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Abstract- This study investigates the coordination of production scheduling and maintenance planning in the 

flow shop scheduling environment. The problem is considered in a bi-objective form, minimizing the 

makespan as the production scheduling criterion and minimizing the system unavailability as the 

maintenance planning criterion. The time interval between consecutive maintenance activities as well as the 

number of maintenance activities on each machine are assumed to be non-fixed. A mixed integer 

programming formulation of the problem is presented. A special case of the problem, named as single server 

maintenance is also studied. Then, a bi-objective ant colony system algorithm is presented to solve the 

problem in focus. To obtain the appropriate components of the proposed algorithm, two sets of experiments 

are provided. Firstly, experiments are carried out to select the suitable heuristic method to build the heuristic 

information part of the algorithm between CDS and NEH. Secondly, experiments are reported to select the 

local search algorithm between iterated local search and adjacent pair-wise interchange. At last, experiments 

are generated to evaluate the performance of the proposed algorithm, comparing it to the results of an 

exhaustive search algorithm. 
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I. INTRODUCTION 

 
In classical scheduling problems, machines are assumed to be available through the whole planning horizon, 

although this assumption may not be true in many practical environments, as machines may become unavailable during 

certain periods of planning horizon. Preventive maintenance is the main cause of unavailability of machines. There are 

some researches relaxing this unrealistic assumption, mainly the approach called machine scheduling with availability 

constraints where the number of preventive maintenance periods and their intervals are fixed and known in advance. In 

this approach, the maintenance periods are incorporated into the constraints of the problem, with no change in the 

performance measure. In fact, the constraints are formulated in a way to plan the jobs in the available periods of time. 

As an early result for the availability constraint approach, Lee [1] showed that two machine flow shop problem with 

preemptive jobs becomes NP-hard, if there is a single unavailable period (hole) on one machine. Most of the papers in 

this area are investigated with two machines in the system. The problem is mostly considered with a limited number of 

maintenance activities on machines.  Ng and Kovalyov [2] presented an FPTAS for the problem with one unavailable 

period and showed that two cases of the problem are equivalent to similar partition type problems. The same problem 

was also studied by Breit [3] and an improved approximation algorithm was presented. Allaoui et al. [4] presented the 

conditions under which the Johnson algorithm results in the optimum solution for the problem. Blazevicz et al. [5] 

investigated the problem with more than a hole and presented constructive and local search heuristics for the problem. 

Kubzin et al. [6] presented approximation algorithms for the problem with several holes on the first machine. Yang et 

al. [7] studied the problem with a separated maintenance constraint. The concept of semi-resumable jobs was 

incorporated into the problem in Lee [8]. In this approach, the problem is rarely considered with more than two 

machines in the system. Aggoune [9] presented a heuristic algorithm based on genetic algorithm and tabu search for the 

problem with non-preemptive jobs. A heuristic algorithm based on the geometric approach was also developed for the 

problem in Aggoune and Portmann [10]. Choi et al. [11] considered the problem with m machines in the system for 

very restricted conditions. They investigated the problem in the ordered flow shop scheduling environment. Schmidt 
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[12] and recently Ma et al. [13] have provided detailed reviews on the problem with availability constraints. The 

drawback of this approach is that the maintenance planning is always advantageous to the production scheduling. 

Advantaging maintenance activities to the production jobs may result in systems with poor performance, as the system 

productivity is highly influenced with both the production and the maintenance decisions. In addition, the production 

and the maintenance activities are highly-interdependent and ignoring this may result in unsatisfied demand or machine 

breakdowns [14]. To overcome this drawback, Berrichi et al. [14] proposed the joint production and scheduling 

approach, in which the simultaneous scheduling of both production and maintenance activities was presented. 

The main feature of the so-called joint approach is the simultaneous scheduling of production and maintenance 

activities. Berrichi et al. [14] presented the joint model in the parallel machine environment, and they formulated it in a 

bi-objective form to seek for the optimal Pareto front. Minimization of the makespan and minimization of the system 

unavailability were considered as the two objective functions in their study. The bi-objective form of the problem leads 

into the similar priority of production and maintenance activities. In the joint production and maintenance scheduling 

approach, the periodic preventive maintenance is considered in which the period between two consecutive maintenance 

activities is fixed. The maintenance problem is to find the best maintenance period for each machine in a way to 

minimize the system unavailability. Moradi and Zandieh [15] investigated the same problem and presented a similarity 

based genetic algorithm for the problem. The same problem was also investigated by Berrichi et al. [16]. They 

developed a bi-objective ant colony optimization algorithm to tackle the problem. The model was considered in the 

flexible job shop scheduling environment by Moradi et al. [17]. Moreover, the model with the minimization of total 

tardiness as the production scheduling criterion was studied by Berrichi and Yalaoui [18]. The problem with multiple 

preventive maintenance services was investigated by Mokhtari et al. [19]. For more recent contributions on this area, we 

refer to Wang and Liu [20] and Cui et al. [21]. In the joint approach, the fixed time intervals between consecutive 

maintenance activities seem to be problematic. In other words, this assumption may result in the intervention of the 

production and the maintenance activities. In this paper, we present a new approach to avoid these interventions. In 

addition, we formulate the model in the flow shop scheduling environment. There is no work investigating the joint 

model in the flow shop scheduling environment. 

In this paper, a new approach is proposed to overcome the problem of simultaneous production and maintenance 

scheduling in the flow shop scheduling environment. In the proposed approach, the time intervals between maintenance 

activities as well as their number are decision variables. The problem is formulated in a bi-objective form and the model 

seeks for the optimal Pareto front. For the production scheduling part, makespan i.e., the finishing time of the last job in 

order is the performance measure. The performance measure for the maintenance part is the system unavailability. A bi-

objective ant colony system approach is presented to solve the problem. To evaluate the efficiency of the proposed 

algorithm, some computational experiments are carried out using well-known Taillard’s benchmark. 

The remainder of the paper is organized as follows: Section 2 describes the problem definition and formulation. In 

Section 3, the proposed bi-objective ant colony system is presented. Results of computational experiments are presented 

and discussed in Section 4. In Section 5, concluding remarks are provided. 
 

 

II. PROBLEM DEFINITION AND FORMULATION 
 

Concerning production aspect of the problem, flow shop environment is considered. A flow shop scheduling 

problem deals with a set of n jobs, J = {1, 2, …, n} to be processed on a set of m machines, R = {1, 2, …, m}.  

The processing order on the m machines is the same for all N jobs, i.e., only permutation schedules are allowed. Each 

job j consists of a set of m operations, Oj1, Oj2, …, Ojm to be processed on machines. The processing time of job j on 

machine r is prj. All jobs are assumed to be available at time zero, and preemption of jobs is not allowed, i.e., once the 

execution of an operation is started, it can be interrupted neither by other operations nor by maintenance activities. 

Every machine processes only one action (e.g., job operation or maintenance activity) at a time. The problem is to find 

the best permutation of jobs, regarding the minimization of the makespan as the objective function. We define Cj as the 

completion time of the job j. The makespan (Cmax) is the completion time of the last job in sequence and can be defined 

by relation (1): 

max 1,2,...,max j n jC C==
 

                                                                                                                        (1)  
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Concerning maintenance aspect of the problem, preventive maintenance is taken into account. Preventive 

maintenance strategies aim to decrease the probability of failure of the system (i.e., increase the availability of the 

system). In this paper, the time intervals between two consecutive maintenance activities as well as the number of the 

activities are not fixed. In other words, the time intervals are assumed to be decision variables. The maintenance 

problem is to assign maintenance activities into the schedule, in a way to minimize the system unavailability. The 

availability is defined as “the probability that a system or a component is performing its required function at a given 

point in time or over a stated period of time when operated and maintained in a prescribed manner” [22]. The 

availability of a machine r at a given point in time t is defined as relation (2): 

A (t) = P (r is operating at time t)                                                                                                   (2) 
 

Unavailability is defined as the opposite of the availability. Therefore, the system unavailability can be defined as 

(3):  

( ) 1 ( )A t A t= −
 

 

 

The availability of a machine Mr depends on its failure rate λr and its repair rate µ r. Failure rates and repair rates of 

all machines are assumed to be constant. Moreover, maintenance activities are supposed to restore the machine to as 

good as new condition. Taking into account these assumptions, the availability of a machine Mr at time t is calculated 

by relation (4) [22]: 

( ) exp( ( )r r

r r r r

r r r r

A t t T
µ λ

= + − λ + µ )( − )
λ + µ λ + µ

 

 

 

where Tr is the completion time of the last performed maintenance activity on machine r. From the initial instant with 

no performed maintenance activity, Tr = 0. The system availability is due to the system structure. For m independent 

serial components, each component having an availability function Ar (t), the system availability As (t) at time t is given 

by relation (5) [22]: 

1

( ) ( )
m

s r

r

A t A t
=

= ∏
 

 

 

Consequently, the system unavailability is: 

1

( ) 1 ( )
m

s r

r

A t A t
=

= −∏
 

 

 

Minimization of the system unavailability is the objective function for this aspect of the problem.  

Two aspects can be regarded for the problem, production scheduling and maintenance planning; hence, two 

decisions must be taken simultaneously. The production decision is to find the best permutation of the jobs to be 

processed on machines, minimizing the makespan. The maintenance problem is to assign the maintenance activities into 

the schedule, minimizing the system unavailability, while the number of the maintenance activities on each machine is 

not fixed. Although the two objective functions are conflicting, the system productivity is concerned with both of them. 

Assigning maintenance activities into a schedule may increase the makespan but decrease the system unavailability. On 

the contrary, performing less maintenance activities leads into decrease in makespan and increase in system 

unavailability. 

Let T = {0, t1, t2, …, ts, Cmax} where t1, t2, …, ts are the starting times of the maintenance activities on all machines. 

As machines are assumed to become “as good as new” after performing a maintenance activity, and the unavailability is 

an increasing function in each interval [ti, ti+1], i = 0, …, s, with t0 = 0 and ts+1 = Cmax, the system unavailability is only 

computed at the times t1, t2, …, ts+1. The notations used to formulate the problem are presented in Table 1.  

To formulate the problem, the model proposed by Wilson [23] is used. According to Tseng et al. [24], Wilson’s 

model is the second best mixed-integer linear programming formulation for the permutation flow shop scheduling 

problem. The Wilson’s model uses the classic assignment problem constraints. Let Zjk be the binary integer variables for 

the assignment of jobs in the sequence positions. If job j is assigned to sequence position k, Zjk is 1; otherwise, it is 0. 

Moreover, let Brk be the integer variables denoting the start time of jobs: 

Brk : start time of job in sequence position k on machine r                                                                  (7) 

(3) 

(4) 

(5) 

(6) 
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TABLE I. TYPE SIZES AND APPEARANCE 

Notations Descriptions 

j Index of jobs 

r Index of machines 

k Index of positions 

J Set of jobs 

R Set of machines 

K Set of sequence positions 

n Total number of jobs 

m Total number of machines 

prj Process time of job j on machine r 

 

To incorporate the maintenance activities into the schedule, a binary integer variable Xrk is defined that is equal to 1 

if a maintenance activity is performed after position k on machine r, and 0 otherwise. 

By defining this variable, maintenance activities are allowed to perform all over the schedule, between the 

production jobs. dr is the duration of a maintenance activity performing on machine r. The maximum number of 

maintenance activities performing on machine r is shown by P
r
max. The whole model is represented as below: 

 

1 max 1
min{ } ( )

n

mn mj mn mj jn
F C B p Z X d

=
= = + +∑

 

  

2 min{max ( )}
t T s

F A t∈=
 

  

 

subject to: 

 

  

1
1

n

jkk
Z

=
=∑

     
(1 )j n≤ ≤

 
  

1
1

n

jkj
Z

=
=∑

    
(1 )k n≤ ≤

 
  

11
0B =

   

1 1 1 1 1, 11
( )

n

k j jk k kj
B p Z X t B +=

+ + =∑
    

(1 1)k n≤ ≤ −
  

1 1 1,11
( )

n

r rj j rj
B p Z B +=

+ =∑
                   

(1 1)r m≤ ≤ −
  

1,1
( )

n

rk rj jk r kj
B p Z B +=

+ ≤∑
    

(1 1;2 )r m k n≤ ≤ − ≤ ≤
  

, 11
( )

n

rk rj jk rk r r kj
B p Z X d B +=

+ + ≤∑
           

(2 ;1 1)r m k n≤ ≤ ≤ ≤ −
  

max1

n r

rkk
X P

=
≤∑

                 
(1 )r m≤ ≤

  

 

Equations (8) and (9) indicate the two objective functions. Equations (10) and (11) are the classical assignment 

problem constraints, while (10) insures that each job is assigned to just one position and (11) insures that each position 

is filled with only one job. Constraints (12), (13), and (14) ensure that there is no idle time on machine 1, and job 1 is 

processed on all M machines with no delay. Constraint (15) ensures that the starting time of each job on machine r + 1 

is no earlier than its finishing time on machine r. Constraint (16) ensures that the job in the sequence position k + 1 does 

not start on machine r until the job in position k in the sequence has completed its processing on that machine, and the 

maintenance activity on position k is performed, if it is planned (Xrk = 1). At last, equation (17) ensures that the number 

of maintenance activities performing on machine r is no more than P
r
max. 

Single server maintenance: Consider a setting in which the maintenance activities are performed by a single server. In 

 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

 (17) 
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 other words, no two maintenance activities can be performed simultaneously. The assumption may be caused by a 

limitation in the human resource or/and the equipment, that may be occurred in many practical situations. We call such 

a setting as single server maintenance. For the single server maintenance situation, some modifications must be 

accomplished in the model previously described. In this regard, a new constraint must be added to the model that 

prevents planning maintenance activities with time interventions. If the distance between the starting time of each two 

maintenance activities is bigger than the maximum of the processing time of the respective activities, no intervention 

occurs. Equation (18) indicates the discussed concept, considering two maintenance activities on machines r and q, 

planned after sequence positions k and l, respectively. 
 

1 1
| ( )* ( )* |

n n

rk jk jk rk ql jl jl qlj j
B p Z X B p Z X

= =
+ − +∑ ∑

 
max( , )*

r q rk ql
d d X X≥

 

(1 , ;1 , )r q m k l n≤ ≤ ≤ ≤
               (18) 

 

 

III. SOLUTION APPROACH 
 

A bi-objective ant colony system algorithm is proposed to tackle the problem. Ant colony optimization, first 

proposed by Dorigo [25], is a swarm intelligence meta-heuristic algorithm, inspired by the cooperating behaviour of 

real ants. A variation of the basic algorithm is the ant colony system (ACS), proposed by Dorigo and Gambardella [26]. 

ACS, incorporating an exploration-exploitation mechanism, was first applied to traveling salesman problem. The 

algorithm is also applied to solve various scheduling problems [27-29]. Neto and Filho [30] have recently prepared a 

literature review on ant colony optimization algorithms applied to scheduling problems. The proposed bi-objective ACS 

algorithm employs two colonies of ants, a colony for the production optimization and the other one for the maintenance 

optimization. The two colonies share information during the solution construction and mutually cooperate to build 

complete solutions. The general idea of the proposed algorithm is inspired from both the PACO algorithm proposed by 

Berrichi et al. [16] and the ACO algorithm proposed by Yagmahan and Yenisey [29]. 

The whole procedure of the applied algorithm is as follows: At first, the parameters, the heuristic information and 

the pheromone trails are started. In the next step, iteratively, two colonies of ants build their complete solutions. 

Production ants utilize the state transition rule to select the next job in sequence and maintenance ants do the same to 

select the maintenance position, respectively. During the solution construction, local pheromone updating rule is 

applied. The global pheromone-updating rule is applied when all ants have built their complete solutions. Until reaching 

the stopping criterion, the procedure is repeated. In the following sub-sections, the properties of the proposed algorithm 

will be explained. 
 

A. Pheromone trails 

The pheromone trails are initialized in the first step. For the production part, we define the pheromone trails based 

on the location of jobs in the sequence. In other words, τjk is the desirability of placing job j in the kth sequence position. 

For the maintenance part, we define τrk as the desirability of placing a maintenance activity after the job in sequence 

position k on machine r. The initial pheromone trails τ0 are relatively small and the same for all paths. 
 

B. Heuristic information 

The heuristic information is initialized at the first step. For the production part, two scenarios are defined. In this 

regard, two CDS [31] and NEH [32] heuristics are used. CDS and NEH are well-known heuristics for solving the 

permutation flow shop scheduling problem [33]. The absolute distance of a job to its position in the best schedule 

obtained by CDS (NEH) algorithm is regarded as the heuristic information. In other words, if the job j in the CDS 

(NEH) best schedule is in position k, the heuristic information of placing this job in position v is calculated as |v – k|. 

The heuristic information is fixed during the algorithm for the production part. For the maintenance part, the heuristic 

information is calculated adaptively. With no maintenance activity in the schedule, the heuristic information increases 

by the distance to zero point. After placing a maintenance activity, the heuristic information is calculated by the 

distance to the zero point, as well as the position of maintenance activities. Greater distances result in greater heuristic 

information values. 
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C. State transition rule 

For the production part, an ant s in job j selects job l to move, by applying the following state transition  

rule: 

( ) 0
arg max {[ ( , )] .[ ( , )] }

. .

su J j
j u j u if q q

l
o wL

α βτ η∈
 ≤

= 
  

                                                                                  (19) 

 

where, τ (j, u) and η (j, u) are the amount of pheromone trail and the heuristic information value on edge  

(j, u), respectively. Js (j) is the set of feasible jobs to be selected after job i. q is a random number uniformly  

distributed in [0, 1], and q0 is a parameter that determines the relative importance of exploitation versus exploration  

(0 ≤ q0 ≤ 1). α and β are the relative importance of pheromone trail and heuristic information (α > 0; β > 0). L  

is a random variable selected according to the probability of that ant s chooses job l with larger ps (j, l) to move from  

job j:  

( ) 0
arg max {[ ( , )] .[ ( , )] }

. .

su J j
j u j u if q q

l
o wL

α βτ η∈
 ≤

= 
  

                                                                                 (20) 

 

when an ant in job j chooses a job l to move to, it samples a random number q. If q ≤ q0, then the best job according to 

relation (18) is selected. Otherwise, the next job is selected according to relation (19). For the maintenance part, the 

same procedure is performed. The difference is that the maximum number of maintenance activities is not the same for 

all machines. Hence, for machine r, the procedure is stopped when it reaches P
r
max. 

 

D. Local updating rule 

While constructing a schedule, an ant decreases the pheromone trail level between selected jobs by applying the 

following local pheromone-updating rule:  

0
( , ) (1 ). ( , ) .

local local
j u j uτ ρ τ ρ τ= − +

                                                                                   (21) 

 

where, τ0 is the initial pheromone level and ρlocal is the local pheromone decay parameter (0 < ρlocal < 1). The parameters 

for the two parts may be different. 
 

E. Global updating rule 

Global pheromone updating rule is applied after all ants completed their schedules (both parts). Global updating 

provides a greater amount of pheromone trail between adjacent jobs (maintenance positions) of best Pareto front. The 

pheromone trail level is updated as follows: 

( , ) (1 ). ( , ) . ( , )global globalj u j u j uτ ρ τ ρ τ= − + ∆
 

                                                                                 (22) 

where, 
1

1
.( ) ( , )

( , )
0 . .

Q f if j l best front
j u

o w
τ

− ∈
∆ = 

  

                                                                                  (23) 

ρglobal is the global pheromone decay parameter (0 < ρglobal < 1) and f1 is the objective function value of the schedule 

with best rank containing the (j, u) edge. As the local updating rule, the parameters may be different for the two parts. 

 

F. Local search 

To reinforce the performance of the proposed algorithm in the production part, a local search is incorporated into the 

algorithm. As soon as all the production ants have built their complete solutions, a local search procedure is performed. 

Two scenarios are considered in this purpose, adjacent pair-wise interchange method (API) and insert local search (ILS) 

method. In the API method, two adjacent jobs are swapped. In the ILS method, the job in sequence position k is 

removed and inserted in a new sequence position l. 

 

G. Stopping criterion 

The procedure is repeated until the maximum number of iterations is reached as a stopping criterion. 
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TABLE II: BEST VALUES OF PARAMETERS OF THE ALGORITHM 

Parameter Value in the production part Value in the maintenance part 

α 4 4 

β 2 2 

q0 0.5 0.5 

ρ 0.1 0.1 

σ 0.3 0.3 

τ0 0.05 0.05 
 

 

IV.  COMPUTATIONAL RESULTS 
 

Computational experiments are carried out to evaluate the performance of the proposed ACS algorithm. 

Experiments are performed in three directions. Firstly, the appropriate heuristic algorithm is selected to build the 

heuristic information of the algorithm. Afterwards, similar experiments are performed to select the appropriate local 

search method. Having identified the better heuristic algorithm and local search method, the performance of the 

proposed algorithm is evaluated in the last sub-section. For the production part of the problem in focus, the well-known 

Taillard benchmark [34] is used. Test problems with 5, 10 and 20 machines and 20, 50 and 100 jobs are executed. The 

maintenance characteristics of the problem are as follows: The failure rate and repair rate of all machines is fixed and 

equal (λr = λ = 0.01; µ r = µ = 0.05). The duration of a maintenance activity is regarded as 20. Number of ants and 

iterations are 20 and 100, respectively. In the following, computational experiments carried out in two directions will be 

discussed. The ant colony algorithm depends on several parameters and so determining the optimal values of all 

parameters with a experimental design is not tractable. In fact, there are 12 parameters to be calibrated, 6 in the 

production part of the algorithm and 6 in the maintenance part of the algorithm. Therefore, the best values were 

obtained by a trial and error approach due to a set of potential values for each parameter. The list of the best value of 

each parameter is summarized in Table II. 

 

A. CDS or NEH 

Experiments are executed to select the suitable heuristic algorithm between CDS and NEH to construct the heuristic 

information part of the algorithm. Three metrics are taken into account: the number of Pareto solutions (N.P.S.) 

obtained by each algorithm, the C metric and the computational time of the heuristic information construction. The C 

metric, proposed by Zitzler [35], is a measure to differentiate two fronts. The value of C (A, B) states the percentage of 

solutions in B dominated by at least one solution of A. The C metric is calculated as: 

| { | : } |
( , )

| |

b B a A a b
C A B

B

∈ ∃ ∈
=

p

 

                                                                                  (24) 

 

Where a bp  means that a dominates b. The closer the value of C (A, B) is to 1, the better the front A is compared to B. 

As the C metric is not symmetric, it is necessary to calculate both C (A, B) and C (B, A) and A is better than B, if C (A, 

B) > C (B, A). 

Table III represents the computational results, comparing the two CDS and NEH scenarios. Computational times are 

reported in seconds. The N.P.S. metric obtained by the algorithm using both CDS and NEH is not significantly 

different. Although, comparing the two algorithms under the C metric, the NEH scenario outperforms the CDS scenario 

with 93% confidence level. Nevertheless, the CDS heuristic is more robust than the NEH heuristic in terms of 

efficiency. The increasing trend of NEH’s computational time by increasing the size of jobs is tangible. 

 

B. API or ILS 

In this sub-section, experiments are provided to select the appropriate local search algorithm. Table IV represents 

the computational results, comparing the two API and ILS scenarios. The N.P.S. metric obtained by the algorithm using 

both API and ILS is not significantly different. Comparing the two algorithms under the C metric, the API scenario 

outperforms the CDS scenario in all problem sizes. This is proved with 99% confidence level. In terms of efficiency, 

the performance of the two API and ILS scenarios is relatively the same. 
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TABLE III: COMPUTATIONAL RESULTS FOR SELECTING THE HEURISTIC INFORMATION ALGORITHM 

n × m 
N.P.S. C  metric Time 

CDS NEH CDS NEH CDS NEH 

20 × 5 9.4 8.2 0.38 0.49 0.013 0.016 

20 × 10 5.4 6.8 0.43 0.31 0.017 0.026 

20 × 20 6.6 9.0 0.28 0.36 0.023 0.037 

50 × 5 3.6 5.4 0.33 0.47 0.028 0.088 

50 × 10 3.2 3.8 0.39 0.52 0.054 0.115 

50 × 20 3.4 2.8 0.32 0.55 0.070 0.145 

100 × 5 2.2 2.6 0.33 0.67 0.053 0.425 

100 × 10 1.8 1.2 0.44 0.50 0.081 0.524 

100 × 20 1.2 1.0 0.60 0.40 0.082 0.749 

 

TABLE IV. COMPUTATIONAL RESULTS FOR SELECTING THE LOCAL SEARCH ALGORITHM 

n × m 
N.P.S. C  metric Time 

API ILS API ILS API ILS 

20 × 5 8.6 8.2 0.78 0.16 0.029 0.035 

20 × 10 8.0 5.4 0.49 0.25 0.036 0.042 

20 × 20 6.5 12.0 0.76 0.13 0.054 0.056 

50 × 5 8.0 5.7 0.59 0.42 0.095 0.099 

50 × 10 7.0 7.4 0.51 0.19 0.134 0.161 

50 × 20 6.3 8.2 0.73 0.24 0.205 0.235 

100 × 5 5.1 5.4 0.54 0.21 0.255 0.350 

100 × 10 7.8 6.3 0.76 0.18 0.390 0.501 

100 × 20 7.9 8.6 0.52 0.33 0.715 0.803 

 

C. Performance evaluation 

In the two previous sub-sections, experiments were carried out to select the heuristic algorithm and the local search 

algorithm with higher performance. Therefore, the NEH algorithm is selected to build the heuristic information part of 

the algorithm and the API algorithm as the local search method. In this part, the performance of the proposed algorithm 

is evaluated. In this regard, an exhaustive search algorithm is coded and applied to the problem to find the best Pareto 

front. The search space of the problem immensely increases with the increase in the size of the problem. Therefore, 

some small sized problem instances are considered to evaluate the performance of the algorithm. Problems with 5 jobs 

and two machines in the system are considered under four different scenarios of maintenance activities.  

 

 
Fig. 1. Optimal Pareto front for a small sized problem instance 
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The search space of the problem for the four scenarios are equal to 4320, 11520, 11520 and 30720. In all of the four 

problem instances, the proposed ant colony algorithm found the same Pareto front that was resulted by the exhaustive 

search algorithm, i.e., optimal Pareto front. This indicates the effectiveness of the proposed algorithm. As an example, 

the optimal Pareto front of a problem in the fourth scenario is depicted in Fig. 1, gained by both the proposed ant colony 

algorithm and the exhaustive search method. 

 
 

V CONCLUDING REMARKS 
 

The problem of simultaneous production scheduling and maintenance planning in the flow shop scheduling 

environment was investigated in this paper. The concept of non-fixed time intervals between consecutive maintenance 

activities was introduced and the integer-programming model was presented. Moreover, a special case of the problem 

was developed. A bi-objective ant colony system was presented to tackle the problem, and some computational 

experiments were conducted to evaluate the performance of the proposed algorithm.  
As a direction for future study, the model can be investigated in other scheduling environments and considering 

other performance measures. 
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