arrays, one of which is for displaying jobs and the 

other for displaying the type of unavailability. The first array that shows the sequence of jobs uses a set of non-

repetitive natural numbers. Each number corresponds to a job specified by the job counter. The second array is the 

unavailability type. Since we have two types of unavailability, they are marked with the numbers 1 and 2, which 

respectively indicate the unavailability of the first and second types. Also, due to the jobs being categorized, and each 

job can only be placed in one batch, the upper limit for the number of the batch is considered the number of jobs. So the 

number of existing jobs is not unavailability. In this paper, the length of chromosomes is considered as the number of 

batches, which is equal to the number of jobs. Figure 2 shows an example of chromosome coding for six jobs.  

       

 

5 3 1 2 4 6 

1 2 1 1 2 2 

 

            
Fig. 2. Display of chromosome coding for six jobs 

     

The parameters for the six jobs to show the chromosome structure of the problem are given in Tables II and III. Wp, 

which is related to unavailability, is selected according to the Tp parameter, which is continuous working time. 

   

Table II: Processing time and due date for six jobs  

i 1 2 3 4 5 6 

Processing time 5 6 5 8 1 3 

Due date 21 12 6 18 12 20 
           

Table III: Parameters     and    for six jobs  

P 1 2 

   10 14 

   5 7 
               

In each chromosome, information about a point in the input space is coded. To identify the point to which the 

chromosome refers, it must be decoded. The chromosome must be separated into constructive genes to decode, and then 

each gene must be decoded. Here, each gene represents a job, and since, based on one of the assumptions that all jobs 

are available at zero times, the first gene on the chromosome is scheduled at zero times as much as the processing time, 

and the next jobs in the chromosome are arranged in sequence. Then, according to the second dimension of the 

chromosome, which indicates the type of unavailability, the processing time of the jobs is summed from the first job 

until the total processing times are smaller or equal to a continuous working time proportional to unavailability shown 

in the first gene of the second dimension. The unavailability shown in the first gene is then placed in sequence and 

continued until all jobs have been performed, respectively. Figure 3 shows an example of chromosome decoding. 
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Fig. 3. display of chromosome decoding for six jobs 

B. Production of the primary population 

 The second step in implementing the genetic algorithm is to generate a series of primary solutions called 

populations. One of the genetic algorithm characteristics is that instead of focusing on one point in the search space or 

one chromosome, it focuses on a population of chromosomes. Each population or generation of chromosomes is the 

same size. The primary population is produced only once at the beginning of the first generation of the genetic 

algorithm. Determining the appropriate population size is important in implementing a genetic algorithm. In this paper, 

the initial population includes sequences whose number of sequences is equal to the size of the population along each 

chromosome, which is equal to the number of jobs. In each sequence, inside each of the genes, a number representing 

the job counter is randomly placed. Depending on the type of unavailability, the jobs are categorized, each batch 

including a number of jobs whose sum of processing times must be commensurate with the type of unavailability 

provided in the second dimension of the chromosome. In other words, the sum of the processing times of the jobs 

within each batch should be less than or equal to continuous working time, which is proportional to the type of 

unavailability provided. Jobs are added in the order specified in the first dimension of the chromosome and so on until 

there is nothing to add. The objective function of the problem under study is an irregular objective function. Sometimes 

unforced idleness times may be useful for irregular functions and can improve the response to the problem. By stating a 

particular condition, it can be shown that intentional idleness time can improve the objective function. Consider that the 

nth job is the last job in the last batch. If the n job has earliness, the amount of the objective function can be improved 

by keeping the job idleness until it can be completed on time. Here, a proposed algorithm is used to apply inserted 

idleness to the genetic algorithm, which is listed below. Idleness algorithms are applied after obtaining a sequence of 

jobs and placing unavailability. In this way, tardy and early jobs are calculated, and from the end of the sequence, the 

number of tardy or on-time jobs and early jobs is counted. If the number of early jobs is greater than the number of 

tardy and on-time jobs, they are shifted forward to the size of the smallest number of early jobs. Because the idleness 

algorithm is applied from the end to the beginning of the sequence, the first applied idleness is kept as the lowest 

amount of idleness, which is measured each time with the new idleness amount, and the lowest is selected. When a job 

in the sequence has the conditions for applying newly inserted idleness, if idleness has been applied before, the idleness 

of the previous job is updated, that is, the amount of idleness entered from it is reduced. The setting of the parameters 

for the proposed genetic algorithm is given in Table IV.  

Table IV: parameters for the genetic algorithm 

value parameters 

N Chromosome length 

100 Population size 

0.8 Probability of crossover 

0.08 Probability of  mutation 

10*N The number of repetitions 
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The steps in the idleness algorithm are as follows. 

C. Idleness algorithm 

 Step 0) Specify the sequence of jobs. Put the unavailable in the sequence. Consider the amount finish time to job 

consider be f and put it in a list called F. Then, put the number of tardinesses in T. Put the number of earliness jobs to E. 

Put idleness time amount in a list called I. Consider all the values in List I at first to be zero. Put the delivery time 

difference and finish time to L.  

Step1)  Consider the counter i equal to the last job. Set the value of T and E to zero. Put the idleness time amount in Id. 

Consider the smallest value of L equal to min. Then consider Id = -min. Put j = i + 1. 

Step 2) Continue while i > = 0. 

Step 3) If it was L > = 0, set T = T + 1. Put i = i - 1 and go to step two. Otherwise, go to the fifth step. 

Step 4) If the list I in position i has idleness, then consider the value of j = i. Take Id equal to the idleness amount of 

position i in List I. Set the value of T and E to zero again. Put i = i - 1 and go to step two. Otherwise put i =i - 1. 

Step 5) If it was L < 0, put E = E + 1. Then select the minimum value of Id from between the Id in List I and the value 

of L.  

Step 6) If it was T < E, then add Id to the finish time of jobs from i to j (f = f + Id). Update F list. Put Id on the idleness I 

list, if they had idleness on the I list before, then subtract the new idleness amount from the previous idleness 

amount and update the I list. Then go to step one. Otherwise: 

            Step 6-1) If Id ≠ 0. Then go to the fourth step.  

            Step 6-2) If Id = 0. Then set i = i - 1 and go to step two. 

D. Fitness objective function assignment 

Whether the answer is appropriate or not is measured by the criterion obtained from the objective function—the 

more appropriate the answer, the greater the fitness value. In optimization problems, the fitness function is the same as 

the objective function used to evaluate and reproduce new chromosomes, called "offspring of later generations." 

Depending on the objective function, the fit of the chromosomes must be calculated by two parameters, the start time 

and the completion time of each job. By calculating these parameters, the tardiness and early of each job are obtained 

according to the relations (12) and (13) of the model. In the end, the objective function is calculated by summing the 

values of tardiness and earliness. The fitness function is obtained from the following equation.  

   
  𝑚𝑎𝑥                           𝑐𝑜        𝑛 (16) 

      

In this case, the objective is to minimize tardiness and earliness, and the fitness function is obtained by 

distinguishing each value of the objective function for each chromosome from the largest value of the objective 

function. In this formula, Co counts the chromosomes,    
  is the value of the fitness function. The value of max     is 

the largest value of the objective function among population chromosomes. ZCO is also the value of the objective 

function for each of the population chromosomes. 

E. Selection strategy 

 The choice is the process of selecting two parents for the act of intersection. To select more suitable parents for the 

production of children with high fitness. In this research, the roulette wheel method has been used, so the chromosomes 

of the population in the form of a sequence wrought, then the total value of each chromosome is calculated with the 

value of all previous chromosomes. Then the relative cumulative fitness value of the chromosomes is calculated. A 

random number α is created between zero and one. Among chromosomes, the first chromosome with a relative 

cumulative value greater than α is selected. 
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 F. Genetic operators 

 After determining the suitability of the parent population chromosomes, the most suitable chromosomes are passed 

on to the next generation, produce the next generation, crossover, and mutation operators on the parents are performed 

as pairs from populations. This mechanism forms a new population of existing chromosomes and the size of the current 

population. The size of the population remains constant throughout the process. 

G. Intersection operator 

 It is a process that involves two parents and produces a new child. A crossover operator is used on production ponds 

in the hope that a better child will be produced. This operation is done in three steps: 

1. The reproductive operator selects a pair of parents from the reproductive pool. 

2. A point of intersection is randomly selected along the string. 

3. Finally, the values of the strings change according to the intersection point. 

 

 In this paper, a method similar to a two-point intersection is used, with the difference that one of the points is used 

instead of a two-point and does not use the one-point method, because that is the form it is common, which one point to 

be randomly determined that to the right of one parent and the left of another parent selected is not effective here, 

because repetition occurs. Here, after selecting the parents, a point is considered, from the left, means from zero to that 

point, from the first parent, and to continue the string to the size of the chromosome from the next parent from the first 

point examines everywhere, every gene that was not repetitive is added to the child. Figure 4 below shows the crossover 

operator.  

 

 

 

 

 

 

              
Fig. 4.  Crossover operator of the one-point method. 

H. mutation operator 

 After the crossover, the chromosomes undergo a mutations operator. Mutations are designed to help search the 

entire search space and prevent the algorithm from falling into the local optimal. In this research, the replacement 

method has been used. In this type of mutation, two random positions of a string are selected, and their related values 

are exchanged. Figure 5 shows an example of this type of mutation. 

 

 

 

                
Fig.5. an example of this type of mutation 
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I. Stop criterion 

 There are several rules for stopping the genetic algorithm. Maximum generation, time spent, and lack of 

improvement in fitness. This paper uses the rule of maximum generation. Thus, the genetic algorithm stops when a 

certain number of generations have occurred. For example, if a generation generator has reached a certain number, the 

algorithm stops. 

For example, 11 work with the numbers i =1,2,3, ...,11 and in order of processing time {6, 8, 5, 8, 4, 3, 4, 4, 9, 5, 3} 

and delivery time {60, 46, 44, 50, 63, 43, 49, 34, 33, 52, 58} with two values of T1= 15, T2 =21 for maximum 

continuous working time of the machine and also two values of W1 = 5, W2 = 7 for periods unavailability is considered. 

Using the genetic algorithm, the optimal answer is 97. For this example, the best sequence is shown in Figure 6, while 

any other sequence will have more values in the objective function, and consequently, they will have more delay and 

early times costs. 

 

 

 

 

Fig. 6. display the optimal solution for 11 jobs 

IV. SENSITIVE ANALYSES     

To evaluate the problem, 70 samples were produced. The jobs in the produced samples have values of {8, 9, 10, 11, 

12, 15, 18, 21, 24, 27, 30, 35, 40, 40, 50}. Repeat five times for each job at each level. The processing time of the jobs 

is a random number obtained using a discrete uniform distribution in the interval [1, 10]. Delivery time is also randomly 

obtained from a discrete uniform distribution from the following range. 

 𝑑  [        ∑ 𝑝 
 
            ∑ 𝑝 

 
   ]     (17) 

        

In relation (16), the parameter R is the tardiness factor, which is obtained randomly from the set {0.2 and 0.6}. Q is 

the domain of delivery dates, which is obtained randomly from the set {0.2 and 0.6.}. ∑ 𝑝 
 
    is the sum of processing 

times. The T1 parameter is randomly selected from the sets {10, 15, 20} و, and the value of W1 is 5. Also, the parameter 

T2 is obtained randomly from the set {1.4T1 and 1.8T1}. The value of W2 is also obtained from 1.6W1. All of the above 

are mentioned as input parameters for this algorithm; they have been experimentally obtained and are based on 

extensive research on various problems. 

Tables V: Comparing the result of  genetic algorithm ,PSO and GAMS for small sizes programming 

PSO result GA result GAMS result 
Q R W2 W1 T2 T1 i n 

T Max Average Min T Max Average Min T 1  OV 2 

14.26 0 0 0 9.59 0 0 0 167.98 0 0.2 0.2 8 5 27 15 1 

8 9.75 1.51 0.75 0 5.68 0 0 0 6.18 0 0.6 0.6 8 5 27 15 2 

11.90 4.16 2.08 0 9.25 0 0 0 8.03 0 0.6 0.2 8 5 21 15 3 
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Continue Tables V: Comparing the result of  genetic algorithm ,PSO and GAMS for small sizes programming 

PSO result GA result GAMS result 
Q R W2 W1 T2 T1 i n 

T Max Average Min T Max Average Min T 1  OV 2 

10.10 1.04 0.70 0 5.67 0 0 0 9.72 0 0.6 0.6 8 5 28 20 4 
 

13.27 2.77 1.38 0 9.55 0 0 0 137.24 0 0.6 0.2 8 5 21 15 5 

11.85 1.89 0.98 0 7.94 0 0 0 65.83 0        Average 

13.94 7.69 6.92 6.15 8.16 0 0 0 259.05 0 0.6 0.2 8 5 21 15 1 

9 

10.38 1.65 1.38 1.10 5.83 0 0 0 543.20 0 0.6 0.6 8 5 21 15 2 

12.84 5.74 4.02 2.29 6.89 0 0 0 936.44 0 0.2 0.2 8 5 18 10 3 

15.04 15.09 12.26 9.43 12.65 0 0 0 194.83 0 0.6 0.2 8 5 28 20 4 

10.92 2.66 1.33 0 6.03 0 0 0 283.85 0 0.6 0.6 8 5 27 15 5 

12.62 6.56 5.18 3.79 7.91 0 0 0 443.47 0        Average 

12.04 5.96 5.29 4.63 6.92 0 0 0 7200 0 0.2 0.6 8 5 28 20 1 

10 

20.39 16 13 10 13.46 0 0 0 747.02 0 0.2 0.2 8 5 36 20 2 

16.96 5.06 3.79 2.53 11.97 0 0 0 540.2 0 0.2 0.2 8 5 27 15 3 

12.07 5.88 4.90 3.92 6.43 0 0 0 1149 0 0.6 0.6 8 5 36 20 4 

22.45 28.57 23.80 21.42 14.56 0 0 0 65.81 0 0.6 0.2 8 5 28 20 5 

16.78 12.29 10.15 8.5 10.66 0 0 0 1940.44 0        Average 

13.09 7.81 7.03 6.25 7.15 0 0 0 5341 0 0.6 0.6 8 5 21 15 1 

11 

14.53 19.68 15.74 11.81 7.67 0 0 0 7200 0 0.6 0.2 8 5 14 10 2 

11.53 13 6.66 0 6.64 0 0 0 3041 0 0.6 0.6 8 5 28 20 3 

15.28 6.53 4.57 2.61 8.23 0 0 0 7200 0 0.2 0.2 8 5 18 10 4 

12.64 6.62 4.81 3.61 8.51 0 0 0 990.7 0 0.6 0.6 8 5 14 10 5 

13.41 10.72 7.76 4.85 7.64 0 0 0 4754.54 0        Average 

23.39 13.40 11.34 9.27 12.33 0 0 0 7200 0 0.2 0.2 8 5 27 15 1 

12 

23.51 30.69 30.19 29.70 16.67 0 0 0 7200 0 0.6 0.2 8 5 27 15 2 

18.24 18.47 16.56 14.64 9.18 0 0 0 7200 1.9 0.6 0.2 8 5 14 10 3 

18.90 16.85 15.73 14.60 9.83 0 0 0 7200 2 0.2 0.2 8 5 28 20 4 

21.42 5.26 3.82 2.39 10.09 0.4 0.3 0 7200 1 0.2 0.2 8 5 21 15 5 

21.09 16.93 15.52 14.12 11.62 0.08 0.06 0 7200 0.98        Average 

20.66 10.51 7.91 6.25 9.15 0.01 0.01 0 2880.85 0.19 Total average 
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In this section, the relative deviation percentage of the values is calculated according to the value obtained from the 

objective function. Then, the values obtained in Tables V and VI are compared for the mathematical model and the 

proposed algorithm. The relative deviation percentage of each of the results is calculated as Eq.(18). 

𝑔𝑎𝑝  
𝑠𝑜𝑙  𝑖𝑜𝑛   𝑏𝑒𝑠  𝑠𝑜𝑙  𝑖𝑜𝑛

𝑏𝑒𝑠  𝑠𝑜𝑙  𝑖𝑜𝑛
                          (18) 

          

In Eq. (18) “solution”, the answer obtained from the objective function is each of the problem solving, and “best 

solution” is the best value of the objective function obtained from that problem from between the genetic algorithm and 

the mathematical model. 

Table V solved small size of the problems and found the optimal solution by GAMS software, then solved these 

problems again by genetic algorithm. 

As it is known, the solutions of the genetic algorithm are the same as the optimal solution (GAMS), and this shows 

the high efficiency of the genetic algorithm for solving the proposed problem. Then the problem is solved for a large 

size, and its results are shown in Table VI. 

The results of solving the samples were calculated according to 70 samples, each of which was dissolved five times 

by the genetic algorithm and the values of the objective function obtained in the three levels of minimum, maximum 

and average, and the same function has been performed for the PSO algorithm. In  Tables VI, "*" sign indicates that the 

GAMS software is not able to solve the problem in 7200 seconds. Examining the results shown in Table V and Table 

VI, it can be seen that due to the complexity of the problem and the limitation of memory, the mathematical model can 

optimize up to 11 jobs and also, due to the solution of the mathematical model in GAMS software and numerous time 

reviews that showed that GAMS software can solve the model up to 28 jobs, even with the change of time from 7200 

seconds to 10800 seconds and also to 14400 seconds, the results showed any things did not change. And this result for 

the PSO algorithm showed that the average deviation is 36.24%, of the best solution obtained in the average deviation 

time is 99.40%. In contrast, the proposed genetic algorithm can solve problems in a shorter time and is a better solution 

than the mathematical model. Also, due to the complexity of the problem, the mathematical model can solve jobs in 

small sizes and cannot solve medium and large samples if the algorithm has the ability to solve the samples in small, 

medium, and large dimensions at a better time and provides an optimal and near-optimal solution. Also, the average 

deviation in the genetic algorithm is 0.87% of the best solution obtained in a relatively appropriate time. In comparison, 

this value is 39.98% for GAMS software. Calculation time is higher in some samples due to the implementation of the 

idleness algorithm for data in which idleness is applied, and this data is more for samples whose value R (tardiness 

factor) is 0.2 because, in this case, the delivery time of jobs is close to each other. Also, samples in which the 

continuous working time has the highest value job takes longer time to solution, because in times of greater continuous 

working time, the number of batches decreases, so the number of periods of unavailability decreases, and this causes to 

jobs by taking idleness the value of an objective function be better. At the same time, the values related to the absence 

of unforced idleness are listed in the table as “NI” which indicates that unforced idleness is useful for some instances.  

Tables VI: Comparing the GA, PSO and GAMS result for  large sizes problems 

PSO Result GA Result GAMS result Data 
n 

T Max Average Min T Max Average Min NI T OV Q R W2 W1 T2 T1 i 

17.35 8.98 8.80 8.61 8.52 0 0 0 * 7200 0 0.2 0.6 8 5 14 10 1 

15 18.03 17.22 16.66 16.11 8.52 0 0 0 * 7200 0 0.2 0.6 8 5 27 15 2 

19.44 14.28 11.90 9.52 8.45 0 0 0 * 7200 0.9 0.2 0.6 8 5 27 15 3 
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Continue Tables VI: Comparing the GA, PSO and GAMS result for  large sizes problems 

PSO Result GA Result GAMS result Data 
n 

T Max Average Min T Max Average Min NI T OV Q R W2 W1 T2 T1 i 

27.91 17.36 16.31 15.26 12.29 0 0 0 12.1 7200 13 0.2 0.2 8 5 21 15 4 
15 

16.93 18.32 16.88 15.43 8.22 0.6 0.1 0 * 7200 0.04 0.6 0.6 8 5 14 10 5 

19.93 15.23 14.11 12.98 9.2 0.12 0.02 0  7200 2.78        Average 

37.62 12.23 8.89 7.26 11.28 1.3 0.5 0 1.53 259.05 6.7 0.6 0.2 8 5 21 15 1 

18 

35.71 18.94 15.78 12.63 9.59 1.5 0.8 0 * 543.20 13.5 0.6 0.6 8 5 21 15 2 

36.59 24.79 22.56 20.33 9.55 0 0 0 * 936.44 10.5 0.2 0.2 8 5 18 10 3 

36.91 32.43 30.23 28.04 9.62 1 0.6 0 * 194.83 21.7 0.6 0.2 8 5 28 20 4 

35.71 45.83 39.20 32.95 9.69 0.7 0.2 0 * 283.85 2.2 0.6 0.6 8 5 27 15 5 

36.50 26.84 23.33 20.24 9.94 0.9 0.42 0  443.47 10.92        Average 

40.29 20.57 18.12 15.68 10.79 1 0.4 0 * 7200 20 0.2 0.6 8 5 28 20 1 

21 

60.97 62.58 56.97 51.36 41.19 3.1 1.9 0 36.05 747.02 60.7 0.2 0.2 8 5 36 20 2 

20.92 30 27.16 24.32 10.84 1.6 0.6 0 * 540.2 49 0.2 0.2 8 5 27 15 3 

57.99 55.71 53.71 51.71 35.42 4.7 1.9 0 23.14 1149 25.2 0.6 0.6 8 5 36 20 4 

60.04 95.90 90.35 84.79 41.54 0.5 0.4 0 63.37 65.81 94.7 0.6 0.2 8 5 28 20 5 

48.04 52.95 49.26 45.57 27.95 2.18 1.04 0  
1940.4

4 
46.32        Average 

29.23 18.05 15.71 13.37 14.88 2.5 1.8 0 * 5341 27.4 0.6 0.6 8 5 21 15 1 

24 

21.97 31.14 29.31 27.48 13.50 3.9 1.2 0 * 7200 17.1 0.6 0.2 8 5 14 10 2 

91.12 59.69 53.18 46.66 45.36 2 1.2 0 27.27 3041 140.7 0.6 0.6 8 5 28 20 3 

21.77 22.41 20.27 18.12 13.66 2.4 1.3 0 * 7200 21.7 0.2 0.2 8 5 18 10 4 

22.67 72.02 66.58 61.13 13.50 2 0.8 0 * 990.7 124.1 0.6 0.6 8 5 14 10 5 

37.35 40.66 37.01 33.35 20.18 2.56 1.26 0  
4754.5

4 
66.2        Average 

22.74 27.55 26.36 25.18 14.28 3.6 2 0 * 7200 47.7 0.2 0.2 8 5 27 15 1 

27 

26.01 16.16 15.09 13.84 15.67 1.4 0.5 0 * 7200 204.1 0.6 0.2 8 5 27 15 2 

47.05 21.46 20.11 18.93 15.24 2.1 0.7 0 * 7200 47.1 0.6 0.2 8 5 14 10 3 

78.39 60.69 55.01 50.93 39.79 2.7 1.3 0 4.2 7200 5.4 0.2 0.2 8 5 28 20 4 

70.30 64.06 61.37 58.68 16.78 2.5 1.1 0 * 7200 64.1 0.2 0.2 8 5 21 15 5 
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Continue Tables VI: Comparing the GA, PSO and GAMS result for  large sizes problems 

PSO Result GA Result GAMS result Data 
n 

T Max Average Min T Max Average Min NI T OV Q R W2 W1 T2 T1 i 

48.89 37.98 35.58 33.51 20.35 2.64 1.12 0  7200 73.68        Average 

194.78 71.03 68.57 66.12 67.28 5.7 2.1 0 17.85 * * 0.6 0.2 8 5 36 20 1 

 

 
30 

195.97 68.42 62.98 57.54 67.52 2.5 0.8 0 32.98 * * 0.6 0.2 8 5 36 20 2 

182.10 73.45 69.09 64.72 63.67 2.1 1 0 22.18 * * 0.6 0.2 8 5 28 20 3 

74.46 30.40 28.43 26.46 17.42 2.6 1 0 * * * 0.2 0.2 8 5 14 10 4 

122.54 24.11 22.42 20.73 21.20 1.7 0.8 0 * * * 0.2 0.2 8 5 21 15 5 

153.97 53.48 50.29 47.11 47.38 2.94 1.14 0  * *        Average 

55.88 25.89 23.86 21.83 16.85 1.7 0.9 0 * * * 0.2 0.6 8 5 27 15 1 

35 

220.39 29.74 27.68 25.63 45.40 1.3 0.5 0 8.64 * * 0.2 0.2 8 5 36 20 2 

68.59 45.39 44.48 43.57 17.69 2.6 1.2 0 * * * 0.6 0.2 8 5 14 10 3 

54.89 12.43 11.47 10.50 16.73 1.8 1.1 0 * * * 0.2 0.6 8 5 18 10 4 

53.02 66.41 63 59.52 16.96 2.4 0.9 0 * * * 0.6 0.6 8 5 28 20 5 

90.55 35.97 34.09 32.21 22.72 1.96 0.92 0  * *        Average 

99.51 53.63 50.56 47 25.54 3.81 2.4 0 * * * 0.6 0.2 8 5 18 10 1 

40 

244.44 22.32 20.56 18.80 46.67 0.8 0.3 0 * * * 0.2 0.2 8 5 27 15 2 

289.54 85.14 82.12 79.11 93.69 3.7 1.1 0 21.78 * * 0.6 0.2 8 5 28 20 3 

59.68 20.48 19.77 19.06 18.96 2 1.1 0 * * * 0.2 0.6 8 5 14 10 4 

217.10 71.21 69.60 67.99 58.49 2.3 1.4 0 4.99 * * 0.6 0.2 8 5 21 15 5 

182.05 50.55 48.52 46.39 48.67 2.52 1.26 0  * *        Average 

187.23 47.64 46.33 45.02 23.45 0.7 0.3 0 * * * 0.6 0.6 8 5 21 15 1 

50 

530.27 46.27 45.15 44.03 31.20 2 0.9 0 * * * 0.6 0.2 8 5 21 15 2 

198.62 19.66 18.34 17.03 22.10 0.8 0.5 0 * * * 0.2 0.6 8 5 21 15 3 

284.13 18.34 18.30 18.27 91.23 1.46 1 0 14.01 * * 0.2 0.2 8 5 36 20 4 

186.41 44.95 41.94 38.93 21.52 1.6 0.8 0 * * * 0.6 0.6 8 5 27 15 5 

277.33 35.37 34.01 32.65 37.90 1.31 0.7 0  * *         

99.40 38.78 36.24 33.77 27.14 1.88 0.87 0  7200 39.98 Total average 
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V. CONCLUSION 

 In this paper, the problem of scheduling a single machine with the objective function of minimizing the sum of 

earliness and tardiness with flexible periodic availability constraints has been investigated. Today, one of the most 

important features of production is the extensive application of the concept of JIT production in the management of 

production and inventory, in which each job should be completed as close as possible to its delivery date. In such 

environments, it is an important period of time that a job is an earliness or tardiness. Therefore, scheduling programs are 

responsible for minimizing the total earliness and tardiness, which indicates customer satisfaction as well as the level of 

product performance in terms of inventory. In most research, one of the most common assumptions is that machines are 

always available along the planning horizon. But in the real world, a machine may not be available for a variety of 

reasons, such as breakdowns or the need for preventive maintenance or change tools. In this paper, the unavailability 

constraint of two flexible modes has been investigated. According to this definition, in each period, the duration of 

unavailability changes according to the continuous working time of the device in a discrete manner and can take two 

different values. Jobs are available in zero time, and preemption is not allowed; the data is also deterministic. Because 

the objective function is irregular unforced idleness may be helpful, which this subject increases the complexity of the 

problem. In this paper, for this problem, a mathematical model of mixed-integer linear programming has been proposed 

to obtain the optimal solution of the problem, which in GAMS plan was evaluated with a CPLEX solver in that the 

model was only able to solve the problem optimally up to 11 dimensions. Therefore, due to that, the problem is NP-

hard, and also due to that the model was not able to solve the problem in medium and large dimensions, a genetic 

algorithm has been proposed to solve it. In order to evaluate the performance of the proposed genetic algorithm, a PSO 

algorithm is designed and compared with the genetic algorithm. In the following, to examine the performance of the 

proposed algorithms, a number of sample problems were designed and solved, and compared with the mathematical 

model and PSO algorithm. Finally, the results of generating 70 sample problems showed that the proposed genetic 

algorithm provided optimal values in small samples in a much shorter time and medium and large sizes more 

appropriate values than the model at a reasonable time with a relative error value of 0.87% percent Provides. 

Following extensive studies in the field of single machine scheduling with the objective function of minimizing the 

sum of earliness and tardiness with bimodal flexible periodic availability constraints and doing the present study, the 

following are some suggestions for future research: 

1.   Special and numerous conditions can be created in the scheduling problem, which has not been observed in the 

investigated studies. These include restrictions such as preconditions, blocking, etc., along with availability 

constraints. 

2.   Availability constraints examined in this paper are flexible. Considering other types of unavailability introduced in 

this paper, this problem can be done with variable unavailability constraint that has been less studied.  

3.   Given that preemption is not allowed in this problem and the non-resumable Jobs, as well as few studies, have been 

done on semi-resumable jobs, this problem can be developed by considering semi-resumable jobs. 

4.  Heuristic and metaheuristic algorithms are commonly used to solve scheduling problems. In most scheduling 

research, algorithms are used individually or in combination. Due to the NP-Hard nature of these problems, we can 

use other metaheuristic algorithms to improve computational time reduction and better responses. 

REFERENCES  

 

Ahmadizar, F. and Eteghadipour, J. Single-machine earliness–tardiness scheduling with two competing agents and idle time. 

Engineering Optimization, 2017. 49(3): p. 499-512. 

Ahmadizar, F. and Farhadi, S. Single-machine batch delivery scheduling with job release dates, due windows and earliness, tardiness, 

holding and delivery costs. Computers & Operations Research, 2015. 53: p. 194-205. 

 



Journal of Quality Engineering and Production Optimization  / Vol. 6, No. 2, Summer & Autumn 2021, PP. 59-78 77 

 

Benmansour, R., et al., Minimizing the weighted sum of maximum earliness and maximum tardiness costs on a single machine with 

periodic preventive maintenance. Computers & Operations Research, 2014. 47: p. 106-113. 

Chen, L., Wang, J. and Yang, W. A single machine scheduling problem with machine availability constraints and preventive 

maintenance. International Journal of Production Research, 2021. 59(9): p. 2708-2721. 

Du, J. and Leung, J.Y.-T. Minimizing total tardiness on one machine is NP-hard. Mathematics of operations research, 1990. 15(3): p. 

483-495. 

Feldmann, M. and Biskup, D. Single-machine scheduling for minimizing earliness and tardiness penalties by meta-heuristic 

approaches. Computers & Industrial Engineering, 2003. 44(2): p. 307-323. 

Ganji, F., Moslehi, G. and Ghalebsaz Jeddi, B. Minimizing maximum earliness in single-machine scheduling with flexible 

maintenance time. Scientia Iranica, 2017. 24(4): p. 2082-2094. 

Jayanthi, S. and Anusuya, S. Minimization of total weighted earliness and tardiness using PSO for one machine scheduling. 

International Journal of Pure and Applied Mathematical Sciences, 2017. 10(1): p. 35-44. 

Kellerer, H., Rustogi, K. and Strusevich, V.A. A fast FPTAS for single machine scheduling problem of minimizing total weighted 

earliness and tardiness about a large common due date. Omega, 2020. 90: p. 101992. 

Khanh Van, B. and Van Hop, N. Genetic algorithm with initial sequence for parallel machines scheduling with sequence dependent 

setup times based on earliness-tardiness. Journal of Industrial and Production Engineering, 2021. 38(1): p. 18-28. 

Lin, S.-W., et al., Single machine job sequencing with a restricted common due window. IEEE Access, 2019. 7: p. 148741-148755. 

Low, C., Li, R.-K. and Wu, G.-H. Minimizing total earliness and tardiness for common due date single-machine scheduling with an 

unavailability interval. Mathematical Problems in Engineering, 2016. 6: p. 1-12. 

Luo, W., Cheng, T.E. and Ji, M. Single-machine scheduling with a variable maintenance activity. Computers & Industrial 

Engineering, 2015. 79: p. 168-174. 

Mahnam, M., Moslehi, G. and Ghomi, S.M.T.F. Single machine scheduling with unequal release times and idle insert for minimizing 

the sum of maximum earliness and tardiness. Mathematical and Computer Modelling, 2013. 57(9-10): p. 2549-2563. 

Mashkani, O. and Moslehi, G. Minimising the total completion time in a single machine scheduling problem under bimodal flexible 

periodic availability constraints. International Journal of Computer Integrated Manufacturing, 2016. 29(3): p. 323-341. 

M’Hallah, R. and Alhajraf, A. Ant colony systems for the single-machine total weighted earliness tardiness scheduling problem. 

Journal of Scheduling, 2016. 19(2): p. 191-205. 

Mozaffariyan, S. and Sahraeian, R. Single-machine scheduling considering carryover sequence-dependent setup time, and earliness 

and tardiness penalties of production. Journal of Industrial and Systems Engineering, 2020. 13(Special issue: 16th International 

Industrial Engineering Conference): p. 112-120. 

Niroomand, S., et al., Hybrid greedy algorithms for fuzzy tardiness/earliness minimisation in a special single machine scheduling 

problem: case study and generalisation. International Journal of Computer Integrated Manufacturing, 2016. 29(8): p. 870-888. 

Pacheco, J., et al., Variable neighborhood search with memory for a single-machine scheduling problem with periodic maintenance 

and sequence-dependent set-up times. Knowledge-Based Systems, 2018. 145: p. 236-249. 

Sadeghi, H., A forecasting system by considering product reliability, POQ policy, and periodic demand. Journal of Quality 

Engineering and Production Optimization, 2019. 4(2): p. 133-148. 



78 Esmaeili, M. et. al.  / Minimizing the sum of earliness and tardiness in single-machine scheduling 

 

Sajadi, S., Arianezhad, M.G. and Sadeghi, H.A. An Improved WAGNER-WHITIN Algorithm. 2009. 20(3): p. 117-123. 

Sadeghi, H., Golpîra, H. and Khan, S.A.R. Optimal integrated production-inventory system considering shortages and discrete 

delivery orders. Computers & Industrial Engineering, 2021. 156: p. 107233. 

Shahriari, M., et al., JIT single machine scheduling problem with periodic preventive maintenance. Journal of Industrial Engineering 

International, 2016. 12(3): p. 299-310. 

Touat, M., et al., A hybridization of genetic algorithms and fuzzy logic for the single-machine scheduling with flexible maintenance 

problem under human resource constraints. Applied Soft Computing, 2017. 59: p. 556-573. 

Tsai, T.-I., A genetic algorithm for solving the single machine earliness/tardiness problem with distinct due dates and ready times . 

The International Journal of Advanced Manufacturing Technology, 2007. 31(9-10): p. 994-1000. 

Wan, L. and Yuan, J. Single-machine scheduling to minimize the total earliness and tardiness is strongly NP-hard. Operations 

Research Letters, 2013. 41(4): p. 363-365. 

Wang, J.-B., Hu, Y. and Zhang, B. Common due-window assignment for single-machine scheduling with generalized 

earliness/tardiness penalties and a rate-modifying activity. Engineering Optimization, 2021. 53(3): p. 496-512. 

Xiong, X., et al., Single-machine scheduling and common due date assignment with potential machine disruption. International 

Journal of Production Research, 2018. 56(3): p. 1345-1360. 

Yuce, B., et al., Hybrid Genetic Bees Algorithm applied to single machine scheduling with earliness and tardiness penalties . 

Computers & Industrial Engineering, 2017. 113: p. 842-858. 


