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Abstract – The present research formulates unequal area stochastic dynamic facility layout problems for 

minimizing the total cost of material handling while considering their upper bound. In the proposed model, 

the area and shape of departments are considered to be stable during the implementation of an algorithm, 

and product demands are normally distributed with a known expected value and variance. Since these 

problems are NP-hard, thus particle swarm optimization (PSO) was employed, and a theoretical problem 

instance was presented to evaluate the efficiency and effectiveness of the algorithm. The findings confirmed 

the efficiency and validity of the proposed algorithm. 
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I. INTRODUCTION 

In facility layout problems (FLPs), the departments or facilities have to be arranged in the workspace to minimize 

the sum of the material handling costs. (Tompkins et al., 2018) stated that 20-50 % of the total cost of operation in a 

manufacturing environment belongs to material handling cost, which can be lowered to 10-30 % by the use of an 

effective facility rearrangement or arrangement. FLPs are classified into static FLPs (SFLPs) and uncertain FLPs. In 

SFLPs, there is a fixed material flow among the departments for a long time; however, in uncertain FLPs, the material 

flow changes over time. Uncertain FLPs are classified into stochastic FLPs (STFLPs), dynamic FLPs (DFLPs), and 

stochastic dynamic FLPs (STDFLPs). 

The material flow in STFLPs among the departments is uncertain and stochastic while considering only one period 

(Derakhshan Asl et al., 2016). DFLPs are an extension of SFLPs in which the material flow changes in different 

periods; but, it is constant in each time period (Derakhshan Asl& Wong, 2017). Although all of these FLPs have been 

used in the marketplace, they cannot survive in today’s competitive global marketplace because they cannot cope with 

the rapid product price and demand changes. As an alternative, STDFLPs encompass multi periods up to one year for 

material flow or product demand. This can provide stochastic, continuous, or uncertain material flow or product demand 

in each period (Moslemipour & Lee, 2012). They hold two categories, namely Equal-Area STDFLPs (EASTDFLPs), 

where all departments are the same in shape and area, and Unequal-Area STDFLPs (UASTDFLPs), where the area or 

shape of the departments are different, and the focus of the present study would be on the second category (i.e., 

UASTDFLPs).      

http://jqepo.shahed.ac.ir/
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Depending on the state of the area and shape of departments fixed or non-fixed during the implementation of an 

algorithm, there are two types of UASTDFLPs. Making changes in the shape and area of departments is not always 

favored by companies (Yang & Peters, 1998). To this end, this paper aims to study UASTDFLPs with fixed areas and 

shapes among departments when implementing an algorithm. There are two types of problems in this regard: (1) 

UASTDFLPs having stochastic demands with a known expected value and variance in each period, and (2) 

UASTDFLPs having numerous scenarios and different probabilities for a material flow matrix in each period. While the 

sum of the probabilities is equal to 1 in each period, in the real world, most of the data for product demands are 

distributed normally for stochastic problems (Casella & Berger, 2002). To our knowledge, there is no research done on 

this subject. Hence, the study of UASTDFLPs with fixed areas and shapes of departments during the implementation of 

an algorithm seems warranted. Problem definition is given in Table I. 

Since UAFLPs are NP-hard, exact methods are not able to solve them in a reasonable time (Mazinani et al., 2012). 

Thus, seeking an efficient algorithm is necessary. Particle swarm optimization algorithm (PSO), commonly used for 

solving combinatorial optimization problems, enjoys a very easy and simple implementation (Moslemipour et al., 

2012). It also has an efficient global search method. Therefore, we used this meta-heuristic method to find better and 

efficient solutions. 

TABLE I. PROBLEM DEFINITION 

Studying UASTDFLPs 

Departments have different shapes and areas 

Departments have fixed areas and shapes during the implementation of an algorithm 

Departments have free orientations 

II. LITERATURE REVIEW 

SFLPs were firstly formulated by (Koopmans & Beckmann, 1957). They minimized the total cost of material 

handling for two industrial problems with equal-size departments. Such problems were later developed by  (Armour & 

Buffa, 1963).  

STDFLPs were introduced by  (Kouvelis & Kiran, 1991). Here there are numerous scenarios for a material flow 

matrix and different probabilities in each period, while the sum of probabilities is equal to 1. They used dynamic 

programming to solve the problems; however, very soon, they found that it was not suitable for large-size problems. 

(Palekaret al., 1992) formulated EASTDFLPs by applying quadratic integer programming, assuming that there are three 

levels for product demands: optimistic, most likely, and pessimistic. Dynamic programming was then developed to 

solve the problems. UASTDFLPs with fixed areas and shapes of departments were studied by  (Yang & Peters, 1998). 

In addition, there were several scenarios for a material flow matrix with different probabilities in each period. They 

introduced the‘ Expected Flow Density’ method for reducing UASTDFLPs to UADFLPs, and then proposed a heuristic 

method to solve the problems.  

(Krishnan et al., 2006) and (Nayak 2007) studied EASTDFLPs with uncertain material flow among the departments 

in each period. They fitted a curve for the material flow between each pair of departments in each period and applied a 

genetic algorithm (GA) to solve the problems. EASTDFLPs with several scenarios for a material flow matrix with 

different probabilities in each period were investigated (Krishnan et al., 2008). (Moslemipour& Lee, 2012) developed 

EASTDFLPs with stochastic product demands having a known standard deviation and expected value in each period. 

Next, S.A. was applied to solve the problems. Later, (Lee et al., 2012) developed a hybrid ant colony optimization 

(HACO) and SA for problem-solving. 
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(Vitayasak et al., 2017) introduced a new Modified Backtracking Search Algorithm (MBSA) to solve the stochastic 

DFLP with heterogeneous-sized resources. They minimized the combination of material flow and redesign costs. 

(Moslemipour & Lee, 2018) suggested a new hybrid algorithm using SA algorithm with a population of good initial 

solutions constructed through combining clonal selection, robust layout design, and ant colony approaches. 

(Peng et al., 2018) employed Mont Carlo simulation to generate different scenarios randomly. Then they designed 

an improved adaptive genetic algorithm with a population initialization strategy and compared it with the PSO 

algorithm. (Tayal et al., 2020) proposed a three-stage methodology in which data envelopment analysis (DEA) is 

augmented with supervised and unsupervised machine learning (ML). A summary of the above researches is presented 

in Table II. 

Accordingly, it seems that no study has so far been done in the field of UASTDFLPs having fixed shape and area of 

each department and stochastic product demand with a known expected value and variance in each period. Therefore, 

the present research aims to formulate this kind of problem under the following assumptions: (1) departments with 

square or rectangular shapes, (2) fixed area and shape of each department during the algorithm implementation and 

throughout the whole time horizon, (3) departments having free orientation (the length and width of each department 

can exchange in contrast to their original value), (4) departments having no overlap with each other, (5) having several 

periods for the product demand or material flow, (6) arrangement of all departments in a given area in each period, (7) 

using city block distance or rectilinear distance to determine the distance between departments, (8) independent product 

demands in each period, (9) normal distribution of each product demand with a known expected value and variance in 

each period, and (10) fixed product routing throughout the time horizon. Table III shows the assumptions of the model. 

TABLE II. RESULTS OF LITERATURE REVIEW AND LITERATURE GAPS 

Paper title 
Publication 

year 
Authors’ 

name 
Solution method 

Problem 
characteristic 

Assignment problems and the location of economic 

activities 
1957 

Koopmans & 

Beckmann 

Game Theory and 

Price System 
EASFLP 

A heuristic algorithm and simulation approach to 

relative location of 

facilities 

1963 
Armour & 

Buffa 

Computer Program 

Methodology 
UASFLP 

Single and multiple period layout models for automated 

manufacturing systems 
1991 

Kouvelis & 

Kiran 

Dynamic 

Programming 
EASTDFLP 

Modeling uncertainties in plant layout problems 1992 Palekaret al. 
Exact & Heuristic 

method 
EASTDFLP 

Flexible machine layout design for dynamic and 

uncertain production environments 
1998 

Yang & 

Peters 

Heuristic 

Procedure 
UADFLP 

Dynamic From-Between Chart: a new tool for solving 

dynamic facility layout problems 
2006 

Krishnan et 

al. 
Genetic Algorithm EASTDFLP 

Solutions to dynamic facility layout problems 2007 Nayak Genetic Algorithm EASTDFLP 

Facility layout design for multiple production scenarios 

in a 

dynamic environment 

2008 
Krishnan et 

al. 
Genetic Algorithm EASTDFLP 

Intelligent design of a dynamic machine layout in 

uncertain environment of flexible manufacturing 

systems 

2012 
Moslemipour 

& Lee 
SA EASTDFLP 
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Continue TABLE II. RESULTS OF LITERATURE REVIEW AND LITERATURE GAPS 

Paper title 
Publication 

year 
Authors’ 

name 
Solution method 

Problem 
characteristic 

A novel hybrid ACO/SA approach to solve stochastic 

dynamic 

facility layout problem (SDFLP) 

2012 Lee et al. Hybrid ACO/SA EASTDFLP 

A tool for solving stochastic dynamic facility layout 

problems with stochastic demand using either a Genetic 

Algorithm or a modified Backtracking Search 

Algorithm 

2017 
Vitayasak et 

al. 

Modified 

Backtracking 

Search Algorithms 

(MBSAs) 

EASTDFLP 

Solving stochastic dynamic facility layout problems 

using proposed hybrid AC-CS-SA meta-heuristic 

algorithm 

2018 
Moslemipour 

& Lee 
Hybrid AC-CS-SA EASTDFLP 

An improved genetic algorithm based robust approach 

for a stochastic dynamic facility layout problem 
2018 Peng et al. Genetic Algorithm EASTDFLP 

Efficiency analysis for stochastic dynamic facility 

layout problem using meta‐heuristic, data envelopment 

analysis, and machine learning 

2020 Tayal et al. 

Data Envelopment 

Analysis (DEA) & 

Machine Learning 

(ML) 

EASTDFLP 

            

TABLE III. THE MODEL ASSUMPTIONS 

Assumptions Unequal Area Stochastic Dynamic Facility Layout Problem 

1 Departments with square or rectangular shapes 

2 
Fixed area and shape of each department during the algorithm implementation and throughout the 

whole time horizon 

3 
Departments having free orientation (the length and width of each department can exchange in contrast 

to their original value) 

4 Departments having no overlap with each other 

5 Having several periods for the product demand or material flow 

6 Arrangement of all departments in a given area in each period 

7 Using city block distance or rectilinear distance to determine the distance between departments 

8 Independent product demands in each period 

9 Normal distribution of each product demand with a known expected value and variance in each period 

10 Fixed product routing throughout the time horizon 

III. FORMULATION OF A MATHEMATICAL MODEL FOR UASTDFLPS 

As mentioned earlier, in this research, we propose a mixed-integer nonlinear programming model for solving the 

problems. The following notations have been used to create the model. 
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Indexes 

𝑖, 𝑗 Indexes of department 

𝑡 Index of period 

𝑙 Index of product 

𝐿 Number of products 

𝑀 Number of departments 

𝑇 Number of periods 

Parameters 

𝑊 Length of shop floor 

𝐻 Width of shop floor 

𝑤𝑖  Length of department 𝑖 

ℎ𝑖 Width of department𝑖 

𝑑𝑖𝑗𝑡  City block distance or rectilinear distance from department 𝑖 to department 𝑗 in period𝑡. 

𝑓𝑖𝑗𝑡 Frequency of material flow from department 𝑖 to department 𝑗 in period𝑡. 

𝑓𝑖𝑗𝑙𝑡  Frequency of material flow from department 𝑖 to department 𝑗 for product 𝑙 in period𝑡. 

𝐶𝑖𝑗𝑡 The cost per unit distance from department 𝑖 to department 𝑗 in period𝑡. 

𝐴𝑖𝑡 Shifting cost for department 𝑖 in period𝑡. 

𝑀𝐻𝐶(𝜋) Material handling cost for a known layout (𝜋) 

𝐷𝑙𝑡  Demand for product 𝑙 in period𝑡. 

𝐸( ) Expected value of a parameter 

𝜎( ) Standard deviation of a parameter 

𝑝( ) Probability of a parameter 

𝐹( ) Cumulative distribution function of a parameter 
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𝑍1−𝛼 Standard normal 𝑍 value at confidence level (1 − 𝛼). 

(𝑥𝑖0, 𝑦𝑖0) Center-coordinate of department 𝑖 for the initial layout in the shop floor 

                

𝑟𝑖0 = {

1        if the length and width of department 
     𝑖 for the initial layout exchange in  
contrast totheir original values

0                                                              otherwise

 

𝛽𝑖𝑗𝑙𝑡 =

{
 
 

 
 
1            if department 𝑗 appears immediately
             after department 𝑖  for the route of 

product  𝑙 in period 𝑡

0                                                              otherwise

 

       

Variables 

 (𝑥𝑖𝑡 , 𝑦𝑖𝑡)  Center-coordinate of department 𝑖 in period𝑡 

𝑟𝑖𝑡 = {

1          if the length and width of department  
𝑖 in period 𝑡 exchange in contrast to 

their original values
0                                                                 otherwise

 

𝑢𝑖𝑡
𝑥 = {

0         𝑖𝑓𝑥𝑖𝑡 = 𝑥𝑖(𝑡−1)
1                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑡 = 1, 2, … , 𝑇 

𝑢𝑖𝑡
𝑦
= {

0         𝑖𝑓𝑦𝑖𝑡 = 𝑦𝑖(𝑡−1)
1                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑡 = 1, 2, … , 𝑇 

𝑧𝑖𝑡 = {

0                𝑖𝑓𝑟𝑖𝑡 = 𝑟𝑖(𝑡−1)

              and 𝑢𝑖𝑡
𝑥 = 𝑢𝑖𝑡

𝑦
= 0

1                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑡 = 1, 2, … , 𝑇 

           

In dynamic problems, Equation (1) is usually used as the objective function for minimizing the total cost of material 

handling among the departments and the total cost of shifting of departments among the consecutive periods, as 

follows: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑∑∑𝐶𝑖𝑗𝑡𝑓𝑖𝑗𝑡(|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|)

𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

+∑∑𝐴𝑖𝑡𝑧𝑖𝑡

𝑀

𝑖=1

𝑇

𝑡=1

 𝑖 ≠ 𝑗                                    (1) 

              

Equation (2) is employed to find out the frequency of material flow from department 𝑖 to department 𝑗 in each 

period for each product: 

𝑓𝑖𝑗𝑙𝑡 = 𝛽𝑖𝑗𝑙𝑡𝐷𝑙𝑡         𝑖, 𝑗 = 1, 2, … ,𝑀             𝑙 = 1, 2, … , 𝐿         𝑡 = 1, 2, … , 𝑇                                                    (2) 

        

According to Assumption 9, each product demand is distributed normally with a known expected value and variance 

in each period. Then, Equations (3) and (4) can be written for determining the frequency of material flow among 

different departments, as below: 

𝐸(𝑓𝑖𝑗𝑙𝑡) = 𝐸(𝛽𝑖𝑗𝑙𝑡𝐷𝑙𝑡) = 𝛽𝑖𝑗𝑙𝑡𝐸(𝐷𝑙𝑡)   𝑖, 𝑗 = 1,… ,𝑀   𝑙 = 1, … , 𝐿   𝑡 = 1,… , 𝑇                               (3) 

𝜎2(𝑓𝑖𝑗𝑙𝑡) = 𝜎
2(𝛽𝑖𝑗𝑙𝑡𝐷𝑙𝑡) = 𝛽𝑖𝑗𝑙𝑡

2 𝜎2(𝐷𝑙𝑡)  𝑖, 𝑗 = 1,… ,𝑀         𝑙 = 1, … , 𝐿          𝑡 = 1,… , 𝑇                     (4) 

     

The sum of material flow from department 𝑖 to department 𝑗 in each period can be obtained as follows: 

𝑓𝑖𝑗𝑡 =∑𝑓𝑖𝑗𝑙𝑡

𝐿

𝑙=1

       𝑖, 𝑗 = 1, 2, … ,𝑀    𝑡 = 1, 2, … , 𝑇                                                                                              (5) 

               

For this purpose, Equations (6) and (7) can be employed to obtain the expected value and variance of the total material 

flow from department 𝑖 to department 𝑗 in each period, respectively: 

𝐸(𝑓𝑖𝑗𝑡) =∑𝐸(𝑓𝑖𝑗𝑙𝑡)

𝐿

𝑙=1

=∑𝛽𝑖𝑗𝑙𝑡𝐸(𝐷𝑙𝑡)

𝐿

𝑙=1

     𝑖, 𝑗 = 1, 2, … ,𝑀      𝑡 = 1, 2, … , 𝑇                                                (6) 

𝜎2(𝑓𝑖𝑗𝑡) = ∑𝜎2(𝑓𝑖𝑗𝑙𝑡)

𝐿

𝑙=1

=∑𝛽𝑖𝑗𝑙𝑡
2 𝜎2(𝐷𝑙𝑡)

𝐿

𝑙=1

          𝑖, 𝑗 = 1, 2, … ,𝑀    𝑡 = 1, 2, … , 𝑇                                      (7) 

          

According to Equation (1), the total cost of material handling for a known layout, 𝜋 , can be obtained as follows: 

𝑀𝐻𝐶(𝜋) =∑∑∑𝐶𝑖𝑗𝑡𝑓𝑖𝑗𝑡(|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|)

𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

           𝑖 ≠ 𝑗                                                              (8) 
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The expected value and variance of the total cost of material handling in all periods for a known layout 𝜋, can be 

determined as follows: 

𝐸(𝑀𝐻𝐶(𝜋)) =∑∑∑𝐸(𝑓𝑖𝑗𝑡)𝐶𝑖𝑗𝑡(|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|)

𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

=∑∑∑∑𝛽𝑖𝑗𝑙𝑡𝐸(𝐷𝑙𝑡)𝐶𝑖𝑗𝑡(|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|)

𝐿

𝑙=1

𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

𝑖 ≠ 𝑗                                

(9) 

𝜎2(𝑀𝐻𝐶(𝜋)) =∑∑∑𝜎2(𝑓𝑖𝑗𝑡)𝐶𝑖𝑗𝑡
2 (|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|)

2
𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

=∑∑∑∑𝛽𝑖𝑗𝑙𝑡
2 𝜎2(𝐷𝑙𝑡)𝐶𝑖𝑗𝑡

2 (|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|)
2

𝐿

𝑙=1

𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

 𝑖 ≠ 𝑗       

(10) 

         

It is worth noting that 𝑈𝐵(𝜋, 1 − 𝛼) is the upper bound of the total cost of material handling for a known layout 𝜋, 

in all periods in which the confidence level is equal to (1 − 𝛼). Thus, this research can minimize the mentioned upper 

bound for layout 𝜋, (𝑈𝐵(𝜋, 1 − 𝛼)), instead of minimizing it for layout 𝜋, (𝑀𝐻𝐶(𝜋)) as follows: 

𝑝(𝑀𝐻𝐶(𝜋) ≤ 𝑈𝐵(𝜋, 1 − 𝛼)) = 1 − 𝛼                             (11) 

                

Equation (11) can be standardized as below: 

𝑝 (
𝑀𝐻𝐶(𝜋) − 𝐸(𝑀𝐻𝐶(𝜋))

𝜎(𝑀𝐻𝐶(𝜋))
≤
𝑈𝐵(𝜋, 1 − 𝛼) − 𝐸(𝑀𝐻𝐶(𝜋))

𝜎(𝑀𝐻𝐶(𝜋))
) = 1 − 𝛼    (12) 

                

Assuming 𝑍 to be equal to
𝑀𝐻𝐶(𝜋)−𝐸(𝑀𝐻𝐶(𝜋))

𝜎(𝑀𝐻𝐶(𝜋))
, Equation (13) can replace Equation (12) as follows: 

𝑝 (𝑍 ≤
𝑈𝐵(𝜋, 1 − 𝛼) − 𝐸(𝑀𝐻𝐶(𝜋))

𝜎(𝑀𝐻𝐶(𝜋))
) = 1 − 𝛼      (13) 

       

Since𝑍 is normally distributed with an expected value and variance equal to zero and one, respectively, then: 

𝐹(𝑍1−𝛼) = 1 − 𝛼         (14) 

      

Equation (15) can be formulated by combining Equations (13) and (14). 
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𝑍1−𝛼 =
𝑈𝐵(𝜋, 1 − 𝛼) − 𝐸(𝑀𝐻𝐶(𝜋))

𝜎(𝑀𝐻𝐶(𝜋))
 (15) 

        

Based on Equations (15), (9), and (10), we can write the following single equation: 

𝑈𝐵(𝜋, 1 − 𝛼) = 

∑∑∑∑𝛽𝑖𝑗𝑙𝑡𝐸(𝐷𝑙𝑡)𝐶𝑖𝑗𝑡(|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|)

𝐿

𝑙=1

𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

+ 𝑍1−𝛼 (∑∑∑∑𝛽𝑖𝑗𝑙𝑡
2 𝜎2(𝐷𝑙𝑡)𝐶𝑖𝑗𝑡

2 (|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|)
2

𝐿

𝑙=1

𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

)

1
2

 𝑖 ≠ 𝑗            

(16) 

           

Assuming the coordinate of the bottom left is equal to (0, 0), a mixed-integer nonlinear programming model 

(Equations (17) to (22)) can be suggested for UASTDFLPs with fixed areas and shapes of departments under the 

previously mentioned assumptions. In addition, the product demand is stochastic, with a known expected value and 

variance in each period. 

       

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   ∑∑𝐴𝑖𝑡𝑧𝑖𝑡

𝑀

𝑖=1

𝑇

𝑡=1

+∑∑∑∑𝛽𝑖𝑗𝑙𝑡𝐸(𝐷𝑙𝑡)𝐶𝑖𝑗𝑡(|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|)

𝐿

𝑙=1

𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

 

         

+𝑍1−𝛼 (∑∑∑∑𝛽𝑖𝑗𝑙𝑡
2 𝜎2(𝐷𝑙𝑡)𝐶𝑖𝑗𝑡

2 (|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|)
2

𝐿

𝑙=1

𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

)

1
2

   𝑖 ≠ 𝑗       (17) 

𝑤𝑖
2
(1 − 𝑟𝑖𝑡) +

ℎ𝑖
2
𝑟𝑖𝑡 ≤ 𝑥𝑖𝑡 ≤ 𝑊 − (

𝑤𝑖
2
(1 − 𝑟𝑖𝑡) +

ℎ𝑖
2
𝑟𝑖𝑡)    𝑖 = 1, … ,𝑀   𝑡 = 1,… , 𝑇    (18) 

s.t. 

ℎ𝑖
2
(1 − 𝑟𝑖𝑡) +

𝑤𝑖
2
𝑟𝑖𝑡 ≤ 𝑦𝑖𝑡 ≤ 𝐻 − (

ℎ𝑖
2
(1 − 𝑟𝑖𝑡) +

𝑤𝑖
2
𝑟𝑖𝑡)   𝑖 = 1,… ,𝑀   𝑡 = 1,… , 𝑇   (19) 

|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|

≥ (
𝑤𝑖
2
(1 − 𝑟𝑖𝑡) +

ℎ𝑖
2
𝑟𝑖𝑡 +

𝑤𝑗

2
(1 − 𝑟𝑗𝑡) +

ℎ𝑗

2
𝑟𝑗𝑡) + (

ℎ𝑖
2
(1

− 𝑟𝑖𝑡) +
𝑤𝑖
2
𝑟𝑖𝑡 +

ℎ𝑗

2
(1 − 𝑟𝑗𝑡) +

𝑤𝑗

2
𝑟𝑗𝑡)    𝑖, 𝑗 = 1,… ,𝑀      𝑖 ≠ 𝑗    𝑡 = 1,… , 𝑇       

(20) 
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𝑢𝑖𝑡
𝑥 + 𝑢𝑖𝑡

𝑦
+ |𝑟𝑖(𝑡−1) − 𝑟𝑖𝑡| ≤ 3𝑧𝑖𝑡       𝑖 = 1, … ,𝑀          𝑡 = 1,… , 𝑇       (21) 

𝑥𝑖𝑡 , 𝑦𝑖𝑡 , 𝑥𝑗𝑡 , 𝑦𝑗𝑡 ≥ 0    𝑟𝑖𝑡 , 𝑟𝑗𝑡 , 𝑢𝑖𝑡
𝑥 , 𝑢𝑖𝑡

𝑦
, 𝑧𝑖𝑡 ∈ {0,1}          𝑖, 𝑗 = 1,… ,𝑀    𝑡 = 1,… , 𝑇   (22) 

        

According to this formulation, Equation (17) deals with the objective function of UASTDFLPs. Equations (18) and 

(19) imply that departments must be on the shop floor along the 𝑥and 𝑦 axes, respectively. Using Equation (20), we can 

prevent overlapping of department pairs. Equation (21) displays the possible change in the position of a department in 

consecutive periods. Finally, Equation (22) shows the proposed mathematical model’s variables. 

IV. SOLVING A SMALL-SIZED PROBLEM USING GAMS SOFTWARE 

To verify and validate the proposed model, a small-sized problem instance was solved by Gams win 32 24.1.3 

software. It includes three departments, two periods and three products. The length and width of the shop floor, as well 

as the shifting cost of each department, are all equal to 20. The other required information of problem instance were 

achieved from (Moslemipour& Lee, 2012) and (Yang & Peters, 1998) (Tables IV and V). The results of solving the 

model by Gams win 32, 24.1.3 software are given in Table VI. The objective function value (total cost) was equal to 

406703.8698. 

TABLE IV. VARIANCE AND EXPECTED VALUE OF THE PRODUCT DEMANDS AND ROUTES OF PRODUCTS  

Product name 
Period 1 Period 2 

Routes of products in all periods 
based on the number of department 

Variance Mean Variance Mean 

A 1893 7623 2318 9120 1→3→2 

B 1573 2067 2578 4347 3→2→1 

C 1283 8965 2251 2358 2→1→3 
               

TABLE V. CENTER COORDINATES OF DEPARTMENTS FOR THE INITIAL LAYOUT 

Departments 1 2 3 

Center-coordinate of departments along the axis for the initial layout (xi0) 6 23 6.5 

Center-coordinate of departments along the axis for the initial layout (yi0) 16.5 22.5 22 

Orientation of departments in comparison with their original orientation for the initial 

layout (ri0) 
1 0 1 

Original length (𝑤𝑖) of each department 5 7 6 

Original width (ℎ𝑖) of each department 4 5 4 
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Table VI. COMPUTATIONAL RESULTS OF SOLVING THE MODEL BY GAMS SOFTWARE 

Initial 
layout and 

period 

Center-coordinate of 
departments along the axis(𝒙𝒊𝒕) 

Center-coordinate of departments 
along the axis(𝒚𝒊𝒕) 

Orientation of departments in 
comparison with their original 

orientation (𝒓𝒊𝒕) 

1 2 3 1 2 3 1 2 3 

Initial 

layout 
6.0000 23.0000 6.5000 16.5000 22.5000 22.0000 1 0 1 

Period1 7.0901 11.5901 3.0901 6.5301 6.5301 6.5301 1 1 1 

Period2 17.0288 8.5288 13.0288 9.7180 9.7180 9.7180 1 1 1 

V. PSO METHOD FOR SOLVING UASTDFLPS 

In PSO, which was initially introduced by (Kennedy & Eberhart, 1995), to find an optimal solution, the particles’ 

positions changed. PSO is a population-based stochastic optimization method. The position of each particle in each 

generation can be obtained by the following equations (Engel Brecht, 2019): 

𝑣𝑘(𝑔 + 1) = 𝑤𝑣𝑘(𝑔) + 𝑐1𝑟1(𝑥
𝑘,𝑏𝑒𝑠𝑡(𝑔) − 𝑥𝑘(𝑔)) + 𝑐2𝑟2(𝑥

𝑔𝑏𝑒𝑠𝑡(𝑔) − 𝑥𝑘(𝑔))    (23) 

𝑥𝑘(𝑔 + 1) = 𝑥𝑘(𝑔) + 𝑣𝑘(𝑔 + 1) (24) 

 

Where 𝑘 is the index of particle,𝑔 is the index of generation, 𝑣𝑘(𝑔) is the velocity of particle 𝑘 at generation 𝑔, 

𝑥𝑘(𝑔) is the position of particle 𝑘 at generation 𝑔,𝑥𝑔,𝑏𝑒𝑠𝑡(𝑔) is the best global position at generation 𝑔, 𝑥𝑘,𝑏𝑒𝑠𝑡(𝑔) is the 

best personal position of particle 𝑘 at generation 𝑔,𝑟1 and 𝑟2 are uniform random variables between zero and one (𝑟1 and 

𝑟2~𝑈(0,1)),𝑤 is the inertia weight coefficient (0.4 - 0.9), and 𝑐1 and 𝑐2 are acceleration coefficients of the best personal 

and global solutions, respectively. The values of𝑐1 and 𝑐2 must be between 0 and 2.  

A. Solution representation for UASTDFLPs 

We used continuous solution representation to represent the solutions for UASTDFLPs. This is the first effort that 

employs this type of solution representation in the field of STDFLPs. To arrange the departments for an UASTDFLP, 

we must first determine the center-coordinates of departments along 𝑥 and 𝑦axes in a shop floor and their orientations 

in comparison with their original orientations in all periods. In other words, we have to calculate the values of 𝑥𝑖𝑡  , 𝑦𝑖𝑡  

and 𝑟𝑖𝑡  (𝑖 = 1, 2, … ,𝑀and𝑡 = 1, 2, … , 𝑇) first. It is worth noting that continuous algorithms usually work with variable 

values between zero and one. Hence, a shadow of the center-coordinates of departments along the 𝑥axis and 𝑦axis and a 

shadow of their orientations in comparison with their original orientations in each period is used to represent a solution. 

Shadow representation is adapted to encode the solutions based on Equations (25), (26), and (27). 

Therefore, we need three parts to represent a solution for a UASTDFLP. The first and second parts represent the 

shadow of the departments’ center-coordinates along the 𝑥and 𝑦 axes in each period, respectively. The third part is a 

shadow of the departments’ orientations in comparison with their original orientations in each period. 𝑥̂𝑖𝑡 , ŷ𝑖𝑡 and 𝑟̂𝑖𝑡  are 

employed to indicate the shadow of the center-coordinate of department 𝑖 along the 𝑥 and𝑦 axes, as well as the shadow 

of its orientation in comparison with its original orientation in period𝑡, respectively. In the solution 

representation,𝑥̂𝑖𝑡 ,𝑦̂𝑖𝑡and 𝑟̂𝑖𝑡  (𝑖 = 1, 2, … ,𝑀and𝑡 = 1, 2, … , 𝑇) are numbers from zero to one. 
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The orientations of departments in contrast to their original orientations and the center-coordinates of departments 

along the 𝑥 and 𝑦 axes for each period in a shop floor can be calculated as follows, respectively. 

𝑟𝑖𝑡 = {
0              𝑖𝑓 0 ≤ 𝑟̂𝑖𝑡 < 0.5
1              𝑖𝑓 0.5 < 𝑟̂𝑖𝑡 ≤ 1 

 𝑖 = 1, 2, … ,𝑀𝑡 = 1, 2, … , 𝑇 (25) 

𝑥𝑖𝑡 = 𝑋𝑚𝑖𝑛𝑖𝑡 + (𝑋𝑚𝑎𝑥𝑖𝑡 − 𝑋𝑚𝑖𝑛𝑖𝑡)𝑥̂𝑖𝑡 → {
𝑋𝑚𝑖𝑛𝑖𝑡 =

𝑤𝑖
2
(1 − 𝑟𝑖𝑡) +

ℎ𝑖
2
𝑟𝑖𝑡

𝑋𝑚𝑎𝑥𝑖𝑡 = 𝑊 − (
𝑤𝑖
2
(1 − 𝑟𝑖𝑡) +

ℎ𝑖
2
𝑟𝑖𝑡)

𝑖 = 1,… ,𝑀𝑡 = 1,… , 𝑇 (26) 

𝑦𝑖𝑡 = 𝑌𝑚𝑖𝑛𝑖𝑡 + (𝑌𝑚𝑎𝑥𝑖𝑡 − 𝑌𝑚𝑖𝑛𝑖𝑡)𝑦̂𝑖𝑡   → {
𝑌𝑚𝑖𝑛𝑖𝑡 =

ℎ𝑖
2
(1 − 𝑟𝑖𝑡) +

𝑤𝑖
2
𝑟𝑖𝑡

𝑌𝑚𝑎𝑥𝑖𝑡 = 𝐻 − (
ℎ𝑖
2
(1 − 𝑟𝑖𝑡) +

𝑤𝑖
2
𝑟𝑖𝑡)

     𝑖 = 1, … ,𝑀𝑡 = 1,… , 𝑇 (27) 

                     

Where (𝑋𝑚𝑎𝑥𝑖𝑡 , 𝑌𝑚𝑎𝑥𝑖𝑡) and (𝑋𝑚𝑖𝑛𝑖𝑡 , 𝑌𝑚𝑖𝑛𝑖𝑡) are the maximum and minimum values of the center-coordinates of 

department 𝑖 in period t, respectively. 

As mentioned earlier, in this research, the first type of continuous solution representation was employed for solving 

the problems. This solution representation is applied when a problem is solved by PSO, which uses a matrix with 𝑇 

rows and 3 × 𝑀 columns. 

As an example, this type of solution representation is shown for a problem with four departments and three periods 

in Fig.1. It is clear from the figure that the values of cells in row 1 and column 2, row 2 and column 7, and row 3 and 

column 12 indicates a shadow of the center-coordinate of department 2 along the 𝑥 axis in period 1 (𝑥̂21), a shadow of 

the center-coordinate of department 3 along the 𝑦 axis in period 2 (𝑦̂32), and a shadow of the orientation of department 

4 in period 3 (𝑟̂43) respectively. 

                               

0.84600.8460 0.33510.3351 0.37030.3703 0.79340.7934 0.45830.4583 0.44810.4481 0.89190.8919 0.84830.8483 0.51220.5122 0.26730.2673 0.21830.2183 0.75660.7566

0.27520.2752 0.19350.1935 0.74200.7420 0.57080.5708 0.27350.2735 0.76070.7607 0.72360.7236

Shadow of the center-coordinates

of departments along the x axis 

Shadow of the center-coordinates

of departments along the y axis 

Shadow of the orientations of 

departments 

0.22350.2235 0.59240.5924 0.21800.2180 0.84880.8488 0.81080.8108

0.28050.2805 0.83730.8373 0.76510.7651 0.22920.2292 0.56730.5673 0.84610.8461 0.34340.3434 0.84440.8444 0.28680.2868 0.23010.2301 0.24400.2440 0.19220.1922

Period 1Period 1

Period 2Period 2

Period 3Period 3

 

 

         
Fig.1.The first type of solution representation 

 

In the proposed algorithm, the objective function is calculated below: 
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Minimize∑∑𝐴𝑖𝑡𝑧𝑖𝑡

𝑀

𝑖=1

𝑇

𝑡=1

+ 

 

(

 
 
∑∑∑∑𝛽𝑖𝑗𝑙𝑡𝐸(𝐷𝑙𝑡)𝐶𝑖𝑗𝑡(|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|)

𝐿

𝑙=1

𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

+ 𝑍1−𝛼 (∑∑∑∑𝛽𝑖𝑗𝑙𝑡
2 𝜎2(𝐷𝑙𝑡)𝐶𝑖𝑗𝑡

2 (|𝑥𝑖𝑡 − 𝑥𝑗𝑡| + |𝑦𝑖𝑡 − 𝑦𝑗𝑡|)
2

𝐿

𝑙=1

𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

)

1
2

)

 
 
(1 + 𝑝𝑣)     𝑖 ≠ 𝑗       

(28) 

              

Where 𝑝 is a coefficient with a value of 1200 that is set after five replications of running the proposed algorithms and 

𝑣 is the total average violation. In the above equation, 𝑣 is used to avoid the overlapping of departments. The value of 

the total violation,𝑣, among the departments can be obtained using Equation (29) as follows:  

𝑣 =
1

𝑇(𝑀2 −𝑀)
∑∑∑𝑣𝑖𝑗𝑡

𝑀

𝑗=1

𝑀

𝑖=1

𝑇

𝑡=1

𝑖 ≠ 𝑗 (29) 

               

Where, 𝑣𝑖𝑗𝑡  is the violation between departments 𝑖 and 𝑗  in period 𝑡, which can be calculated as follows: 

𝑣𝑖𝑗𝑡 = min(𝑣𝑥𝑖𝑗𝑡 , 𝑣𝑦𝑖𝑗𝑡) 𝑡 = 1, 2, … , 𝑇𝑖, 𝑗 = 1, 2, … ,𝑀𝑖 ≠ 𝑗 (30) 

Where,𝑣𝑦𝑖𝑗𝑡  and 𝑣𝑥𝑖𝑗𝑡are the violations between department 𝑖 and department 𝑗 in period 𝑡 in the direction of 

the𝑦and 𝑥axes, respectively. 

VI. NUMERICAL EXPERIMENTS  

Based on the literature review, there is no problem instance in the field of UASTDFLPs with normally distributed 

product demands and known expected value and variance.  

The theoretical problem instance, called STDFLP-II, includes10 products, 5 periods, and 12 machines. The variance 

and expected value of each product demand and product routes for STDFLP-II were selected from (Moslemipour&  

Lee, 2012) (Tables VII  and VIII, respectively). 

The other data for STDFLP-II, which were taken from (Yang & Peters, 1998), are described as follows. The 

departments should be placed on a 60 × 60 shop floor for each period. According to (Yang & Peters, 1998), some 

departments’corner-coordinates were negative for the initial layout of STDFLP-II. So, each department’s center-

coordinate was summed with 6 and 14 in the 𝑥 and 𝑦 axes, respectively. The center-coordinates of departments and 

their orientations in comparison with their original orientations are provided in Table IX for the initial layout of the 

problem. Table X presents the shifting cost of departments separately for this problem. 
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TABLE VII. VARIANCE AND EXPECTED VALUE OF THE PRODUCT DEMANDS FOR STDFLP-II 

Product 

Period 1 Period 2 Period 3 Period 4 Period 5 

Variance Mean Variance Mean Variance Mean Variance Mean Variance Mean 

A 1073 6220 1118 5656 2584 3764 2629 6503 1553 6503 

B 2824 2565 2442 8863 1609 6636 1344 9101 2940 7589 

C 1893 7623 2318 9120 1372 3543 1668 4554 1388 5948 

D 1573 2067 2578 4347 2986 2646 2262 9746 1812 8496 

E 1283 8965 2251 2358 1909 2720 1898 7540 1663 8085 

F 2892 8736 1190 9998 1045 7804 1417 3677 2998 2066 

G 1373 6823 2493 8104 2062 6861 2499 4910 1856 8772 

H 1030 6088 2751 9696 1195 3116 1052 9253 2355 8257 

I 1641 6907 2087 7493 1854 4458 1384 5141 2676 6664 

J 2316 4093 1447 5496 1177 1606 2648 7172 1236 5258 

 

TABLEVIII.ROUTES OF PRODUCTS IN ALL PERIODS FOR STDFLP-II 

Product Routes of products Product Routes of products Product Routes of products 

A 5→3→10→9→11 B 11→10→3→9→5 C 1→12→8 

D 12→8→1 E 8→1→12 F 7→2→6 

G 2→4→7→6 H 6→7→4→2 I 2→6 

J 5→10→3  

 

 TABLE IX.CENTER COORDINATES OF DEPARTMENTS IN THE INITIAL LAYOUT FOR STDFLP-II   

Department 1 2 3 4 5 6 7 8 9 10 11 12 

Center-coordinate of the department along the 

axis for the initial layout (xi0) 
6 11.5 17.5 22 11.5 22 11.5 23 17 17.5 17.5 6.5 

Center-coordinate of the department along the 

axis for the initial layout (yi0) 
16.5 27.5 16 18 22 27.5 14 22.5 22 32.5 27.5 22 

Orientation of department in comparison with its 

original orientation for the initial layout (ri0) 
1 0 1 0 0 1 1 0 1 0 0 1 
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TABLE X.SHIFTING COST OF DEPARTMENTS FOR STDFLP-II 

Department 1 2 3 4 5 6 7 8 9 10 11 12 

Shifting cost of department 50 50 50 50 50 50 50 50 50 50 50 50 
          

The original length and width of departments for STDFLP-II are given in table XI. The cost per unit distance was 

assumed to be $1.0. 

TABLE XI.LENGTH AND WIDTH OF DEPARTMENTS IN ALL PERIODS FOR STDFLP-II  

Department 1 2 3 4 5 6 7 8 9 10 11 12 

Original length (wi) 5 7 6 4 6 5 10 7 6 5 5 6 

Original width (hi) 4 5 5 4 6 4 7 5 5 5 5 4 
                 

Each PSO has five parameters as follows:(𝑀𝑎𝑥𝐼𝑡, 𝑛𝑃𝑜𝑝, 𝑐1, 𝑐2, 𝑤). 𝑀𝑎𝑥𝐼𝑡 is the maximum number of generations, 

𝑛𝑃𝑜𝑝 is the number of particles, 𝑐1 is the acceleration coefficient of the best personal solution, 𝑐2 is the acceleration 

coefficient of the best global solution, and 𝑤 is the inertia weight coefficient. We run the proposed PSO 20 times for 

STDFLP-II at each confidence level with different parametric values. The results revealed the following values for 

𝑀𝑎𝑥𝐼𝑡, 𝑛𝑃𝑜𝑝, 𝑐1, 𝑐2, and 𝑤: 600 or 650, 500 or 700, 0.5 or 0.6, 1.0 or 1.2, and 0.4 or 0.5, respectively. Overall, 32 

situations were concluded for the STDFLP-IIparameters at each confidence level. As a result, 20 situations were 

selected randomly, and the modified PSO was tested with these parametric values. Parameter setting for STDFLP-II at 

each confidence level is reported in Table XII. 

TABLEXII.SETTING OF PARAMETER FOR THE MODIFIED PSO 

Problem Confidence level (𝟏 − 𝜶) 𝑴𝒂𝒙𝑰𝒕 𝒏𝑷𝒐𝒑 𝒄𝟏 𝒄𝟐 𝒘 

STDFLP-II 

0.85 600 500 0.5 1.0 0.4 

0.95 650 700 0.6 1.2 0.5 

VII.SENSITIVITY ANALYSIS 

Tables XIIIand XIV present the PSO results for solving STDFLP-II at two confidence levels (1 − 𝛼 = 0.85 ,0.95), 

respectively. Each problem was solved 10 times using the modified algorithm. Material handling cost, the sum of the 

shifting cost, total cost, and mean of the total cost for 10 replications as well as run time for the best solution at two 

confidence levels (1 − 𝛼 = 0.85 ,0.95) are shown in Tables XIII and XIV, respectively.  

VIII.CONCLUTION 

UASTDFLPs having normally distributed product demands with a known expected value and variance in each 

period were studied for the first time in the present research.  Since the investigated problems are very complex and NP-

hard with stubborn behavior, PSO was used to create solutions for them. The findings revealed the efficiency and 

effectiveness of the PSO method. For future work, this research can be extended in many ways, including:1) Using 

other types of distributions for product demands, 2) Adding the output and input for departments, and 3) Applying other 

meta-heuristic algorithms to solve the problems. 



162 Alamiparvin, R. et. al.  / A Mathematical Model for Unequal Area Stochastic Dynamic Facility Layout Problems 

 

TABLE XIII. SENSITIVITY ANALYSIS OF THE MODIFIED PSO FOR STDFLP-II(𝟏 − 𝜶 = 𝟎. 𝟖𝟓) 

Run Material handling cost Shifting cost Total cost 
Run time for the best 

solution (second) 

1 5477779.3805875 600 5478379.3805875 13259 

2 5457130.8847875 600 5457730.8847875 13259 

3 5487890.2694875 600 5488490.2694875 13259 

4 5447019.9958875 600 5447619.9958875 13259 

5 5386924.2021 600 5387524.2021 13259 

6 5498001.4906875 600 5498601.4906875 13259 

7 5436908.7746875 600 5437508.7746875 13259 

8 5508112.6018875 600 5508712.6018875 13259 

9 5426797.6634875 600 5427397.6634875 13259 

10 5569044.4884 600 5569644.4884 13259 

Mean of the total cost for 10 replications: 5470160.9752 
               

TABLE XIV. SENSITIVITY ANALYSIS OF THE MODIFIED PSO FOR STDFLP-II (1-α=0.95) 

Run Material handling cost Shifting cost Total cost 
Run time for the best 

solution (second) 

1 5628048.2830875 3000 5631048.2830875 15647 

2 5607399.7872875 3000 5610399.7872875 15647 

3 5638159.1719875 3000 5641159.1719875 15647 

4 5570288.8983875 3000 5600288.8983875 15647 

5 5585973.3494 3000 5588973.3494 15647 

6 5648270.3931875 3000 5651270.3931875 15647 

7 5587177.6771875 3000 5590177.67771875 15647 

8 5658381.5043875 3000 5661381.5043875 15647 

9 5577066.5659875 3000 5580066.5659875 15647 

10 5673435.9491 3000 5676435.9491 15647 

Mean of the total cost for 10 replications: 5623120.158 
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