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Abstract –This study integrates the problem of locating and routing electric and conventional vehicles 

besides considering greenhouse gases emission. This problem is a subset of the problems of locating and 

routing and the green routing problem in which a combination of electric and conventional vehicles is used. 

The advantage of this model is the aid of the utilization of electric vehicle technology to reduce the 

elimination of greenhouse gases. This model can be used in the design of the transport and logistics system of 

organizations and companies. Many models have been developed and applied concerning electric vehicles. 

However, this type of composition and its use is subject to environmental requirements to reduce greenhouse 

gas emissions. We also assumed the capability of recharging and battery replacement in the model. The 

model for different samples was solved using GAMS software and a multi-objective particle swarm 

optimization (MOPSO) algorithm. Besides, the impact of increasing the tax on greenhouse gas (GHG) 

emissions was tested on electric vehicle usage, amount of GHG emissions, and system costs. The results show 

that the model can be used to design the transport and logistics systems of organizations to impose the least 

charges besides emitting the least greenhouse gases. 

 

Keywords–Battery Swap in Electric VRP, Electric Vehicle Routing Problem (EVRP), Greenhouse Gas 

Emission Reduction, Location Routing, Two-Stage Stochastic Programing. 
                    

I. INTRODUCTION 

Currently, fossil fuels are considered the primary source of energy (Mouhrim et al.(2018)). Therefore, the 

continuous use of this kind of energy will produce greenhouse gases, which will cause global warming, reduce the 

concentration of oxygen, and create natural disasters. Since the transport sector is the main factor for producing carbon 

dioxide, a limitation for the total production of carbon dioxide is considered for transport companies. There are very 

restricted laws in this area. There are penalties and finings for emissions that increase gradually. Also, governments 

oblige car manufacturers to update themselves with the newest regulations related to environmental problems. Also, in 

some countries, there are incentive plans for companies that care about green transportation. The United States 

Environmental Protecting Agency (2020) and European Commission (2020) are two major legislator organizations in 

this area. 

Because of these limitations, companies desire to utilize clean technology for their transport fleet. Therefore, electric 

vehicles are the solution to protect the planet against climate change. Electric Vehicles (EVs), such as cars, trucks,
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electric trains, airplanes, could be divided into several classes, including Battery Electric Vehicles (BEVs), Hybrid 

Electric Vehicles (HEVs), and Fuel-Cell Electric Vehicles (FCEVs). In this study, an EV is referred to as a hybrid truck. 

EVs could be utilized in several applications such as public transportation, commodity deliveries, or courier operations. 

The main advantage of EVs includes lower energy expense and less maintenance requirement (Mouhrim et al. (2018)). 

Also, electric vehicles are silent and could be easily recycled. Recently, governments have started projects to encourage 

companies to expand this technology on the market. However, several limitations exist on electric vehicles as follows: 

I. Electric vehicles have a limited range. This issue imposes a construction charge of stations to the system. 

II. The charging of electric vehicle batteries requires much more time than filling a fuel tank. Also, the time of charging 

depends on the amount of available charge of the battery. 

III. The initial cost of the electric fleet is high due to the higher worth of electric vehicles. 

IV. The battery is heavy and bulky, occupying much space. 

 

All of these constraints have encountered difficulties in transporting electric vehicles in the transportation sector. So 

many companies have just partially replaced their fuel vehicles with electric vehicles. 

The current study presents mixed-integer linear programming that desires to formulate a hybrid fleet that has a 

limited range besides conventional vehicles' greenhouse gas emission constraints. Time window and limited capacity 

constraints are evaluated too. The main goal is to present the best route that optimizes both incurred cost of the 

combined fleet and the incurred gas emission costs. The transport network consists of: 

I. Several clients have to be visited. Each client possesses a positive demand with a specific visiting time. 

II. Charging stations are set with the duty of charging the electric vehicles. These stations could be used by more than 

one electric vehicle. 

 

This paper aims to optimize two different objectives. The first objective includes minimization of the energy 

expenses, cost of charging electric vehicles at stations, the cost of generating greenhouse gases produced by fuel 

vehicles, and finally, the cost of reducing the battery level of electric vehicles. The second objective includes 

minimization of the amount of carbon dioxide gas emissions. Both goals are prone to different scenarios. Paths are 

selected concerning constraints on the limitation of carbon dioxide emissions by vehicles, battery capacity, time 

window, and load capacity. 

II. Literature review 

the literature review is divided into several separate sections as follows to provide a comprehensive study: 

A. The Vehicle Routing Problem (VRP) 

The first study on the routing problem was conducted by Danzig, Fulkerson, and Johnson (1954) for a traveling 

salesman problem. The first paper published as a routing problem was Golden et al. (1977). The vehicle routing is 

divided into several categories, including Capacitated vehicle routing problem (Laporte (2009)), Periodic path problem 

(Campbell and Wilson (2014)), vehicle routing problem with time windows (Bräysy and Gendreau (2005a), (2005b) 

and Rabbani et al. (2018)), dynamic routing problem (Pillac et al. (2013)), pick-up and delivery (Berbeglia et al. (2007), 

Euchi (2017)), vehicle routing with multiple warehouses (Montoya-Torres et al.(2015)), routing problem with 

retransmissions (Archetti and Speranza (2012)) and the green routing problem. Since the routing problem is an NP-hard 

(Lenstra and Kan (1981)), exact algorithms are efficient only for small instances. Heuristic methods have been devised 

for large-scale problems.  

B. Green Vehicle Routing Problem (GVRP) 

The transportation sector is one of the biggest fuel consumers and has a large share of air pollution (Salimifard et al. 
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(2012)). Green routing problems are referred to as energy consumption issues. In Green routing problems, fuel prices 

constitute a large share of the transportation cost of the systems (Xiao et al.(2012)). Fuel consumption reduction and 

transportation efficiency improvement are critical solutions to reduce pollution. The reduction in fuel consumption will 

also reduce greenhouse gas emissions (Erdoğan and Miller-Hooks (2012), Kara et al. (2007), Li et al. (2019)). 

Therefore, fuel consumption is an essential factor for GVRP. 

However, to the best of our knowledge, routing problems that desire to minimize fuel consumption are not 

extensively evaluated. Kara et al. (2007) considered a more realistic transportation cost based on the vehicle load and 

the length of the route it travels. Xiao et al. (2012) introduced a factor for fuel consumption, including traveled distance 

and the vehicle load. Kuo (2010) included the speed of the vehicle in the time-dependent routing problem. The other 

similar studies related to the routing problem to minimize fuel consumption can be mentioned by, Fagerholt (1999), 

Sambracos et al. (2004), Nanthavanij et al. (2008), Tavares et al.(2008), Apaydin and Gonullu (2008), and Glock and 

Kim (2015). 

Pollution from greenhouse gases has direct and indirect impacts on humans and the ecosystem as a whole. 

Increasing concern and the negative environmental impact of transportation will encourage the evaluation of the 

rescheduling concept in the network by considering the production rate of greenhouse gases (Bektaş and Laporte 

(2011)). The problem of pollution routing is selecting vehicles with less pollution, especially prone to carbon gases (Lin 

et al. (2014a)). Palmer (2007) invented a routing model and carbon dioxide production, and along with travel time and 

distance, calculate the amount of carbon dioxide production. The reduction in carbon dioxide production is possible by 

broadening the objectives of the routing base for environmental impact (Bektaş and Laporte (2011), McKinnon (2007), 

Palmer (2007), Sbihi and Eglese (2007), Maden et al.(2010)).  

Lin et al. (2014b) divided the Green VRP studies into several categories, including Green-VRP, VRP in reverse 

logistics (VRPRL), and Pollution Routing Problem (PRP). The first category optimizes energy consumption, while the 

other concentrates on gas emissions reduction and optimizing the distribution systems for reverse logistics (Govindan et 

al. (2015)). Tiwari and Chang (2015) presented a block recombination algorithm that desires to minimize the traveled 

distance and CO2 emission using a capacity-based allocation method. They generated different clusters for each visiting 

nodes by different vehicles. 

Vincent et al.(2017) paid attention to vehicles with hybrid energy sources to minimize travel costs. They utilized 

simulated annealing to solve the model for two modes. The first mode adjusts the worst solution acceptance probability 

by the Boltzmann function, while the other uses the Cauchy function. 

C. Electric vehicle routing problem (EVRP) 

The routing problem for electric vehicles and charge stations has become more important by increasing the volume 

of environmental studies. According to Nakata (2000), the world will face a severe energy shortage in 2040. The main 

reason for this shortage is the continuous use of non-renewable energy resources. The basic segment of an electric 

vehicle is the battery, which constitutes the largest vehicle cost (Rahman et al. (2016)). Afroditi et al. (2014) presented a 

mathematical model for solving the routing problem of electric vehicles in the real world. The capacitance model 

included a time window and battery. Pourazarm and Cassandras (2015) presented a complex nonlinear model to solve 

the routing problem for electric and fuel vehicles. The purpose of the model is to minimize the total time, including 

travel time and charging of electric vehicles. 

Liao et al. (2016) presented electric vehicle routing to reduce greenhouse gases and related global warming effects. 

Lin et al. (2016) presented an EVRP problem that would take time and minimize energy consumption charges. Keskin 

et al. (2018) evaluated the routing of electric vehicles with the time window wherein a fast-charging station, the battery 

is charged faster against higher energy charge. Schiffer and Walther (2017)  added the time-window assumption to 

optimize distance, the number of charge stations, and the number of vehicles. Montoya et al. (2017) solved the problem 
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concerning the nonlinearity of the battery charge consumption. To validate their model, they tested it with 120 case 

studies. Felipe et al. (2014a) developed constructive and local neighborhood search algorithms to solve the problem. A 

mathematical model was presented in which the results of the two methods were compared with experimental issues. 

Keskin and Çatay (2016) sought to solve the routing problem with the window when the battery was fully charged and 

semi-charged. They provided a neighborhood search algorithm similar to the Schneider et al. (2017a) and other 

metaheuristic methods to solve the model. 

Keskin et al.(2018) introduced the time window concept and fast charging for electric vehicles and introduced a new 

destroy and repair mechanism associated with fast chargers. They considered electric vehicles as Battery 

Electric Vehicles (BEV). Furthermore, Li et al.(2020) presented a plug-in hybrid electric vehicle routing problem. 

They used a combined neighborhood search algorithm for solving their model. Shao et al. (2017) developed an electric 

vehicle routing problem with some uncertainty in charging time and travel time. The authors used a genetic algorithm to 

solve their model. Yang et al.(2015) presented a location and routing model for an electric fleet with limited capacity. 

Stations with battery swap capability were utilized instead of recharging stations. Hof et al. (2017b) conducted a 

study to minimize transport cost and the construction of stations with finding stations. Paz et al. (2018) 

also evaluated battery swap possibility in some locations. 

Pelletier et al. (2017) optimized scheduling of battery charging at the depots besides insights on consumption, 

limitations on a grid, charging expenses, and charging schedules of the fleet. Finally, Pelletier et al.(2016) and Pelletier 

et al. (2018) provided a survey on goods distribution models with EVs. 

D. Stochastic models  

Stochastic vehicle routing problems (SVRPs) are being evaluated for more than 50 years (Tillman (1969)). Despite 

low attention in the 1980s, the 1990s contributed greater attention to this field. The new generation of processors and 

advances in software made it possible to solve SVRPs easier. Erera et al. (2010) presented a vehicle routing problem 

model with stochastic demand. They set a maximum duration for delivery time to enforce the vehicles to deliver goods 

in time. Chen et al. (2012) proposed a Self-Adaptive Memeplex Robust Search approach for SVRP. Their method 

reduced calculation time, and besides that, it produced robust and reliable solutions for the model. 

In the green VRP research area, there are some new studies about stochastic models. For instance, Hsueh (2016) 

presented a green VRP with stochastic travel speeds. The author considered that the rate for fuel consumption depends 

on factors like the type of vehicle, roadway gradients, the average speed of travel, and vehicle load. Çimen et al. (2017) 

proposed a time-dependent GVRP where the travel speeds are stochastic and developed a dynamic programming-based 

heuristic. Zhang et al. (2019) evaluated stochastic demand for electric vehicle problems and presented a hybrid variable 

neighborhood search algorithm. Keskin et al. (2020) considered the time window in the EVRP model with stochastic 

waiting times at recharging stations. They developed a heuristic based on simulation to solve the model. 

E. Solution approaches 

In 2014, for the first time, the concept of electric vehicles was considered in the green routing issues (well Felipe et 

al.(2014b)). The core assumption was that battery capacity and its partial charge was limited. A local search algorithm 

and simulated annealing (SA) were used to find the best solution. The routing problem of electric vehicles with the time 

window was introduced by Schneider (2014). A hybrid algorithm was employed, and the algorithm was tested with 

different test problems to solve the model ((Erdoğan et al.(2012), Crevier et al.(2007), Tarantilis et al.(2008)). Goeke 

and Schneider (2015) presented the vehicle routing model considering the electric fleet alongside the conventional fleet. 

In the related model, energy consumption was a function of velocity, route slope, and load weight. They used a 

neighborhood search algorithm to solve the model. Desaulniers et al. (2016) considered four different modes for the 

electric vehicles routing problem: full charging for each route, partial charging per route, with one-time full charging, 

partial charging with full charging and just partial charging. Branch-cost and branch-price methods was utilized to find 
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optimal solution. Hiermann et al. (2016) proposed the fleet size or the number of vehicles in the electric vehicle routing 

problem and constructed a combinatorial algorithm with neighborhood search and notation processes. Keskin et al. 

(2018) provided many efficient solutions to the electric vehicle routing problem by proposing fast-charging stations by 

implementing a Meta-heuristic algorithm. 

In recent years, multi-objective models have been developed widely, and thus, using algorithms that have been 

constructed for solving multi-objective models have been raised (Coello et al.(2007)). There are various algorithms for 

solving these models, like Pareto Archive Evolutionary Strategy  (Knowles and Corne (2000)) and NSGA-II (Deb et 

al.(2002)). The Particle Swarm Optimization algorithm (PSO) is based on bird flock movements that show remarkable 

performance in optimization problems Eberhart and Shi (2004). This algorithm has successful performance in nonlinear 

and integer models (Eberhart and Shi (2004)). Due to its fast convergence, it also could be used to solve multi-objective 

models. In several experiments, the algorithm performs better than the three applied algorithms in multi-objective 

models, including PAES, NSGA-II, and micro-genetic algorithms. (Coello and Pulido (2001)).  

According to the studies in this area, the turning point of this study is considering both partial charge and battery 

swapping stations. Also, because of the dominance of the multi-objective particle swarm optimization algorithm 

(MOPSO) in the calculation time and reliability of solutions, this method has been used to solve the problem. 

III. Problem model description 

The presented model considers the distribution of a product from a manufacturer to a set of retailers via a set of 

warehouses that are set up in predefined areas. The model is constructed in a two-stage stochastic programming 

approach to manage uncertainty. At the first stage, charging station establishment decisions are made before complete 

information about uncertain parameters. At the second stage, the routing decisions are made to provide a route that 

optimizes the associated objective functions. Products are carried by conventional and electric vehicles. Each kind of 

vehicle has a certain capacity. The electric vehicle's battery capacity is limited. Therefore, during the distribution of 

goods, electric vehicles might need to visit charging stations. The energy usage and fuel usage are dependent on the 

amount of vehicles load. 

A feasible route for electric vehicles starts from a warehouse, continues to a set of retailers and charging stations, 

and ends with the same warehouse. The capacity of vehicles exceeds the demand of retailers. Only one vehicle can 

travel at a specific time per route, and each vehicle can only distribute a load to retailers once. The objective of the 

model is to minimize the emission of greenhouse gases, and also minimizing costs including the costs of establishment 

and construction of stations, the cost of storing goods in retailers and the cost of transporting goods. 

To make the model more transparent, the items that are used in the model are given as: 

Sets  

C Set of Customers   *          + 

F' Set of charging stations    *                + 

F" Set of swapping stations     {                      } 

V Set of nodes        *  +  *    + 

E Set of edges or routes   *(   )         + 

VC Set of conventional vehicles    *     + 

VE Set of electric vehicles    *       + 
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K Set of vehicles         

S Set of problem scenarios    *          + 

Parameters 

    The demand of node i under scenario s 

    Service time in node i under scenario s 

    Earliest arriving time to node I under scenario s 

    Latest arriving time to node i under scenario s 

    Distance between i and j nodes  

     Moving time between the nodes  

   Cost of electricity consumption 

   Cost of fuel consumption 

   Tax on gas emissions 

  Full charging cost 

   Cost of setting up a charging station 

   Cost of swapping a battery 

         The maximum amount of gas emissions 

   If k is an electric car equals 1; otherwise, 0. 

   Amount of gas emitted by the filled vehicle 

   Amount of gas emitted by the empty vehicle 

  Battery charging coefficient 

   Probability of each scenario 

  Maximum number of charging stations 

   Conventional vehicles capacity 

   Electric vehicles capacity 

𝛼 Energy usage rate for empty vehicle 

𝛽 Energy usage rate for loaded vehicle 

𝛼
 

 Fuel usage rate for empty vehicle 

𝛽
 

 Fuel usage rate for loaded vehicle 

                 Electric vehicles battery capacity 

                 The minimum amount of battery charge to run a car 



Journal of Quality Engineering and Production Optimization  / Vol. 5, No. 2, Summer & Autumn 2020, PP. 1-20 7 

 

Variables 

            If vehicle k moves from node i to node j under scenario s, equals 1; otherwise, 0. 

   If the charging station is built at node i, equals 1; otherwise, 0. 

         The battery level of vehicle k when entering node i under scenario s 

         Charging time of vehicle k in station i 

          The amount of cargo carried by vehicle k at node i under scenario s 

           Time to start serving vehicle k at node I under scenario s 

            Battery swapping time for vehicle k at node i 

A. Mathematical Model 

The objectives and constraints of the problem are presented as follows: 

(1) 
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The first objective aims to minimize the total costs of the charging station and the cost of fuel/energy consumption. 

The second objective minimizes the cost of producing carbon dioxide produced through fuel vehicle utilization. 

The mathematical model consists of series of constraints that control the time window, the limitation of batteries, 

and load capacity of transport and greenhouse gas production. Constraint (3) prevents the arrival of conventional 

vehicles into the charging stations. Constraint (4) ensures that each node, except the warehouse, is closely associated 

with two nodes. Constraint (5) shows that each client receives the service exactly once. Also, constraint (6) determines 

that the electric vehicles go to the charge at most once. Constraint (7) limits the number of charging stations. 

Constraints (8),(9), and (10) show vehicles' battery levels after visiting customers, charging stations, and battery 

swapping stations. Constraint (11) states that electric vehicles start their route with a fully charged battery. Constraints 

(12) and (13) control the amount of energy in the battery. Constraint (13) ensures that the charging level of the vehicle 

does not exceed the battery capacity. Constraints (14), (15), and (16) update the arrival time of the vehicle at node j 

exactly after meeting the customers, charging stations, and battery swapping stations. Constraint (17) states limitations 

related to the time window. Constraint (18) indicates that the difference between the load entering node i and the load 

entering node j is equal to the customer i's demand. Constraint (19) ensures that a vehicle does not meet a customer 

unless it meets the customer demand. Constraints (20) and (21) define the initial load of the vehicle in the warehouse. 

Constraints (22) and (23) restrict the load carried by vehicles. Constraint (24) controls the number of greenhouse gases 

produced by vehicles. Constraints (25) and (26) show the type of decision variables of the model. 

B. Multi-objective particle swarm optimization (MOPSO) 

Comparing the PSO method with other meta-heuristic methods shows that using a Pareto classification method 

effectively solves multi-objective problems (Goldberg 1989). Such efficiency incoherence arises due to using social 

intelligence processes alongside the archive of superior solutions. The steps of the MOPSO algorithm are as follows: 

1. Make the first pop-up. 

1. For i = 0 to NP. NP is the number of particles. 

2. Make Pop (i). Pop. 

2. Determine the velocity of each particle. 
1. For i=0 to NP. 

 2.  ( )    

3. Examine every particle of Pop members. 
4. Add the location of the superior particles in the repository archive. 
5. Divide the solution space into several parts and determine the location of the particles by using their spatial 

coordinates, formed from the values of the objective functions. 
6. Update the memory of each particle. 

1. For i=0 to NP. 

 2.         ( )     ( ) 

7. Repeat the following steps until you reach the maximum number of repetitions: 
1. Calculate the velocity of each particle using the following equation: 

 ( )     ( )     (        ( )     ( ))     (   ( )     ( )) 
2. Calculate the new location of each particle using the following equation. 

                           ( )     ( )   ( ) 

In the equations mentioned above, w is called the inertia weight, which takes a value of 0.4 in this study. C1 and C2 

are the random numbers between zero and one. Pop.Best (i) is the best place that has a particle i. Rep (j) is the amount 

that is extracted from the archive. J is concerned with parts of the solution space where there is more than one particle. 

A test problem is devised to implement the presented algorithm. A problem solves the algorithm with a 2.00 GHz 

processor and 4GB RAM. 
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C. Solution Representation 

A Multi-Objective Particle Swarm Optimization (MOPSO) approach has been adopted to solve the proposed multi-

objective model. For using MOPSO, constituting the particles has a substantial influence on the efficacy of the 

algorithm. Each particle has two sections. The first section size corresponds to the number of customers and 

charge/battery swap stations (  dimensions) and is called customers and charge/battery swap priority matrix. Each 

dimension includes a real number between 0 and 3. The second section corresponds to the coordinates for each vehicle 

(   dimensions). Each particle has m+2v dimensions. A schematic view of the particle for 6 customers and 2 vehicles is 

depicted as follows: 

Customers and charge/battery swap stations priority matrix Vehicle coordinate section 

0.3 0.5 1.9 0.8 0.9 2.7 1.1 1.8 0.6 1.5 
          

The following procedure is required to decode a particle: 

   Step 1: Building customers and charge/battery swap stations visit priority  

   Step 2: Building the priority matrix of vehicles 

   Step 3: Building the route for vehicles 

The steps mentioned above are presented as follows: 

Step 1: Building customers and charge/battery swap stations visit priority  

The algorithm is proposed to determine the priorities of visiting customers and charge/battery swap stations. Each 

dimension contains a real number between 0 and 3. The integer part of the number shows the type of location. (0 for the 

customers, 1 for the charge station, and 2 for the battery-swapping station). The decimal part of the number shows the 

priority of each dimension. The dimensions with lower decimal values should be met sooner. 

Step 2: Building the priority matrix of vehicles  

It describes how customers and stations are allocated to vehicles. In this procedure, distance is calculated as direct 

Euclidean distance. The nearest vehicles to each customer or charge/battery swap station are allocated it. 

Step 3: Building the route for vehicles 

At this step, each vehicle will visit the allocated customers, and charge/battery swap stations based on customers and 

charge/battery swap stations visit priority which is attained at step 1.  

The representation of a particle is shown schematically in Figure 1. 

IV. Computational results and analysis 
According to the model, we first produced several samples. Then, the sample problems are solved using GAMS 

software and MOPSO algorithm. Results are presented in table 1. Cases included in this table are the number of 

warehouses used, the number of vehicles used, the number of charge stations, total cost, total greenhouse gas emissions, 

and computation time. 

Since the problem mentioned in the study is multi-objective, the LP metric method is used for solving in the GAMS. 

(Asadi-Gangraj et al. (2018)) 

(  )    [
      

 

   
  

      
 

   
 ] 
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By using the LP metric, objective function, and the initial constraints, multi-objective optimization is converted to a 

single-objective problem which can easily be solved by solving linear programming. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            
Fig. 1. Schematic view of a particle 

In Table 1, results of LP metric method and MOPSO algorithm are depicted. In MOPSO columns, results are related 

to the optimum Pareto front. Each member of the front placed in    and member which minimized the function was 

chosen in respected columns. 

According to table 1, it can be found that the total cost of the system depends on many factors such as the number of 

warehouses, number of vehicles, and the number of charging stations. The increasing number of warehouses causes the 

shortening of the route for the distribution of goods. Therefore, the costs should be reduced, but the other factors do not 

let this reduction be tangible. Increasing the number of vehicles increases the total cost due to increasing fueling cost, 

charging, and producing greenhouse gas. Increasing the number of stations has a fixed cost to build the station, which 

increases the cost linearly. 

Also, it can be seen that the MOPSO algorithm has better performance in computation time. 
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Table 1. The results are obtained by GAMS software for sample problems 

Problem Description GAMS Software MOPSO Method 

instance Depots Vehicles Stations Total Cost Emissions Time (s) Total Cost Emissions Time (s) 

Ins1 1 1 2 2794.5 1.11 22.87 2795.4 1.53 0.212 

Ins2 1 1 3 2916 0.74 91.17 2916.1 1.02 25.60 

Ins3 1 1 3 2943.4 0.555 4.42 2943.9 0.613 0.230 

Ins4 1 2 1 2146.5 2.96 2.61 2146.5 3.85 0.135 

Ins5 1 3 0 2754.2 4.254 1.31 2754.4 4.315 0.158 

Ins6 1 4 4 4266.4 2.964 25998.97 4266.5 2.991 120.93 

Ins7 2 2 1 1606.5 2.59 1.46 1605.4 2.78 0.145 

Ins8 2 2 1 1971.6 2.405 0.44 1972.4 2.498 0.324 

Ins9 2 2 2 2362.5 2.412 16.95 2363.4 2.428 1.16 

Ins10 2 2 2 2443.5 1.854 1.52 2443.7 1.894 0.265 

Ins11 2 2 3 3199.5 1.738 100.34 3200.1 1.751 3.67 

Ins12 2 3 1 3766.5 4.441 3.92 3767.4 4.504 0.220 

Ins13 2 3 1 3807.8 3.871 1.58 3808.4 3.899 0.184 

Ins14 2 3 2 4198.5 4.055 65.6 4199.2 4.061 19.04 

Ins15 2 3 2 4131.3 4.248 23291.8 4132 4.331 665.20 

Ins16 2 3 2 4387.5 4.175 38.39 4387.9 4.253 8.76 

Ins17 2 3 3 4482.4 3.668 68.3 4482.8 3.687 6.40 

Ins18 2 4 1 4792.5 3.866 0.72 4792.7 3.906 0.082 

Ins19 2 4 1 4698.4 4.634 5.12 4698.4 4.648 1.441 

Ins20 4 10 5 9561.3 3.745 651.7 9564.5 3.254 146.96 

Ins21 5 15 5 74460.1 3.83 3760 74155.1 4.068 20.4 

Ins22 10 15 10 275851 3.464 3654 275851.7 4.21 85.2 

Ins23 10 20 10 326186.8 4.609 6720 326187.2 4.445 193.7 

Ins24 15 20 10 485680 4.893 9273 485483.6 4.79 197.28 

Ins25 15 25 15 652822 5.79 9648 672545.8 6.671 258.64 

A. Impact of taxes on the transport fleet 

Taxing is one of the tools for controlling GHG emissions. In the context of gas emissions in 2018, it was established 

in the Treaty of Paris to pay $ 25 for each ton of greenhouse gas and an annual increase of one to 5 percent per ton 

(Ramseur and Leggett (2019)). In the sample of Ins8, which has two warehouses, one electric vehicle, and one 
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conventional vehicle with one charging station, we examine the impact of the tax and its increase on the variables of the 

problem. It is necessary to mention that the results shown in Table 2 and figures 2 to 4 are related to MOPSO algorithm 

results. 

Table 2. The changes of model variables by increasing the tax on gas emissions 

Total Cost GHG Emissions Percent of EV usage Percent of increase Tax 

2167.04 2.021 32.31 0 25 

2058.7 1.921 34.75 5 26.25 

1950.34 1.819 37.17 10 27.5 

1857.7 1.732 39.6 15 28.75 

1779.69 1.659 42.03 20 30 

1714.68 1.599 44.4 25 31.25 

1661.3 1.548 46.72 30 32.5 

1618.43 1.508 48.93 35 33.75 

1585.18 1.478 51.27 40 35 

1560.92 1.454 52.97 45 36.25 

1545.06 1.439 54.53 50 37.5 

1531 1.427 55.85 55 38.75 

1518.65 1.416 57.21 60 40 

1507.92 1.408 58.32 65 41.25 

1498.8 1.398 59.19 70 42.5 

1491.26 1.39 59.78 75 43.75 

1485.27 1.383 60.32 80 45 

1480.81 1.379 60.8 85 46.25 

1477.83 1.376 61.21 90 47.5 

1476.34 1.376 61.57 95 48.75 

1475.61 1.376 61.87 100 50 
           

As seen in Table 2, the tax rate on gas production increased by 5 %, and the percentage of the electric fleet usage, 

amount of gas emissions, and the total cost of the system were calculated. The table shows that the electric transport 

fleet usage has increased as tax increases. However, factors such as battery capacity constraints and the limited range 

that they can travel do not let it exceed a certain limit (Figure 2). 

Increasing the electric fleet usage, the use of fuel, and the amount of greenhouse gas emissions are reduced by 

greenhouse gases. However, due to the constraints involved in the electric transport fleet usage, it cannot be expected 

that GHG emissions reach zero, but they can be reduced significantly (Figure 3). 
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Fig. 2. Changes in the use of electric transport fleet to increase gas emissions 

 

  

 

 

 

 

 

 

 

 

 

 

  
Fig. 3. Changes in greenhouse gas emissions by increasing gas emissions 

Although this part of the costs increases by increasing the tax on greenhouse gas emissions, the conventional 

vehicle's usage and fuel consumption which is one of the most important parts of system costs will decrease, and 

subsequently, the total cost of the system will decrease too. But due to the limited number of electric vehicles, this 

falling trend is not continuous, and according to Figure 4, there are no tangible changes in the total cost, almost after 

raising taxes to fifty percent and above. 
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Fig. 4. The total cost variation caused by the increase in gas emissions. 

According to the mentioned studies, it can be found that applying a tax on gas emissions can limit the amount of gas 

released and also reduce the total cost of the system. However, it is not sufficient and should consider other methods as 

complements to this method to reduce GHG emissions and system total cost. 

V. Conclusion 
We presented a mathematical model for calculating the cost of the transportation system and limiting the production 

of greenhouse gases for a combination of electric and conventional vehicles and a multi-objective particle swarm 

optimization algorithm was presented to solve the model. A mathematical model of the problem with two objective 

functions was presented. A number of samples were produced. Examples were solved by LP metric method and 

MOPSO algorithm, and their best results were mentioned. Total cost and the amount of GHG emissions were calculated 

together with the solution time. Then, the impact of increasing taxes on system total cost and the amount of GHG 

emissions were investigated. For future research, new objective functions can be added to the model. For example, 

timing and customer satisfaction are interesting topics that can be added to the model. Customers can be clustered by 

their specifications, such as demand. Authors can use clustering methods like K-means. Furthermore, other 

metaheuristic methods like Genetic algorithms, Ant colony, and searching algorithms like neighborhood search can 

solve the model.  
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