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Abstract- Despite existing various integer programming for sequencing problems, there is not enough 

information about practical values of the models. This paper considers the problem of minimizing maximum 

lateness with release dates and presents four different mixed integer programming (MIP) models to solve this 

problem. These models have been formulated for the classical single machine problem, namely sequence-

position (SP), disjunctive (DJ), linear ordering (LO) and hybrid (HY). The main focus of this research is on 

studying the structural properties of minimizing maximum lateness in a single machine using MIP 

formulations. This comparison helps us know the characteristics and priority of different models in 

minimizing maximum lateness. Regarding to these characteristics and priorities, while solving the lateness 

problem in the procedure of solving a real-world problem, we apply the lateness model which yields in 

solution in shortest period of time and try not to use formulations which never lead to solution for large-scale 

problems. Beside single machine, these characteristics are applicable to more complicated machine 

environment. We generate a set of test problems in an attempt to solve the formulations, using CPLEX 

software. According to the computational results, a detailed comparison between proposed MIP formulations 

is reported and discussed in order to determine the best formulation which is computationally efficient and 

structurally parsimonious to solve the considering problem. Among the four presented formulations, 

sequence-position (SP) has the most efficient computational time to find the optimal solution. 
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I. INTRODUCTION 

 

Single machine models are important due to various reasons. Pinedo and Hadavi [1] stated that single machine 

environment is so simple and often considers properties that neither machines in parallel nor machines in series have.  

Since the single machine environment is a special case of all other ones, the results obtained from single machine 

models provide a basis for heuristics that are applicable to more complicated machine environments. In fact, scheduling 

problems in complicated machine environments are decomposed to sub-problems that deal with single machines. 

Mathematical models for single machine scheduling problems have received far lower attention than the heuristic 

methods to that extent, now after 50 years, structural composition of models introduced by Wagner [2] and Manne [3] 

not only still retain their original forms but also have been consigned into neglect. This might partially due to their low 

efficiency and/or absence of high-tech processors. Therefore, there exist little or no model-developing techniques based 

on these compositions. 

Academic researchers have developed specialized algorithms to solve relatively large-sized scheduling problems. 

Based on their work, one can develop codes to implement algorithms for a specialized problem. However, this could be 

complicated and time consuming. In contrast, we can use a more general modeling capability like MIP. MIP 

formulations represent a precise algebraic statement of the problem and solution can be obtained using commercially 

available optimization software (e.g., CPLEX, GAMS and LINGO). 

There are only few papers focusing on optimization model formulations in the scheduling area. First, Blazewicz et 

al. [4] compiled a large number of mathematical formulations and provided the complexity of various production 
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scheduling problems. Another comprehensive survey of MIP formulations was studied by Queyranne and Schulz [5]. 

Unlu and Mason [6] presented four different MIP formulations based on four different types of decision variables for 

identical parallel machine scheduling problem. Minimizing total waited completion time and maximum completion 

time are two objective functions considered in this study. The least computational time is delivered by time-indexed 

formulation. Linear ordering formulation provides much better computation time as compared to network and 

assignment-positional date formulations. Further, the computation times provided by network and assignment-positional 

date formulations are often higher than time indexed and linear ordering formulations, while network formulation 

delivers a relatively lower computational time than assignment-positional date formulation. Baker and Keller [7] 

presented six different IP formulations for the single machine tardiness problem. They created a set of especially 

difficult test problems to solve them with each of the formulations. It was found that sequence-position formulation 

provides the most computationally effective solutions. This formulation solves nearly all problems up to about 40 jobs. 

Herr and Goel [8] presented two integer programming formulations for a single machine family scheduling problem to 

minimize total tardiness. Their first formulation has O(n2) binary variables whereas their second formulation has O(n3) 

binary variables, where n denotes the number of jobs to be scheduled. Their findings indicate that despite the significant 

higher number of binary variables, the second formulation leads to significantly shorter solution times for problem 

instances of moderate size. 

As Baker and Keller [7] mentioned in their study, it is not guaranteed to be effective in finding solutions using an IP 

approach as same as complicated and specialized algorithms. Although there are alternative approaches to the IP 

formulation of scheduling problem, there exists few comparative testing of those formulations. In addition, against the 

well-known algorithms that have been proposed and tested in the related literature, there is not enough information 

about the capabilities of commercial optimization packages at solving standard sequencing problems. Thus, in this 

research, we are interested in getting wider understanding of the different MIP formulations behavior and their 

performance against the different size of problems. There are many published papers that have studied heuristic and 

meta-heuristic algorithms to solve single machine problems, e.g., Bahalke et al. [9], Sels and Vanhoucke[10], Lu et al. 

[11], Moghaddam et al. [12] and Senthilvel et al. [13]. The main focus of this research is on studying the structural 

properties of minimizing maximum lateness in a single machine using MIP formulations. Following the standard α|β|γ 

classification scheme for scheduling problem [14], α indicates the scheduling environment, β shows the job 

characteristic and γ describes the objective function to be optimized. The scheduling problem studied in this paper is 

1|��|���� , and it is unary NP-hard [15]. 

In this paper, we focus on single machine lateness problem, which is perhaps one of the most familiar basic 

problems in sequencing. This problem is solved using four different MIP formulations. These models are sequence-

position (SP), disjunctive (DJ), linear ordering (LO) and hybrid (HY). The complexity of modeling in these 

formulations is related to implementation of different concepts for calculating the minimization of maximum lateness. 

The concept of SP for solving this problem is to determine the position of each job in a sequence that leads to 

minimization of maximum lateness. DJ applies another approach to calculate the mentioned objective. It uses 

precedence of jobs over the others to minimize the maximum lateness. LO uses the linear ordering concept that was first 

time introduced in 1990. Finally, the HY model uses the both sequence-position and precedence approach to form a 

formulation. The feature which distinguishes among these formulations is the key variable(s) used in their structure. 

The key variables used in this paper are sequence-position and precedence variable. These key variables were first time 

introduced by Wagner [2] and Manne [3]. Wagner [2] was the first researcher who formulated a model to minimize the 

makespan in the three machine flow shop problem using a key binary variable named sequence-position. Another early 

paper on the topic is proposed by Manne [3] which used precedence variable as a key variable to minimize the 

makespan in a job shop problem.  

In order to evaluate the capability of each of four MIP formulations, special test problems are created to focus on 

conditions under which the solution procedure is most severely challenged. Then, according to the obtained results, 

formulations are compared based on the computational time, number of nodes, constraints, variables and number of 

problems that they were able to solve within a limited time. 

The rest of this study is organizing as follows: in the following section, various formulations for solving minimizing 

maximum lateness have been introduced. Section III explains how test problems have been generated to test the 

formulations performance. Numerical examples have been studied in section IV to evaluate the presented formulations 

and, finally, conclusion is presented in section V. 
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II. FORMULATION OF LATENESS PROBLEM 

 

In this section, we propose four MIP formulations that are used to solve a single machine lateness problem with 

release dates. In these formulations, parameters such as ��, �� and �� are assumed to be given. ��, �� and �� are defined 

as processing time, due date and release date of job j, respectively. There are two key variables used in the following 

formulations that are sequence-position and precedence variables. Sequence-position variable (	
�) is a binary variable 

that is 1 if job i is assigned to position k or 0 otherwise. Also, precedence variable (�
�) is a binary variable that is 1 if 

job i is scheduled before job j and is 0 otherwise. 
 is a common variable in minimizing maximum lateness 

formulations. In the following formulations, N indicates the number of jobs and positions. 

�� � lateness of job �=�� � �� 

 

A. Sequence-position Model (SP)   

In this formulation, the key variable is sequence-position that determines which job is chosen for each position. 

 

Main variable: 
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In this formulation, the constraint sets (1.2) and (1.3) ensure that each job is exactly assigned to one position and 

each position is assigned just to one job. The constraint (1.4) calculates the completion time of the job at kth position 

and constraint (1.5) is utilized to ensure the linear form of objective function (1.1). Finally, the constraint sets (1.6) and 

(1.7) are the non-negativity and integrality constraints, respectively. 

 

B. Disjunctive Model (DJ)   

Balas [16] presented the first research on formulating scheduling problem using disjunctive constraints and this 

formulation was studied by Queyranne and Wang [17]. This model has two key variables that are �
� and ?
. �
�  and ?
 
are binary and integer variables, illustrating the precedence and start time of the jobs, respectively. 
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Main variables: 

�
� � 1 if job � follows job �, and zero otherwise 

?
 � start time of job � 
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The constraint sets (2.2) and (2.3) ensure that either job j is processed before job k or job k is processed before job j 

for any pair of jobs. The constraint set (2.4) guarantees that start time of each job is equal to or greater than its released 

date. The constraint sets (2.5) and (2.1) compute and minimize the maximum lateness function and the constraint sets 

(2.6) and (2.7) are the non-negativity and integrality constraints, respectively. In this formulation, M is a big number 

that can be taken to be greater than the sum of processing time of all jobs and maximum value of the release dates. 

 

C. Linear Ordering Model (LO)    

Linear ordering formulation was first time introduced by Dyer and Wolsey [18] and continued to be studied by 

Nemhauser and Savelsbergh [19]. There exists precedence variable just like the previous model. 

 

Main variable: 

�
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H
� , 8� , 
 9 0,       4�, � * 5 (3.9) 

 

�
�   * '0,1.,       4�, � * 5     (3.10) 
 

 

The constraint set (3.2) ensures job i is processed before job j or job j is processed before job i. constraint set (3.3) 

ensures the linear order between three jobs. The constraint sets (3.4), (3.5) and (3.6) have been used to linearize the 

multiplication of 8� . �
�  in order to be used in the constraint set (3.7) to ensure that start time of job j is greater than or 

equals to its release date. Constraint sets (3.8) and (3.1) give the minimized maximum lateness. Finally, the constraint 

sets (3.9) and (3.10) are the non-negativity and integrality constraints, respectively. In this formulation, parameter M is 

a big number. 

 

D. Hybrid model (HY) 

Name of this formulation implies that it is a kind of synthetic model that consists of precedence and sequence-

position variables. A set of constraint is needed to ensure that the two sets of variables are consistent. 

 

Main variables: 
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In this formulation, the constraint sets (4.2) and (4.3) ensure that each job is exactly assigned to one position and 

each position is assigned just to one job. Constraint set (4.4) determines the precedence of job i and j for each pair of 

jobs based on the position of each one. The constraint (4.5) calculates the completion time of the job at kth position and 

the constraint sets (4.6) and (4.1) give the minimized maximum lateness. Finally, the constraint sets (4.7) and (4.8) are 

the non-negativity and integrality constraints, respectively.  
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III. TEST PROBLEMS AND EXPERIMENTS 

 

To evaluate the capability of an MIP formulation, it should be tested using difficult problem instances. Also, 

generating data sets in the condition that the solution procedure is most severely challenged should be considered [20]. 

We adopt the idea of generating data sets based on the studies presented by Nemhauser and Savelsbergh [19] and 

Abdul-Razaq et al. [21]. 

We have generated integer processing time (��) for each job j from a uniform distribution between 1 and 100. As 

Baker and Keller [7] stated that there are two reasons for choosing processing time between 1 and 100. Firstly, one is 

historical consistency. In fact, most of the recent computational tests in scheduling problems generate data like 

processing time from a uniform distribution on [1, 100] or a normal distribution with a mean of 100 and a standard 

deviation as large as 25. Secondly, it is so important that according to the sample size, range of 100 possibilities will be 

reasonable. On the other hand, it is better to use data that are representative of realistic scheduling problem. Sampling in 

small interval may create many ties that is far from the reality and yields in inappropriate conclusion. 

The due date, ��, is another integer parameter generated from a uniform distribution [P(L-R/2),P(L+R/2)], where P 

is the sum of processing times of all jobs and the two parameters L and R are the relative measures for the location and 

range of the distribution, respectively. The release date of job j (��) is the last needed data which is generated from a 

uniform distribution [0, QP]. P is the sum of processing times of all jobs and Q determines the range of the distribution.  

According to the mentioned points, data sets have been generated in sizes of 10, 15, 20, 30, 40 and 50 jobs. Also, 

parameters L, R and Q have been set to 0.5, 0.8 and 0.4, respectively. Our experiments involved solving each test 

problem using CPLEX software. We set 3600 seconds as a limit for computational time and apparently, if the optimal 

solution is not found in this limit, the process will be terminated. 

 

 

IV. COMPUTATIONAL RESULTS 
 

To compare the different proposed formulations, we look at the number of explored nodes, computational time for 

solving test problems in 3600s and the number of test problems solved in 3600s. Results of the runs are summarized in 

Table I. For each formulation, a number of problems solved within the time limit, average, minimum and maximum 

time needed to solve the test problems have been displayed. In addition, the average number of nodes explored while 

solving the test problems has been illustrated. 

 

TABLE I. SUMMERY OF COMPUTATIONAL RESULTS 

Problem 

size 

MIP 

formulation 

Problems 

solved 

Average 

time (s) 

Minimum 

time (s) 

Maximum 

time (s) 

Average 

nodes 

10 SP 40 1.10475 0.23 1.86 104.9 

10 DJ 40 1.589 0.91 2.51 2528.9 

10 LO 40 1.81475 0.84 6.79 2367.3 

10 HY 40 4.851 1.98 8.99 4243.9 

15 SP 40 1.2455 0.58 2.61 672.6 

15 DJ 40 126.254 1.39 2276.6 1610132 

15 LO 40 182.605 3.42 964.45 162218 

15 HY 35 129.132 36.07 770.07 37783.1 

20 SP 40 1.88525 0.72 12.78 3830.2 

20 DJ 14 485.25 3.65 2141.58 2855943 

20 LO  - - - - 

30 SP 40 3.01135 1.11 11.75 1926.9 

40 SP 38 10.6510 2.73 11.75 3438.3 

50 SP 38 47.8723 6.08 326.51 11268 
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We first used test problems containing 10 jobs. The experiments show that all of the four formulations are capable 

of solving problems in the reasonable time and found the optimal solutions in the time limit. Among these formulations, 

HY consumes more time to find the optimal solutions. Unlike the HY, SP had the best performance and found the 

optimal solutions in the shortest time comparing with other formulations. Also, computed variance of time spent to find 

the optimal solution indicates that HY and SP have the most and the least variance, respectively.  

In the next step, the number of jobs raises to 15. In this step, comparison of average time needed by each 

formulation to find the optimal solution shows that the SP has the best performance and its average time did not 

increase significantly comparing with the previous step. 

Unlike SP, other three formulations have a significant increase in average time by raising the number of jobs to 15. 

Results show that HY formulation is weak to solve the test problems compared to the other ones. Also, it could not find 

optimal solution of five problems in the time limit. Therefore, we dropped it from consideration and proceeded to larger 

problems.  

In size of 20 jobs, SP had acceptable performance just as same as before. However, the other two formulations were 

extremely weak to solve the problem and find the optimal solution. LO could not solve any of the test problems and DJ 

was able to solve fewer than half of the problems. Therefore, we dropped them from consideration and proceeded to 

larger problems to observe the performance of SP in larger size of problems.    

Next set of experiments used problem sizes of 30, 40, and 50. For problem size of 30, SP solved all of 40 test 

problems and its average spent time has an increase comparing the previous steps. By increasing the number of jobs to 

40, SP could not solve two test problems and its average time of finding optimal solution is more than three times 

greater than the computed value in the size of 30. Finally, at problem size of 50 jobs SP could find the optimal solution 

of 38 test problems in the time limit. As indicated in Table I, the average time of solving test problems of size 50 using 

SP is significantly greater than the value obtained in smaller sizes. Also, during the computational test the least average 

number of nodes has been explored while solving the SP. Comparison of average computational time of different 

models for 10, 15 and 20 jobs is shown in Fig. 1. 

 

 

 
 

Fig. 1: Comparison of average computational time of different models for 10, 15 and 20 jobs (the LO and HY model were 

unable to solve problems with 20 and more jobs) 
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TABLE II. FORMULATION SIZES FOR FOUR FORMULATIONS 

 Number of jobs Number of 

Constraints 

Number of 

Variables 

Number of 

Integer variables 

SP 10 40 112 11 

LO 10 1320 212 111 

DJ 10 110 57 11 

HY 10 940 202 11 

SP 15 60 242 16 

LO 15 4080 467 241 

DJ 15 240 122 16 

HY 15 3210 452 16 

SP 20 80 422 21 

LO 20 9240 822 421 

DJ 20 420 212 21 

HY 20 7680 802 21 

 

 

 

 

 
Fig. 2: Comparison of number of constraints and variables of different models for 10, 15 and 20 jobs 

 

 

Table II displays the size of the MIP formulations for all of four alternatives for n = 10, 15 and 20. Table II shows 

that SP and DJ have the smallest number of constraints and variables, respectively. In spite of having small number of 

variables, the feature of DJ does not yield in finding optimal solution in an efficient computational time. In contrast, the 

LO has the largest number of constraints and variables and probably that is why it is incapable in solving lager 

problems. Comparison of number of constraints and variables of different models for 10, 15 and 20 jobs is depicted in 

Fig. 2. 

Results show that for problems with large-size, using SP formulation can be reliable because SP could find the 

optimal solution of problems with 50 jobs in short period of time. Since, solving minimization of maximum lateness by 

the three formulations LO, DJ and HY for large problems is so time consuming and in some cases finding the exact 

solution is impossible; so, it is more preferable not to use these there exact formulations for large-size problem. 

 
 

V. CONCLUSION 
 

We have tested four different MIP formulations for minimizing maximum lateness in a single machine using 

software CPLEX. In this study, it is indicated that for minimizing maximum lateness it is not enough to use a MIP 

formulation to solve the problem; also, it is important to examine which MIP formulation has been considered. Among 
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the four presented formulations, the formulation that used sequence-position variables, namely sequence-position 

formulation (SP), has the most efficient computational time to find the optimal solution.  

We know that specific algorithms have been proposed for solving the minimizing maximum lateness problem and 

they are shown to be more effective than solving MIP formulations. But, it is important to notice that adopting these 

algorithms for other problems in the same domain is not easy. In contrast, MIP formulations could be easily solved 

using optimization solvers. As a future research, the presented MIP formulations can be compared with other 

formulations containing additional restrictions, like precedence constraint, or for more complex machine environments. 

Further, the problem can be formulated using other concepts like timed-indexed and tour constraints approach. 
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