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Abstract – This paper takes a predictive scheduling approach to deal with machine disruption and uncertain 

job processing times in single-machine systems. A two-dimensional scale is proposed based on robustness 

and stability. The expected total realized tardiness of jobs and the expected sum of absolute deviation 

between the planned and realized job completion times are respectively considered as robustness and 

stability measures. Considering the total tardiness as a robustness measure includes due dates, the customer 

satisfaction enhancement level is achievable. We propose a novel heuristic to deal with such an NP-hard 

problem. Computational results show the proposed method's superiority in satisfying customers and staff and 

increasing systems accountability, especially in large-size problems over the common methods in the 

literature. 

 

Keywords– Machine breakdowns, Predictive heuristic, Robust and Stable Scheduling, Uncertain processing 

time. 
                    

I. INTRODUCTION 

Disruptions same as processing time variability, machine breakdowns, due dates uncertainty, etc., are common in 

the production environment and prevent the schedule from executing as planned. So, it is expected to be some 

deviations between the real and initial schedules. The comparison of the actual schedule with the initial one can be 

carried out via robustness and stability measures (Goren & Sabuncuoglu, 2009). Robustness refers to the deviation 

between the performance criteria, and stability is concerned with the deviation between the solutions of the real and the 

initial schedules Al-Hinai et al., 2011). Predictive, reactive, or Predictive-reactive strategies are performed to adjust the 

deviations resulted from the uncertainties (Mehta & Uzsoy, 1998). Future uncertainties are considered upon setting the 

initial schedule in the predictive, contrary to the reactive scheduling strategy (Goren, 2002). Here, a two-stage algorithm 

is proposed to generate a robust and stable schedule. In the first stage, robust scheduling is generated based on some 

theorems. Then predictive and reactive strategies are exploited to deal with machine breakdown. Dealing with 

uncertainty takes a long time in reactive strategies such as rescheduling methods, which can be avoided by employing 

predictive strategies  (Fazayeli et al., 2016). Here we adopt a predictive strategy to hedge against breakdowns. Idle-time 

insertion is one of the standard strategies to adjust the effect of downtimes (e.g., see Goren & Sabuncuoglu, 2009; 

Mehta &  Uzsoy, 1998). However, finding the correct position and amount of buffer times is a serious challenge to this 

method (Nouiri, et al., 2017).      
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Here we propose a linear programming model to adjust the idle-time insertion method. Solving this model 

determines the amount and position of idle times. The main contributions of this paper are: 

-    A single-machine system under two sources of uncertainty is considered.  

-    A triple scale is proposed to meet the needs of the customer, producer, and staff simultaneously.  

-    A linear programming-based predictive heuristic is proposed to adjust the deviations from the uncertainty of the job 

processing times and machine breakdown.  

-    A surrogate measure is proposed to enhance solution robustness.  

-    A linear programming model is proposed to determine the proper position and the amount of the buffer times. 

 

This article is organized as follows. In Section 2, the literature is reviewed.  The problem is defined, and the solution 

method is proposed in Section 3. The computational results and conclusions of the article are presented in sections 4 

and 5. 

Ergo, in this paper, an exposer to machine failure has been done with the predictive approach. 

II. LITERATUE REVIEW  

Scheduling under uncertainty applies in various fields such as industry and medicine (e.g.,  Rastgar& Sahraeian, 

2017), (Maghzi et al., 2020), (Mousavi et al., 2015)). Mehta and Uzsoy (1998) consider machine breakdown disruption 

in a single machine environment and propose an optimized surrogate measure heuristic (OSMH) method based on idle-

time insertion to generate a stable schedule (Mehta and Uzsoy, 1998). O'Donovan et al. (1999) studied a single-machine 

scheduling problem under machine failure disruption with total tardiness as the performance measure and the sum of 

absolute completion time deviations from the initial schedule as a stability measure.  Liu et al. (2007) proposed Genetic 

Algorithm to produce a robust and stable schedule in a single machine scheduling problem under machine failure 

disruption with total weighted tardiness as a performance measure.   

Yang et al. (2002) showed the NP-completeness of the robust version of the sum of the completion time single 

machine scheduling problem under processing times uncertainty and proposed some heuristic methods. Goren and 

Sabuncuoglu (2009) studied a single-machine scheduling problem under machine breakdown disruption and processing 

time uncertainty and proposed branch-and-bound algorithm and some efficient theorems to produce robust schedules 

and stable schedules. Zhiqiang et al. (2015) studied a single machine scheduling problem under machine breakdown 

uncertainty and applied Genetic Algorithm to produce a robust and stable schedule. Rahmani (2017) applied Genetic 

Algorithm (GA) to produce a robust and stable schedule in a two-machine flow shop scheduling problem with machine 

breakdown and processing time uncertainty. Liao & Fu (2019) took into consideration the robustness of total 

completion time and the tardiness of production. They proposed a min-max regret criterion-based robust scheduling 

model to study the permutation flow-shop scheduling problem (PFSP) with interval production time. Niu et al. (2019) 

propose a distributionally robust optimization (DRO) model for single machine scheduling with uncertain processing 

times to find an optimal sequence that minimizes the expected worst-case total tardiness. Paprocka (2019) proposed a 

rescheduling and maintenance scheduling method based on probability theory. Abtahi et al. (2020) proposed a tri-

component measure based on efficiency, robustness, and stability for a planning problem with uncertain processing time 

and machine failure through a predictive optimization method. Aissaoui, et al. (2020) addressed an Integrated Proactive 

Surgery Scheduling Problem while considering possible disruption of the emergency patient entry (new job arrival). To 

evaluate the performance of the proposed mixed-integer linear program, they conducted a Monte Carlo simulation 

intending to build stable and robust schedules that are less vulnerable to late starting or ending activities.  

Abtahi et al. (2020) proposed SEPT-OSMH and LPOSMH heuristics to produce robust and stable schedules in a 

single machine scheduling problem under processing time uncertainty and machine breakdowns. Here we propose 

another heuristic method in a single machine scheduling problem under processing time uncertainty and machine 

breakdowns and compare its effectiveness with heuristics proposed in Abtahi et al. (2020), same as the LPOSMH 
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method and others. The main differences of LPOSMH with the proposed heuristic method (PM) are: 

-    LPOSMH has no idea about the position of idle times. 

-    Idle-times inserts before all jobs in LPOSMH, but in the proposed heuristic, an idle-time may not allocate to all of 

the jobs. 

-    In LPOSMH, the quantity of the idle time of a job is depended on its expected processing time.  

-    Although in LPOSMH, the deterioration of the robustness measure is somehow controlled by an LP model, but this 

is done more accurately in the proposed method.  

A. Gap analysis 

Here are the results of reviewing related articles (See Table I). In the following,  we have provided some suggestions 

to deal with these gaps in the research area.  

-    One source of uncertainty has often been considered.  

-    Except in some related studies, stability and robustness were considered separately. 

-    The robustness measure is often defined based on Cmax, which does not reflect the customers' needs.  

-    Dealing with uncertainty takes a long time in reactive strategies such as rescheduling methods, which can be avoided 

by employing predictive strategies (Fazayeli, 2016). Here we adopt a predictive strategy to hedge against 

breakdowns.  

-    Idle-time insertion is one of the standard strategies to adjust the effect of downtimes (e.g., see Mehta & Uzsoy, 1998; 

Goren, & Sabuncuoglu, 2009). However, finding the correct position and amount of buffer times is a serious 

challenge to this method (Nouiri et al., 2017). Here we propose a predictive heuristic method to adjust the idle-time 

insertion method. This linear programming-based predictive heuristic adjusts the deviations from the uncertainty of 

the job processing times and machine breakdown. Solving this model determines the amount and position of idle 

times. Moreover, a surrogate measure is proposed to enhance solution robustness in the objective function of the 

proposed linear programming model.  

-    A triple scale is proposed to meet the needs of the customer, producer, and staff simultaneously.  

III. PROBLEM DEFINITION AND SOLUTION METHODS   

In this section, we propose a heuristic method to the robust and stable single-machine problem under the uncertainty 

of job processing times and machine breakdowns. 

The following hypotheses are considered here: 

-    Jobs are available at the beginning of the schedule. 

-    The machine has availability restrictions. 

-    Negative exponential is considered as the distribution of the time between two consecutive failures, and after each 

failure, a fixed repair time is added. 

-    The interrupted job will continue after machine repair. 

 

Here we suppose that the processing time of job j  follows the exponential distribution with rate 
j

 , and the time 

between two consecutive breakdowns follows the exponential distribution with rate . Also, the expected total 

(realized) tardiness and the sum of absolute differences of the realized completion times are respectively the 

robustness and stability measures (RM, SM).  
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Table I. Reviewing and categorizing the related articles  

   DEAL WITH UNCERTAINTY       THE MAIN   
 

    

SOLVING METHOD 
PREDICTIVE
-REACTIVE  

REACTIVE PREDICTIVE STABILITY ROBUSTNESS 
OBJECTIVE 
FUNCTION 

THE KIND OF UNCERTAINTY   RESOURCE YEAR NO 

B&B           Cmax job processing times 
Kouvelis, 

P. et al. 
2000 1 

B&B           Cmax job processing times 

Balasubram

anian, J., & 

Grossmann, 

I. 

2002 2 

Meta heuristic 

method 
     

 
  Cmax machine breakdown 

Liu, L.  

et al. 
2007 3 

Analytical 

method 
          Cmax 

job processing times 

machine breakdown  

Sabuncuogl

u, I., & 

Goren, S 

2009 4 

Meta heuristic 

method 
          Cmax 

normal job processing 

times 
Liu, Q 2011 5 

Meta heuristic 

method 
          Cmax arrivals of a new job 

Rahmani 

and 

Heydari 

2014 6 

Meta heuristic 

method 
          Cmax machine breakdown  

Zhiqiang 

Lu et al. 
2015 7 

Meta heuristic 

method 
          Cmax 

job processing times  

machine breakdown  

Rahmani. 

D 
2017 8 

Meta heuristic 

method 
          Cmax machine breakdown  

Shen, J., & 

Zhu, Y. 
2017 9 

Meta heuristic 

method 
          Cmax machine breakdown  Nouiri, M 2017 10 

A hybrid variable 

neighborhood 

search  

          Cmax arrivals of a new job Liu, L. 2019 11 

Meta heuristic 

method  
    

 
  Cmax 

normal job processing 

times 
Ma, S et al. 2019 12 

Meta heuristic 

method 
          Cmax machine breakdown  

Sajadi, S. 

M. et al. 
2019 13 

E-learning           Cmax machine breakdown  
Yang, Y., 

et al. 
2020 14 

Robust 

optimization 

method 

          
Total 

tardiness 

job processing times  

machine breakdown  

Abtahi,z.  

et al. 
2020 15 

Analytical & 

heuristic methods 
     

Total 

completion 

time 

job processing times  

machine breakdown  

Abtahi,z.  

et al. 
2020 16 

Table II. INDICES AND PARAMETERS 

,i j  Job index, , 1, 2, ,i j n   

r  The expected value of repair time after each breakdown 

U 
Uptimes; The time between two consecutive machine breakdowns (which follows an 

exponential distribution with rate  

j
d  Due date of job j 

j  
The exponential distribution rate of generation initial processing time of job j on the 

machine 

 jPE  The expected value of processing time of job j 

jpr  The  probability of machine breakdown during the processing of job j  
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jADT  
The average idle time of job j; Average time required to return the machine to an operational mode in the event 

of a machine failure during the processing of job 
j

  

jS  the predictive planned start time of the job j  

jC  the  predictive planned completion time of job  j   

jT  the  predictive planned tardiness of job  j   

r

jT  
 

the realized tardiness of job j 

jAT  the idle-time of job 
j

  

kjAT  the sum of idle times between the jobs k and
j

  
             

According to the classification of Graham, a robust and stable single-machine scheduling problem under machine 

disruption and job processing time uncertainty is represented as: 

p  ~ ex ( ) . (1- ).( ); :1 ~ expj j U RM SMbrkd np w    
 

(1) 
          

Here, the expected total tardiness is taken as a primary objective. The problem 1 / / j
j

T  is known to be NP-hard 

even if deterministic job processing times are considered, and no machine breakdowns occur (Briskorn et al., 2011). 

Assuming Erlang Distribution processing times of jobs, the Tabu search algorithm proposed to handle the single 

machine stable total weighted tardiness problem (Bożejko et al., 2017). Goren and Sabuncuoglu (2009) analytically 

proved the optimality of SEPT for single machine expected total tardiness problem when the job processing times 

follow the exponential distribution with rate j
 . According to a theorem of them, the optimal sequence for Eq. (2) is 

acquired via Shortest Expected Processing Time (SEPT) rule. 

  |1| exp ;
r

j

j
j j j Td dp E

 
 
 

    (2) 

       
To handle the underdiscution problem, heuristic methods are proposed based on the above and the idea of OSMH 

(Optimized Surrogate Measure Heuristic Predictive). OSMH was proposed to minimize the maximum lateness in the 

job shop environment under machine breakdown disruption  (Mehta & Uzsoy, 1998). OSMH is performed in two 

stages; a predictive schedule is produced to minimize the primary objective without considering breakdowns first, then 

the idle times are inserted into the schedule to enhance the stability without considering the effects on the primary 

objective. O'Donovan (1999) modified OSMH to minimize the total tardiness in a single machine scheduling under 

uncertainty of machine breakdowns proposing ATC in the first stage of OSMH. A modified two-stage GA was proposed 

to obtain a robust and stable schedule in a single machine problem under machine breakdown disruption (Liu, 2007). 

We propose a predictive heuristic in two stages to solve the under-discussion problem. First, the initial robust schedule 

is generated without considering breakdowns. Then, idle times are inserted to improve schedule stability. Here, we 

modify the challenges of the idle-time insertion method through a linear programming model. Then the proposed 

method is compared with an effective LP-based heuristic to the under discussion problem called LPOSMH. 

IV. THE SOLUTION METHOD    

To address such a problem, a two-step predictive method has been developed. Following Mehta and Uzsoy (1998), 

the processing time uncertainty is considered as the only source of uncertainty in the first stage. At this stage, based on 
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the proceeding theorem of optimality of SEPT for the expected sum of realized tardiness, a robust schedule is produced. 

The breakdown effect is then predictively adjusted, and appropriate amounts of idle times are determined through a 

linear programming model to form a robust and stable schedule. 

A. The proposed predictive procedure 
      

Stage 1: Generating a robust solution. 

Here, we consider 
1

n

j

r

jRM T


 as a robustness measure. A robust partial solution is generated based on the 

proceeding theorem of optimality of SEPT for the expected sum of realized tardiness.  

Stage 2: producing the planned predictive schedule.  

Step 2.1. Generating the proper idle times. 

The proper position and quantity of idle-time of jobs obtained through solving a Linear Programming model (Eqs. 

(6)- (16)) applying CPLEX 12.6 to improve the stability of the schedule. 

Step 2.2. Modification of the partial schedule. 

Modify the partial schedule resulting from stage 1 to produce the planned predictive robust and stable schedule.  

Stage 3: Producing the actual schedule.  

Step 3.1. Random breakdown generation. 

Step 3.2. Reaction to breakdowns. 

    Implement righting shift rescheduling policy on the robust partial schedule obtained from stage1 to get the actual 

scheduling once breakdown occurrence. 

Stag 4. Robustness and stability calculation. 

Calculate the robustness and stability measures via Eqs. (17) and (18). 

B. Generating the proper idle-times 

Improving the stability level of the schedule will deteriorate its robustness level Rahmani (2017). Therefore the 

amount of the idle-times should be determined in such a way that it does not cause the robustness level to deteriorate. 

The idle-time of job j (ADTj) acquires from Eq. (3) Pinedo (2016). 

 .E( )j jr P MTBFADT   (3) 

                

In the objective function of the proposed model, robustness and stability are optimized simultaneously. In other 

words, in addition to minimizing the expected total tardiness of jobs, the instability of scheduling is also minimized. 

The probability of a machine breakdown is included in the definition of instability. The idle-time allocated to each job 

in the OSMH method is obtained from Eq. (3). This way of allocating idle times leads to the deterioration of the 

schedule robustness. In the proposed model, instead of allocating idle-time to each job, a share of the total idle-time of 

job j to k is allocated to them in the schedule. The probability of a machine breakdown determines this share. The 

probability of machine breakdown during the procession of job j is obtained from Eq. (4). 
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( ( ) )1 expj jE Ppr    (4) 

Let kjADT as the number of idle-times from job k to job j. It is determined as close as possible to ADTj. So, the 

measure of instability is defined as Eq. (5). 

 
1

1 2

 max ,0
jn

j j kj
j k

ISM pr ADT AT


 

   (5) 

   

Also, 
1

n

j jRM T


  is a robustness measure. The LP model is:  

 
1

1 1 2

max ,0min (1- ) 
jn n

k j k
j j j kj

T pr ATz ADT 


  

  
 

(6) 

. .s t  
1 1

( ) 2
k k k k

E P AT kS S
 

      (7) 

( )                              
k k k

C S E P k    (8) 

1
                       2,

j

ll kkj
AT AT j k j

 
      (9) 

max{ , 0}
k k k

T C d   (10) 

1
0S   (11) 

1
0AT   (12) 

0
i

S   (13) 

0
i

C   (14) 

0
j

AT   (15) 

0                                               ,kjAT j k j    (16) 

Constraint (6) shows the equality of the planned start time of job k to the sum of the planned start time, the start time 

of its immediately before the job (job), its expected processing time, and its idle time. Constraints (7) to (10) compute 

the total tardiness of job k. Constraint (8) gives the completion time of job k. Constraint (10) computes the tardiness for 

job k. Constraint (9) calculates the sum of idle-times between job k, j. Constraint (11) ensures that the start time of the 

first job is zero. Constraint (12) shows that there is no idle time before the first job. Constraints (13)-(15) respectively 

emphasize the positivity of the start, completion, and idle-time of job k. Also, constraint (16) indicates the positivity of 

the idle times between jobs k, j.   
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V. COMPUTATIONAL RESULTS 

A. Data generation 

Data generation is done according to Abtahi et al. (2020). The number of jobs is 10, 30, 50, 70, 90. Job processing 

times follow from exponential distributions with rates  1 2
, ,... ... 0.1,1,

i n j
Uniform      . For each combination, 

100 instances are generated, increasing the number of tests to a total of 500. There is a common due date for all jobs, 

equal to five times the maximum expected processing time of jobs. The time between two consecutive failures follows 

from an exponential distribution with a mean ( )
jjE P   where  2,5,10  . The repair times follow from a 

uniform distribution, i.e.    1 2 1 2
( ), ( ) ,

j j j j
E P E Pr       . The unit considered for the job processing times 

(minute, hour, day, and so on) is the same as the unit considered for the common due date, the time between 

breakdowns, and the breakdowns' duration. The machine availabilities for 
1 2 3 4 5 6
, , , ,  and BB B B B B  are respectively 

97.1%, 94.3%, 87%, 87%, 76.9%, and 57%, calculated through the binomial approximation (Table III). So there are 500 

samples exposed to 6 types of failures, that is, 3,000 compounds. 

Table III. TYPE OF MACHINE BREAKDOWN
*
  

Type of machine 

breakdown
i

B  

The mean time between 

breakdowns  
j

E p  

Breakdown durations 

    
1 2

,
j j

uniform E p E p   

Machine availability (%) 

 A      

1
B  10  

1 2
, (0.1, 0.5)    0.97 

2
B  5  

1 2
, (0.1, 0.5)    0.94 

3
B  2  

1 2
, (0.1, 0.5)    0.869 

4
B  10    

1 2
, 1, 2    0.869 

5
B  5    

1 2
, 1, 2    0.769 

6
B  2    

1 2
, 1, 2    0.57 

   
*Abtahi et al. (Abtahi, 2020)

 

B. Robustness, stability, and the objective function 

The robustness measure ( RM ) calculates from Eq. (17), where 
r

jT is the total tardiness of the actual schedule.  

r

jRM T  (17) 

         

The stability measure (SM) is stated as an absolute deviation of job completion times, where 
r

jC , and 
jC are the 

completion time of job j in the actual, and the predictive schedules (Eq. (18)).  

1

n

j

r

j jSM C C


 
 

(18) 

 . 1 .Z RM SM    (19) 
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The objective function acquires from (Eq. (19)), where  1    indicates the robustness importance degree, and 

 1   indicates the stability importance degree. The proposed method (PM) and LPOSMH were compared through 

the value of objective functions (see Table IV). Calculations show the average RM, SM, and Z for different Bi when the 

number of jobs is 70.  

TABLE IV. THE COMPARISON OF THE OBJECTIVE FUNCTION OF PM AND LPOSMH 

  PM   LPOSMH   

n ( , )   RM  SM  Z RM  SM  Z 

70 (0, 1) 2690.73 260.22 260.22 2761.92 679.2225 679.2225 

70 (0.1,0.9) 2688.385 260.9475 503.6913 2773.68 678.805 888.2925 

70 (0.2,0.8) 2696.75 261.2625 748.36 2726.64 680.4625 1089.698 

70 (0.3,0.7) 2698.395 264.3375 994.5548 2723.84 680.5675 1293.549 

70 (0.4,0.6) 2692.34 260.465 1233.215 2748.48 679.66 1507.188 

70 (0.5,0.5) 2683.905 257.6225 1470.764 2800 678.375 1739.188 

70 (0.6,0.4) 2694.545 264.6875 1722.602 2751.28 679.95 1922.748 

70 (0.7,0.3) 2697.52 261.405 1966.686 2724.4 680.5 2111.23 

70 (0.8,0.2) 2707.04 263.39 2218.31 2661.12 682.2125 2265.339 

70 (0.9,0.1) 2704.59 260.3775 2460.169 2667.84 681.745 2469.231 

70 (1, 0) 2704.31 263.55 2704.31 2689.512 681.85 2689.512 
                  

Here, the performance of the predictive LPOSMH is compared with the proposed heuristic. In the LPOSMH 

method, the robust schedule is obtained based on the optimality of SEPT for a robust measure, and an LP-based model 

is performed to control the amount of the idle-times (see  (Abtahi et al., 2020) for more details). The main differences of 

LPOSMH with the proposed heuristic method (PM) are: 

-    LPOSMH has no idea about the position of idle times. 

-    Idle-times inserts before all jobs in LPOSMH, but in the proposed heuristic, an idle-time may not allocate to all of 

the jobs. 

-    In LPOSMH, the quantity of the idle time of a job is depended on its expected processing time.  

-    Although in LPOSMH, the deterioration of the robustness measure is somehow controlled by an LP model, but this 

is done more accurately in the proposed method.  

C. Sensitivity Analysis 

The results are reported for a different number of jobs and parameters. ZLPOSMH and ZPM indicate the objective 

function of LPOSMH and the proposed method.  

The effect of machine availability. It can be concluded from computations that: 

-    LPOSMH outperforms the proposed method (PM) for B1, B2 (see Fig. (3) and Fig. (4)). 

-    At the higher level of availability, PM is preferred and offers a more stable schedule (see Fig. (4) and Fig. (5)).  

-    In the case of a higher availability level, the stability is more improved (see Fig. (2) and Fig. (5)).  
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That is, in the case of machine wear and high failure rate and repair time, the performance of  LPOSMH is better. 

The effect of the number of jobs. It can be concluded from computations that: 

-    As the number of jobs increases, the effect of stability is more evident, and the ratio of the objective function 

LPOSMH to PM is greater (see Fig. (5)).  

-    The effect of availability on the stability and the objective function is greater than the effect of the job numbers. 

 

In the comparison of Fig. (5) and Fig. (6), the ratio of the objective function of LPOSMH to PM is about 25 in Fig. 

(5) and  2.5 in Fig. (6). 

Comparison of LPOSMH with PM. It can be concluded from computations that: 

-    PM produces a more stable schedule than LPOSMH (see Fig. (2), Fig (5), and Fig (6)). 

-    The difference in the performance of the two methods stems from the difference in the level of stability. In other 

words, the effect of the difference in robustness is much less than the difference in stability. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Comparison of the robustness of LPOSMH and PM for 10 jobs, B1 , and alpha=0.5 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Comparison of the stability of LPOSMH and PM for 10 jobs, B1 , and alpha=0.5 
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Fig. 3. Comparison of the objective function of LPOSMH and PM for 10 jobs, B1 , alpha=0.5 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of the robustness of LPOSMH and PM for 10 jobs, B6 , and alpha=0.5. 

 

 

 

 

 

 

 

 

 

Fig. 5. Comparison of the stability of LPOSMH and PM for 10 jobs, B6 , and alpha=0.5. 
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Fig. 6. Comparison of the stability of LPOSMH and PM for 50 jobs, B1 , alpha=0.5 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Comparison of the objective function of LPOSMH and PM for 50 jobs, B1 , alpha=0.5 

        

The superiority of LPOSMH is approved for the same problem over the reactive and hybrid methods in Abtahi et al. 

(2020). So, we can conclude that the proposed method has a higher performance than these reactive and hybrid 

methods. 

VI. CONCLUSION 

In this paper, a single machine scheduling problem under uncertainty of job processing times and machine 

breakdown is presented. The problem is modeled as a bi-objective problem of robustness and stability. In the first stage 

of the proposed two-stage predictive heuristic, a robust schedule is generated considering the uncertainty of job 

processing times. This robust partial schedule is produced based on the optimality of SEPT for the expected total 

tardiness of jobs. In the second stage, the weaknesses of the idle-time insertion method are justified. A linear 

programming model is proposed in this stage to enhance the stability and control the deterioration of the schedule 

robustness. The proposed heuristic is compared with LPOSMH. Since previously the superiority of LPOSMH approved 

for the same problem over the reaction and hybrid methods, we can conclude that the proposed method has a higher 

performance than these methods, too. When the machines are not yet very worn (in higher availability modes), the 

advantage of the proposed heuristic is more pronounced. Also, by increasing the number of jobs, the proposed heuristic 
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has shown its advantage by producing more robust schedules. 

In future researches, other systems, such as flow shop systems, can be considered. Moreover, the method can be 

generalized to include the breakdowns of more than one machine. Another possibility for extending this work is the 

consideration of other distributions for machine failure. Consequently, maintenance inclusion is also suggested.  
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