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Abstract – Because of the high costs for the delivery, manufacturers are generally needed to dispatch their 

products in a batch delivery system. However, using such a system leads to some adverse effects, such as 

increasing the number of tardy jobs. The current paper investigates the two-machine flow-shop scheduling 

problem where jobs are processed in series on two stages and then dispatched to customers in batches. The 

objective is to minimize the batch delivery cost and tardiness cost related to the number of tardy jobs. First, a 

mixed-integer linear programming model (MILP) is proposed to explain this problem. Because the problem 

under consideration is NP-hard, the MILP model cannot solve large-size instances in a reasonable running 

time. Some metaheuristic algorithms are provided to solve the large-size instances, including BA, PSO, GA, 

and a novel Hybrid Bees Algorithm (HBA). Using Friedman and Wilcoxon signed-ranks tests, these 

intelligent algorithms are compared, and the results are analyzed. The results indicate that the HBA provides 

the best performance for large-size problems. 

 

Keywords– Scheduling, Batch Delivery System, Number of Tardy Jobs, Mixed-Integer Linear Programming, 

Metaheuristic Algorithms. 
                                                

I. INTRODUCTION 

Tardiness always leads to customers' discontent (in supply chains) or employers (in project implementation). On the 

one hand, suppliers attempt to deliver orders to the customers with the minimum number of tardy jobs. On the other 

hand, they tend to reduce the total delivery costs by using the batch delivery system, resulting in increased tardiness. 

Therefore, achieving a tradeoff between these criteria- i.e., delivery cost and schedule - is of great importance in the 

SCM (Hall & Potts, 2003). 

Many real-world problems involve production lines connected in the series. In the literature, these production lines 

are known as the "flow-shop system". Flow shops are used in mass production systems of interest to various industries 

(Mahadevan, 2015). In this system, several machines are placed in series, and some jobs should be processed on these 

machines sequentially. There are several types of flow shops (Gupta & Stafford, 2006), which the literature on the 

subject of the two machine flow-shop scheduling problems is presented in section A.   
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From the point of logistic view, there are many restrictions on the distribution of orders. On the one hand, 

limitations on the number of vehicles and the high transportation cost make managers prefer to dispatch orders to the 

customer at once (Mazdeh & Rostami, 2014; Herrmann et al., 2003). This decision causes some orders to deliver the 

customer after the due date. The higher the number of orders delivered to the customer after the due date, the greater the 

dissatisfaction is. Therefore, there will always be a conflict of decision between production and logistic managers. This 

paper addresses the decision integration between the two flow-shop scheduling problems and batch delivery costs to 

respond to this conflict. 

There are many examples of the application of this problem in the real world. One of the most famous is the Fast-

Moving Consumer Goods (FMCG) supply chain. In this chain, the speed of brand replacement is exceptionally high. 

Therefore, the delivery of products after due dates causes lost sales. On the other hand, due to these products' small 

volume, dispatching orders separately for customers is not cost-effective in logistics costs. Therefore, the use of a batch 

delivery system is considered by managers. It should be noted that the production of the FMCGs is often viewed in two 

stages, i.e., production and packaging, which can be adapted to the two-machine Flow shop environment. 

As this is an NP-hard problem, the MILP model cannot solve large-size instances in a reasonable running time. 

Also, there is no exact polynomial method for these problems to obtain a globally optimum solution. For this reason, 

some metaheuristic algorithms, including Bee Algorithm (BA), Particle Swarm Optimization (PSO), Genetic Algorithm 

(GA), and a novel Hybrid Bees Algorithm (HBA), are provided to solve large-size instances. The reason for the 

importance of speed in reaching a near-optimal solution for the large-size instances is that the problem under 

consideration in this research is basically at the operational planning level, which sometimes managers have to be 

decided daily. Therefore, reaching a near-optimal solution is better than not reaching any solution. In the following, a 

comprehensive review of the literature is presented.  

A. Flow-shop scheduling problems 

Scheduling and sequencing problems in two machine flow-shop environments have been considered by a large 

number of researchers. The problem of flow-shop scheduling for two and three machines was first investigated by 

Johnson (1954), aiming to minimize the makespan. During the next decades, many papers were presented, focusing on 

flow-shop problems with various objectives, in addition to minimizing the makespan (Panwalkar et al. (2013) 

and Yenisey et al. (2014) ). For two-machine flow-shop scheduling problems to minimize the number of tardy jobs, 

Lenstra et al. (1977) proved that this problem is NP-complete. However, single-machine scheduling problems can be 

solved by using Moore's [10] algorithm (1968) with the complexity of O(nlogn). Hariri and Potts(1989) introduced 

three lower bounds for a branch and bound algorithm to solve two machine flow-shop problems to minimize the 

number of tardy jobs     ∑   (    ∑  ). Gupta and Hariri (1997) developed an exact algorithm - O(n2logn)- for 

multiple machine flow-shop scheduling problems to minimize the number of tardy jobs (       ∑  ). They proved 

that Moore's algorithm could be used to solve        ∑  , where idm and ddm increase and decrease the series of 

dominating machines, respectively. 

B. Scheduling problems with batch delivery 

Many researchers have recently considered scheduling and sequencing problems in a single machine environment 

with notice to the batch delivery system. It can be cited, among others, Herrmann and Lee (1993) with the objective of 

minimizing the sum of earliness and tardiness penalties; Cheng et al. (1996) with the objective of minimizing the 

earliness penalties; Hall and Potts (2005) with a  review of multi-objective complex scheduling problems; Pundoor and 

Chen (2005) with the objective of  minimizing the maximum tardiness; Ji et al. (2007) with the objective of minimizing 

the sum of weighted completion times; Low et al. (2010) through examining the objective of minimizing the makespan 

with release times; Shabtay (2010) with the aim of minimizing the sum of earliness, tardiness, and inventory costs; 

Mazdeh et al. (2011) by using a BB algorithm aimed to minimize the total weighted completion times; Hall and Potts 

(2003) by employing a DP algorithm for different scheduling problems; Mazdeh et al. (2007, 2008) through 
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investigating supplier and manufacturer viewpoints for a number of customers; and, Hamidinia et al. (2011) by 

proposing a genetic algorithm with the objective of minimizing the sum of weighted earliness and tardiness. 

Furthermore, Steiner and Zhang (2011) studied a single-machine scheduling model to minimize the weighted numbers 

of tardy jobs and the delivery costs, where expected due dates were allocated to all jobs and limitations were imposed 

batch capacities. However, the same problem was solved by Rasti-Barzoki and Hejazi (2013), using a heuristic 

algorithm (HA) and a branch and bound method. Assarzadegan and Rasti-Barzoki (2016) proposed and compared three 

heuristic methods for minimizing the total costs of due date assignment, maximum tardiness, and distribution in an 

integrated scheduling distribution system. Mazdeh et al. (2013) proposed a BB algorithm for single machine scheduling 

with batch delivery to minimize the maximum tardiness and delivery costs. Further, Yin et al. (2013) examined a single 

machine scheduling problem with batch delivery and considering assignable standard due dates. They presented a 

dynamic programming algorithm to minimize the cost function included earliness, tardiness, job holding, window 

starting time, window size, and batch delivery. Adding release times to the above problem, Ahmadizar and Farhadi 

(2015) developed an imperialist competitive algorithm (ICA) to solve large-size problems. Rostami et al. (2015) 

introduced a new BB algorithm for a single machine scheduling problem considering job release times in a batched 

delivery system and presented a case study for this procedure. Moreover, by studying on single-machine scheduling 

with batch deliveries, Cheng et al. (2015) found that when the jobs have same sizes, then it can be found a schedule and 

delivery plan in O(nlogn) time such that the service span is minimum. Rostami et al. (2018) also investigated the 

integration of production scheduling and distribution in a supply chain network where both deterioration of machine 

and learning effect have been accordingly addressed, and the jobs must be dispatched to customers via the batch 

delivery system. Jia et al. (2019) investigated integrated production scheduling and transportation on parallel batch 

machines via several vehicles. For this problem, they present a mixed-integer programming model and also a 

deterministic heuristic H, and two heuristics based on ACO. Joo and Kim (2019) developed two VNS algorithms for an 

integrated production and batch delivery problem with limited capacity trucks. Recently, Ganji et al. (2020) introduced 

a green multi-objective integrated production and distribution scheduling with VRP and time windows. Their goals 

include minimizing total costs of distribution, carbon emission, and customer dissatisfaction. Some multi-objective 

metaheuristic algorithms are presented to solve this problem. In the flow shop environment, Kazemi et al. (2017) 

developed a two-stage assembly flow-shop scheduling problem considering a batched delivery system where there are 

m unrelated machines at the first stage processing the components of each job and multiple identical machines at the 

next assembly stage. Basir et al. (2018) solved the above problem by using a bi-level genetic algorithm. 

In the academic literature for two-machine flow-shop scheduling problem via considering the batch delivery system, 

only six papers can be cited. The first was presented by Lee and Chen (2001), who viewed the processing of unfinished 

jobs on two separate machines in combination with the distribution problem. Investigating the complexity, the 

researchers developed polynomial-time or pseudo-polynomial-time algorithms for solving some instances. In this line, 

Soukhal et al. (2005) evaluated this problem with transportation constraints and proved its complexity. The problems 

were examined for two cases, with and without buffer capacity limitation. However, Hall and Potts (2003) solved some 

scheduling problems with the batch delivery system and different goals from three perspectives: the supplier, the 

manufacturer, and the general supply chain problem (two-machine flow-shop system) used a forward dynamic 

programming algorithm. Rasti-Barzoki et al. (2013) provided a branch and bound algorithm to minimize the number of 

weighted tardy jobs and the delivery costs for a single customer. Mazdeh and Rostami (2014) proposed a BB algorithm 

for the two-machine flow-shop system to minimize the maximum tardiness and delivery costs in a batch delivery 

system. The same problem is extended to a permutation flow-shop scheduling problem and solved by two simple 

heuristics and a novel metaheuristic (Wang  et al., 2017). 

C. Metaheuristic methods in flow-shop scheduling problems 

Different solution methods have been developed in the literature for solving scheduling and sequencing problems in 

the last decades. In general, the solution procedures can be divided into three groups, namely, exact, heuristic, and 

metaheuristic methods (see Moumene & Ferland, 2009). Since the majority of flow-shop scheduling problems are NP-

hard, the metaheuristics algorithms have been received much attention. During the last five years, various 
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metaheuristics methods have been proposed to provide suitable solutions in an acceptable time for flow-shop scheduling 

problems. For example,  tabu search (Ding et al., 2015), ant colony algorithm (Riahi & Kazemi, 2016), genetic 

algorithm (Chamnanlor et al., 2014), simulated annealing (Jolai et al., 2013), cuckoo search algorithm (Marichelvam et 

al., 2014a) and firefly algorithm (Marichelvamet al., 2014b). One metaheuristic technique which has been considered 

significant in recent years is the bee algorithm family. The bee algorithm family includes bee algorithm (BA), artificial 

bee colony (ABC), and bee swarm optimization (BSO). In flow-shop scheduling problems, Tasgetiren et al. (2011) 

developed a discrete artificial bee colony algorithm. This algorithm was hybridized with several greedy algorithms for 

finding the sequence that obtains the lowest total flow time. Guanlong et al. (2012) presented a hybrid artificial bee 

colony algorithm for solving the blocking flow-shop scheduling problem. Here, the hybridization was generated by an 

initialization scheme based on a variant of the Nawaz-Enscore-Ham (NEH) heuristic. Recently, Han et al. (2015) 

developed a new hybrid artificial bee colony by incorporating the ABC with differential evolution (DE). 

Regardless of flow-shop scheduling problems, many researchers have attempted to develop various hybrid 

algorithms based on the bee algorithm family. Marinakis et al. (2009) introduced a new hybrid method for clustering 

combined with the artificial bee colony (ABC) and a greedy randomized adaptive search procedure (GRASP). 

However, Zhao et al. (2010) developed a hybrid metaheuristic approach of an artificial bee colony (ABC) and genetic 

algorithm (GA). Using the ABC algorithm for hybridizing a quantum evolutionary algorithm (QEA), Duan et al. (2010) 

designed a new algorithm for solving continuous optimization problems. Also, Li et al. (2011) introduced a hybrid 

artificial bee colony (HABC) algorithm based on the Pareto front to solve the multi-objective flexible job-shop 

scheduling problem. Thakare and Chaudhari (2012) performed PSO and BA in parallel and transitional modes and 

developed two versions of a hybrid bee algorithm to solve the clustering problem. Wu et al. (2012) developed a hybrid 

harmony search and artificial bee colony algorithm for various optimization issues. Yildiz (2013) examined a novel 

hybrid optimization method (HRABC) based on an artificial bee colony algorithm and Taguchi's method. Kefayat et al. 

(2015) and Chun-Feng  et al. (2014) proposed a hybrid artificial bee colony (ABC) with PSO for overcoming the 

disadvantage of the ABC algorithm. Kefayat et al. (2015) developed a hybrid optimization approach that combines 

ACO and ABC algorithms for probabilistic optimal placement and sizing of distributed energy resources. Recently, 

Karaboga and Kaya (2016) introduced an adaptive and hybrid artificial bee colony (aABC) algorithm by using the 

crossover rate and adaptively coefficient. To the best of our knowledge, in the literature there seems to be no research 

for providing a hybrid metaheuristic algorithm based on Bee Swarm Optimization (BSO) algorithm and particle swarm 

optimization (PSO) algorithm. In general, hybrid metaheuristic approaches can be classified as either collaborative 

combinations or integrative combinations. The algorithm developed in this paper is classified as an integrative 

combination. For further study on the bee algorithm family and its hybridizations, see (Karaboga et al., 2014).  

The current study evaluates two-machine flow-shop scheduling problems with a batch delivery system, aiming to 

minimize the number of tardy jobs and the delivery costs. The significant contributions of this study can be mentioned 

as follows: 

    The class of two-machine flow-shop scheduling problems with batch delivery to multiple customers is introduced to 

minimize the costs related to the number of tardy jobs and the delivery costs. 

   A mixed-integer linear programming model is introduced for obtaining global optimum solutions of small-size 

problems. 

     A novel hybrid bee algorithm (HBA) based on the particle swarm optimization (PSO) algorithm is introduced and 

extended to solve large-size problems.  

 

The rest of this paper is organized as follows. Section II defines the problem with a mixed-integer linear 

programming (MILP) model. Section III develops a hybrid bee algorithm and also describes the structure of other 

metaheuristic methods. Section IV provides the computational results to compare and rank the metaheuristic solution 

methods. Finally, section V concludes the results and provides some recommendations for future studies.  
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II. PROBLEM FORMULATION 

Let N be the number of jobs that must be processed immediately on two machines in a flow shop environment 

related to the F customers. All jobs are available at time zero, and pre-emption is not allowed. For these jobs, due dates 

are defined by customers, denoted by dij. If a job delivers to the customer after its due date, the lost sale cost, i.e., β, will 

be reimbursed. To reduce logistics costs, jobs related to each customer can be dispatch in a batch delivery system. Dj 

indicates the cost of dispatching each batch for customer j. The objective function is minimizing the sum of lost sales 

costs plus the total delivery cost. When all the jobs belonging to the same batch are completed on machine 2, the batch 

is rendered. So, the completion time of one batch -Ck - is the completion time of that last job in that batch. Rendition 

time of one job -Rij - is the completion time of a batch containing that job. The problem assumptions are summarized as 

follows: 

    N is the number of jobs that need to be processed successively on machines. 

    F is the number of customers with some orders. 

    A machine can process only one job at a time. 

    All jobs are available at time zero, and no pre-emption is allowed. 

    Only jobs related to one customer may be batched together. 
          

Table I. Description of parameters and variables 

 Description Values taken 

In
d

ex
es

 

i the job number 1,2,…,nj 

j the customer number 1,2,…,F 

k the batch number bj-1 +1, …,bj 

z The machine number 1,2 

m the priority number 1,2,…,N 

P
a

ra
m

et
er

s
 

N 
nj 

The number of jobs 

Total number of jobs belonging to customer j  

M An enough big number 
 

β lost sale cost coefficient 
 

Dj Cost of delivery for  each batch belong to jth customer 
 

pijz processing time of the ith job of jth customer on zth machine 
 

dij due date of the ith job of jth customet 
 

D
ec

is
io

n
 v

a
ri

a
b
le

s
 

αj number of  batches belong to jth customer 
 

Ck Completion time of the kth batch 
 

Cmz Completion time of the mth priority on the zth machine 
 

Cjjz Completion time of the ith job of the jth customer on the zth machine 
 

Rij Rendition time of the ith job of the jth customer 
 

Uij Equals 1 if the ith job of the jth customer has tardiness 0,1 

xijkm equals 1 if the ith job of the jth customer is in kth batch and mth priority 0,1 

yjk equals 1 if there is a job belonging to the kth batch which relates to the jth customer 0,1 
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Based on the standard classification of scheduling problems developed by Graham et al. (1979), this problem will be 

stated       ∑   ∑      
 
   . Where    represents the two-machine flow-shop system and     is the coefficient of 

lost-sale cost. If a batch is dispatched to the related customer after the due date, then the lost sale cost is imposed on the 

manufacturer. Typically, this cost is considered equal to the manufacturer's benefit if the order is delivered before its 

due date. Under such conditions, two parts of the objective function can be both expressed in terms of cost. If the job i 

has tardiness, then     ; otherwise, it would be zero. αj indicates the number of batches dispatched to the jth 

customer   while presenting the delivery cost for each batch belonging to the customer  j. Other parameters and 

decision variables are presented in Table I. Since Lenstra et al. (1977) proved that minimizing the number of tardy jobs 

in a two-machine flow-shop system is NP-complete, the other batch delivery system as the second part of the decision 

making, the problem will remain NP-complete. 

The idea of problem modeling is as follows: First, for each customer, suppose that the number of empty batches is 

equal to the number of jobs belonging to that customer (bj=bj-1+nj and b0=0). Each batch's capacity is supposed that be 

equal to the number of jobs belonging to the given customer. The model determines which jobs must be placed in each 

batch. Besides, the N priority number is considered, which indicates the order of processing jobs. Each batch will be 

delivered to its determined customer while its capacity may not be used ultimately. Note that some batches may remain 

vacant, but there is no effect on the solution. By considering the above definitions, the model is proposed as follows: 

Min  (1) 

             

Subject to: 

           (2) 

    ∑ ∑      

 

   

  

        

                   (3) 
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        ,       (8) 

   ∑    

  

        

    (9) 

 (10) 

The objective function minimizes the costs related to the number of tardy jobs and the sum of delivery costs. 

Equation (2) states that if the rendition time of the ith job of the jth customer is more than its due date, it is a tardy job. 

Equation (3) calculates the rendition time of the ith job of the jth customer. Equation (4) determines each batch's total 

completion time by finding the maximum completion times of the jobs placed in each batch. Equation (5) calculates the 

completion time of the ith job of the jth customer over machine 2, while equation (6) determines the completion time of 

each priority on each machine using the recursive relations of the two-flow-shop problem. According to equation (7), 

one and only one job must be assigned to each priority, and each job related to a customer must be assigned only to one 

priority and one batch. Equation (8) allows a batch to be formed when at least one job is assigned to the batch; if there is 

no job assigned to a batch, this batch would be null and equal to zero. Equation (9) determines the number of batches 

needed to be dispatched for a customer using the value . Equation (10) defines the variables. 

As the developed model contains the binary variables and some nonlinear equations (Equation (3), (4), (5) and (6)) 

so, it is a mixed-integer nonlinear programming model. However, the linearization of each equation can be simply 

obtained by using equalities (11), (12), (13), and (14), respectively. Here, the linearization methods presented in the 

study of Chen et al. (2011) are inspired. 

      
(11) 

      
(12) 

       
(13) 

      
(14) 

 

1 1

1 1

( )

0

1 0

j

j

n N

ijkm jk
i m

n N

ijkm jk
i m

x My

x M y

 

 

  

  





 , , 0,1

, , , 0

jk ij

k mz ijz ij

j

ijkm
y u

C C C R

Integer

x









j


1

1

2
1

2 2
1

 -1)         , ,         (11)

C C  +M( -1)     , ,              (12)

C C  +M( -1)   , ,            

(

(13)
j

j

N

ij ijkm
m

N

k ij ijkm
m

b

ij m ijkm
k b

k
R x i j k

x i j k

x i

M

j

C

m






 



 

 

  





1

1

2
1

2 2
1

 -1)         , ,         (11)

C C  +M( -1)     , ,              (12)

C C  +M( -1)   , ,            

(

(13)
j

j

N

ij ijkm
m

N

k ij ijkm
m

b

ij m ijkm
k b

k
R x i j k

x i j k

x i

M

j

C

m






 



 

 

  





1

1

2
1

2 2
1

 -1)         , ,         (11)

C C  +M( -1)     , ,              (12)

C C  +M( -1)   , ,            

(

(13)
j

j

N

ij ijkm
m

N

k ij ijkm
m

b

ij m ijkm
k b

k
R x i j k

x i j k

x i

M

j

C

m






 



 

 

  





1

1

1

2 1,2 2
1 1 1

2 1 2
1 1 1

1 1,1 1
1 1 1

01

02

C C  +           

C C  +       

0

0

j j

j

j j

j

j j

j

n bF

m m ijkm ij
j i k b

n bF

m m ijkm ij
j i k b

n bF

m m ijijkm
j i k b

C C x p

x p m

x p m

C

C








   

   


  

  

  

  





 

 

 



144 Rostami, M. & Shad, S.  / A Hybrid Bee Algorithm for Two-Machine Flow-Shop Scheduling Problems with  ... 

 

 

In equation (11), if the ith job of the jth customer is not assigned to the kth batch, equals -1. 

Furthermore, setting a large enough positive value for M represents a negative value for the equation's right-hand side. 

Otherwise,  equals 0, so the real value of Rij is obtained. According to equation (12), if the ith job of the jth 

customer does not belong to the kth batch,  equals -1 and, again, gives a negative value for the right-hand 

side of the equation. Otherwise,  equals 0 and the value of the right side of the equation shows each job's 

completion time. So, the real value is obtained as Ck has to be greater than all these values. 

  Equation  (13) states that if the ith job of the jth customer is not assigned to the mth priority, equals -1, 

and this leads to a negative value for the right-hand side of the equation. Otherwise,  equals 0, so the real 

value of Cij2 is obtained.  

By using the new equation instead of the nonlinear equations, the mathematical model proposed here is linearized. 

This model can be solved by using a commercial solver. However, no software can promise to find optimum solutions 

for large-size instances in a reasonable running time. This issue will be discussed in detail. 

III. METAHEURISTIC METHODS 

In this section, a hybrid bee algorithm is first provided, which combines the particle swarm optimization (PSO) 

algorithm with a bee algorithm (BA). After describing BA, PSO, and HBA, a novel genetic algorithm is extended, and 

the related functions are expressed.  

A. Hybrid Bee Algorithm  

The bee algorithm (BA) is derived from the honeybee behavior idea, based on swarm intelligence and food 

searching system. This method was first provided by Pham et al. (2005), which is a population-based search algorithm. 

A numerical optimization algorithm based on honeybees' foraging behavior, called Artificial Bee Colony (ABC), was 

proposed by Karaboga (2005). Later, a new method of bees algorithm, called bee swarm optimization (BSO), was 

introduced by Akbari et al. (2010). This method has a high efficiency in numerical optimization. Also, Preux and Talbi 

(1999) reviewed the hybrid evolutionary algorithms and proposed a general classification of how hybridization can be 

conducted. In this section, a hybrid bee algorithm (HBA) is provided, an extended model from the BSO through the 

PSO algorithm. Kennedy and Eberhart (1995, 1997) introduced the Particle swarm optimization (PSO) algorithm 

inspired by birds and fish's social behavior. In PSO, particles with a similar neighborhood type are related by 

transmitting data about each particle's specific position. So, all particles are inclined into one particle that seems to have 

the best-known position. At below, the structure of a hybrid bee algorithm (HBA) algorithm is described. 

A.1. Framework & Bee Representation in HBA Algorithm 

According to the idea of this algorithm, bees of the initial population are divides into four group bases on the values 

of their fitness function, and particular works are done on each group so that their position will be changed in the next 

iteration and this process is continued until the termination criterion is satisfied. This algorithm employs the idea of 

changes in position and velocity in the particle swarm optimization (PSO) algorithm to obtain better solutions in less 

time.  

In this algorithm, each bee z is shown as where . 
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equals 1 if the ith job belonging to the jth customer is placed in the kth batch and the mth place of the job sequence. The 

present idea assumes that for each customer j, (j=1, 2, …, F), there are nj empty batches (nj presents the number of jobs 

belonging to the customer j). In this case, feasible solutions will always be obtained. It means that only jobs belonging 

to a single customer can be placed on a batch. Fig. (1) shows an example of how hypothetical batches are formed for 

two customers with 2 and 3 jobs, respectively.  

  

 

 

 

 

 

 

 

 

          
 

Fig.1. Formation of hypothetical batches for each customer 

The Np bees are selected, which are the initial population. These bees go to some random places, and for each place, 

the values of fitness function are measured. In this stage, the bees are divided into four groups: ne bees with the best 

fitness function are selected as the elite bees from which nep bees (60% of Ns) are sent for the neighborhood searching, 

nm bees with useful fitness function, but not as much as the elite bees, are selected as the distinguished bees from which 

nsp bees (40% of Ns) are sent for searching the neighborhood. It should be noted that Ns is the number of neighborhood 

search bees. nt bees with the worst fitness function are selected as the explorer bees.  The rest of the population is 

considered as the onlooker bees, represented by no. In each iteration, three best schedules obtained in the whole 

algorithm up to that iteration are stored in the memory as gbest1, gbest2, gbest3. 

A.2. Initial Population Generation 

As mentioned above, each bee z is shown as a vector whose components are the binary numbers of 0 and 1. First, 

Np bees are allocated to Np nutrition sources using random numbers for each component for generating the initial 

population. Then, to calculate fitness functions, bee position vectors are converted to schedules consisting of 

sequencing and job batching mood. Based on the fitness function definition, a better solution has a better fitness score; 

therefore, it is suitable to use the fitness function having the same feature. As the model's aim is in the minimization 

mode, we use the inverse of the objective function. The fitness function can be given from equation (15):  

 
(15) 

 

F

i j j
j 1

           (15)

U α

1
( )

D
i

fit x





 



146 Rostami, M. & Shad, S.  / A Hybrid Bee Algorithm for Two-Machine Flow-Shop Scheduling Problems with  ... 

 

 

A.3. Inertia Vector & Its Updates  

To update bee positions, a vector, which is called the inertia vector and represented as

, is defined where . Here, and indicates 

allowable bound for each component of the inertia vector.  When each component exceeds the limits, the component is 

given one of the limits.  The idea of updating bee positions in this algorithm is based on a structure combined with 

vectors of velocity and position changes in the PSO algorithm. First, the inertia vector is updated for the bees; and then 

through this vector, new positions of the bees are updated by using the inertia-to-position function, which will be 

discussed in Section A.4. As stated, the bee population is divided into four groups. For each group, there is a particular 

method for updating the inertia vector. The methods are discussed below.  

A.3.1. Explorer bees 

This group could not find rich nutrition sources. Therefore, our strategy for updating their inertia vectors is to 

randomly develop a new position, provided that their fitness functions would be better than that of the expected fitness 

function, and then, the inertia vector is updated by Equation (16). The reason is that (a) due to the disproportional 

position of this group, it is unlikely to rely on their previous position, and (b) keeping such strategy in each stage can 

search new points from the search space. 

 (16) 

The inertia weight of bees is determined as decreasing, based on a linear relation and calculated by Equation (17). 

 (17) 

Here   is the number of total algorithm iterations, while the number is allocated for algorithm iteration at that 

stage. The value decreases since the initial iteration search other spaces and final iterations to obtain better solutions. 

This parameter is similar to the inertia weight in the PSO algorithm. In equation (16)    is a random number between 0 

and 1; the cognitive learning factor indicates the self-reliance rate each bee has. indicates the randomly-generated 

position for the z bee. 

A.3.2. Onlooker Bees 

This group does not provide useful fitness functions but not as worth as the explorer bees. These bees use data from 

the global best (gbest) bees given by their dancing to change their inertia vector. This group does not rely on its 

neighbors. Each onlooker bee always selects one of the global best bees, and the selection is based on the probability 

values obtained from equation (18). For example, the selection probability will be more for gbest1 than gbest2.  

 
(18) 

Updating the inertia vector for the onlooker bees is based on equation (19).  

 (19) 
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Where is a random number between 0 and 1, and is the social learning factor indicating the reliance degree on 

the best solutions? 

A.3.3. Distinguished Bees 

These bees select relatively right places. Compared to onlooker bees, this group relies on the so-far best places 

explored (gbest1) and the best places in their neighborhood. This updating manner seems similar to the displacement in 

particle positions in the PSO algorithm, where particles consider cognitive learning, in addition to social learning. 

However, in the proposed HBA algorithm, we try to give such a feature only to strong and distinguished bees. 

Therefore, updating the inertia vector of these bees can be calculated by Equation (20):  

 (20) 

Where  and are some random numbers between 0 and 1. bz indicates the best position obtained in the 

neighborhood of the bee z in that iteration. This neighboring is obtained from the neighborhood search process 

explained in Section A.6. The number of the neighborhood is equal to nsp. 

A.3.4. Elite Bees 

This group indeed consists of the best and strongest bees of the population. The preference is to rely on these bees. 

For this reason, updating the inertia vector is only based on the reliance on the best position explored in the 

neighborhood. The process is given by Equation (21): 

 (21) 

Where  is a random number between 0 and 1. bz indicates the best position obtained from the neighborhood of the 

bee z in that iteration. Again, this neighboring is obtained through the neighborhood search process explained in Section 

A.6. The number of neighbors generated is equal to nep. 

A.4. Inertia-to-Position Function 

New positions for bees can be achieved by using the updated inertia vector.  Note that the position vector is given as 

discrete numbers between 0 and 1, while the inertia vector could select as the real numbers.  This results in impossible 

solutions. For this reason, the inertia vector must be converted to the probability value. The probability values are 

calculated from the sigmoid function (22). The value of indicates the probability as takes 1.  

 (22) 
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3.   2    Step Repeat step until E equals  

New particles can be conducted according to the values of and using the most significant position value 

(LPV) rule by considering such a feature. So, the conducted particles will always be feasible. 

A.5. Termination Criterion  

In iterative algorithms, different criteria can be imposed as the termination criterion. In this algorithm, reaching a 

pre-determined number for iterations is selected as the termination criterion. After the algorithm is terminated, the 

global best solution (gbest1) is selected as the best solution. 

A.6. Neighborhood Search Scheme 

In the problem under investigation, the mode of batching should be determined in addition to the sequencing. Hence, 

the solution space is vast.  For the neighborhood search scheme, two approaches are jointly used to develop neighbors. 

In the first approach, the sequence of jobs and the batch number of two components are changed. So, two different 

components of a single bee with the value of 1 are selected, and their sequences are exchanged (index m). The 

exchanged batch number should always be within the range of permitted values for a given customer to change the 

batch number (index k). If the exchanged batch number exceeds the range of permitted values for the related customer, 

the maximum allowable batch number is considered. By this approach, the neighborhood would be far. Only the job 

sequences' values or the batch number of two selected components will be changed in the second approach. With this 

approach, the neighbors would be closer. For the proposed HBA, half of the neighbors are developed using the first 

approach, and the rest are selected through the second approach. As can be seen, the use of this neighborhood search 

scheme always guarantees to generate feasible solutions.  

B. Genetic Algorithm 

Now, a genetic algorithm will be extended in order to compare and evaluate the HBA model. In general, the 

chromosome structure is used in the genetic algorithm to represent the solutions.  The initial population is generated 

either randomly or through a heuristic algorithm by using this structure. Members of the population are given as the 

numbers of the fitness function. The higher values the fitness function has, the higher chance the individual has to be 

selected. Genetic operators are used on selected members to generate a new population. This process is continued until 

the termination criterion will be satisfied. Since the GA is a well-known technique in the optimization context, a brief 

description of the algorithm structure is presented here.  

In this paper, a string consisting of two substrings is used for representing the chromosomes. The first substring 

shows the order of jobs, and the second substring indicates the number of batches. In each substring, the index 

represents the number of orders. For example, the number placed on the ith cell of the sequence substring shows the 

sequence of the job i among all jobs. Similarly, the number placed on the ith cell of the batch substring represents the 

batch to which the job i belongs. Fig.2 illustrates the solution of an example with five jobs and two customers. The first 

two jobs belong to customer 1, and the last three jobs belong to customer 2. In this illustration, the second job for 

customer 1 placed on the third position of the sequence is batched with the same customer's first job. 
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Additionally, the first job of customer 2 placed on the fifth position of the sequence is batched by itself. The initial 

population consisting of Np chromosomes, is randomly generated. Based on the fitness function in equation (15), each 

population is assigned some values.  

 

  

 

 

 

         
Fig. 2. Illustration of the solution for the example 

A technique called the roulette wheels is used and selected as Pc% of the population as a parent to select members as 

the parents of a new generation. Then, crossing and mutation operators are employed for the selected members. For 

each substring, the operators perform individually. A "one-point" crossing operator is used for every two substrings. It 

should be noted that the diversity of genes must be followed for the sequence substring of children. Each child can be 

mutated by the chance of Pm%.  A "random derangement" mutation operator is provided for one sequence substring, 

while for another, a "replacement" mutation operator is used (√  is the number of mutated genes in a selected 

chromosome). Np better chromosomes are transferred into the next generation to develop a new generation and combine 

with the old one. Reaching a pre-determined maximum number for iterations meets the termination criterion. So, the 

algorithm terminates, and the best solution is provided. 

√ C. Bee algorithm and particle swarm optimization 

As mentioned above, the BA was first developed by Pham et al. (2005), inspired by the honeybee behavior idea. 

Also, Kennedy and Eberhart (1995) introduced the Particle swarm optimization (PSO) algorithm inspired by birds and 

fish's social behavior. In PSO, particles with a similar neighborhood type are related by transmitting data about each 

particle's specific position. So, all particles tend into one particle that seems to have the best-known position. Since the 

HBA model studied in this paper consists of both BA and PSO, these two algorithms' detailed structure is excluded 

here. For more information on  BA and PSO, see (2005) and (1997), respectively. 

IV. EXPERIMENTAL RESULTS  

A. Parameters setting 

This section evaluates the MILP model's performance, HBA, BA, PSO, and GA algorithms. To this end, the MILP 

model is encoded by using GAMS software and solved in CPLEX, while the metaheuristic algorithms are encoded by 

using C# and run on a system with a CPU of Core2duo 2.00 GHz and 4 GB of RAM. The performance of the 

metaheuristic algorithms presented here is directly related to the parameters' values, so it is essential to determine 

accurate values. Here, we have used Taguchi's method, which can reduce the number of required experiments. For each 

algorithm, the parameters are examined in three levels. Table II shows that the algorithm parameter ranges along with 

their levels. 

Fig. (3) to Fig. (6) present the results obtained from Taguchi's optimization procedure for each metaheuristic 

algorithm. The exact values of S/N ratios are illustrated in Table XII in Appendix A. 
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Table II. Parameter ranges of metaheuristic algorithms 

Algorithm Parameters 
Parameter level 

Level 1 Level 2 Level 3 

BA 

scout bees (A) 5% 10% 15% 

best selected bee and their recruits (B) 20% 30% 40% 

Np (C) 40 50 60 

PSO 

c1 (A) 1.5 2 2.5 

c2 (B) 1.5 2 2.5 

 (C) 0.1 0.2 0.3 

 (D) 0.7 0.8 0.9 

Np (E) 40 50 60 

GA 

Pc (A) 30% 40% 50% 

Pm (B) 5% 10% 15% 

Np (C) 40 50 60 

HBA 

c1 (A) 1.5 2 2.5 

c2 (B) 1.5 2 2.5 

 (C) 0.1 0.2 0.3 

 (D) 0.7 0.8 0.9 

ne (E) 3% 5% 7% 

nm (F) 35% 40% 45% 

nt (G) 10% 12% 14% 

Ns (H) 10% 15% 20% 

Np (I) 40 50 60 

 

 

  

 

 

 

 

 

 

 

            
Fig.3. S/N ratio for parameters of BA 
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Fig.4. S/N ratio for parameters of PSO 

     

  

 

 

 

 

 

 

 

 

      
Fig.5.S/N ratio for parameters of GA 

As seen from Fig. (3), the following values have the highest S/N ratio for BA: 

    scout bees = 10% of population size  

    best selected bee and their recruits = 40% of population size 

    Np = 50 

According to Fig. (4), the following values have the highest S/N ratio for PSO: 

    c1 = 2 and c2 = 2 

     and  

    Np = 60 

 

max 0.8 
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0.2 



152 Rostami, M. & Shad, S.  / A Hybrid Bee Algorithm for Two-Machine Flow-Shop Scheduling Problems with  ... 

 

 

  

 

 

 

 

 

 

 

 

                                
Fig.6. S/N ratio for parameters of HBA 

Also, as shown in Fig. (5), the following values have the highest S/N ratio for GA: 

    Pc = 50% of population size  

    Pm = 5% of population size 

    Np = 60 

 

As seen from Fig. (6), the following values have the highest S/N ratio for HBA: 

    c1 = 1.5 and c2 = 2 

     and  

    ne = 5% of population size 

    nm = 40% of population size 

    nt = 10% of population size; no selects the rest 

    Ns = 20% of population size 

    Np = 40 

 

B. Computational results 

There is no well-known benchmark test for evaluating the performance of solution methods. The method provided 

by Bulfin and M'Hallah (2003) is employed to generate random problems. Processing times on two machines are 

selected from a uniform distribution function on [1, 100]. Here, dl and du are selected as  and

, respectively; where . These randomly-generated parameters specify the lower and upper 

bounds for due dates. A uniform distribution function on [Pdl, Pdu] is used to determine due dates where P shows the 

highest completion time predicted. The value of P is given by Equation (23):  

 

max 0.9 
min

0.2 

 ld 0.2,0.4,0.6,0.8

 d 0.4,0.6,0.8,1u  l ud d
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 (23) 

A uniform distribution function calculates the batches' values of delivery costs  £ 1) 20, £ 20(    based on the 

delivery cost level. Also, the values  are  £ 1,2,3 generated randomly on [20, 50]. In this study, the termination 

criterion for all algorithms is to reach 200 iterations.  Table III represents the results for the CPLEX solver based on the 

delivery cost level £ 1 . The CPLEX cannot solve instances with more than 26 jobs in reasonable running time (in this 

study, the reasonable time is equal to 3600 seconds). It also has inappropriate CPU running times for small instances. 

Table IV presents the results for solving 20 (5*2*2) different random small-size instances and compares BA, PSO, GA, 

and HBA results. In this table, for each instance, the metaheuristic algorithms are repeated ten times, and the Avg.Gap 

from the global optimum solution and Avg.CPU running time is presented. The below equation gives the average Gap: 

Avg. Gap =   (24) 

Here, the solutioni shows the result of instance i from the metaheuristic algorithm, and the best solution indicates the 

result of the CPLEX solver. As shown in Table IV, all heuristic methods solve small-size problems with the Avg. Gap 

is less than 1%. Among the solution methods proposed here, the HBA model can reach solutions with the minimum 

Gap, although this algorithm spends more CPU running time than others. According to the findings, as the number of 

customers increases, the problems and then the values of Avg. become more difficult. CPU running time and Avg. Gap 

also increases. In contrast, while   increased, the problem tends to deliver jobs with fewer batches, so the solution 

space becomes smaller. Consequently, the values of Avg. CPU running time and Avg. Gap will decrease. In fact, and 

 determine the significance of each part in the objective function. As  increases (or 
 
decreases), delivering those 

jobs with fewer batches and Avg's values would be more beneficial. CPU running time and Avg. Gap will decrease, and 

vice versa. 

However, to evaluate the performance of proposed metaheuristic methods for large-size problems, 45 (5*3*3) 

different random instances are solved. In this experiment, the factors are considered according to Table V. Since for 

large-size problems, there is no global optimum solution, each metaheuristic algorithm will solve the problem, and the 

best solution provided by four algorithms will be selected as the best-known solution (BKS). In Eq. (24), the best 

solution is replaced by BKS. In addition, a useful metric - i.e., Marginal Improvement per CPU (MIC) index - is 

proposed to analyze quality of solutions. This index has been inspired by the MIC index introduced by Osman (2003). 

The MIC is given by Equation (25): 

  (25) 

The evaluation results of large-size problems are shown in Fig. (7). As seen, when the number of jobs increases, the 

HBA is more efficient than other algorithms. This result is correct also for the number of customers. According to the 

results, when the delivery cost level increases, the feasible solution space will become smaller, so the MIC index will 

increase. 
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Table III. Results for MILP model 

Instance No. Jobs No.  
Customer 

CPU running 
time (Sec.) Instance No. Jobs No.  

Customer 
CPU running 

time (Sec.) 

1 6 
2 16.8 

7 18 
3 283.8 

3 14.3 4 278.9 

2 8 
2 35.8 

8 20 
3 395.5 

3 32.1 4 391.3 

3 10 
2 63.8 

9 22 
3 680.1 

3 61 4 668.7 

4 12 
2 102.5 

10 24 
3 1091.8 

3 99.8 4 1085.2 

5 14 
2 155.2 

11 26 
3 2428.4 

3 150.6 4 2385.5 

6 16 
3 208.4 

12 28 
3 >3600 

4 201.5 4 >3600      

Table IV. Comparison of BA, PSO, GA and HBA for small-size problems 
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BA results PSO results GA results HBA results 

Avg. Gap 
(%) 

Avg. 
CPU 

running 
time 
(Sec.) 

Avg. Gap 
(%) 

Avg. CPU 
running 

time (Sec.) 

Avg. Gap 
(%) 

Avg. CPU 
running 

time (Sec.) 

Avg. Gap 
(%) 

Avg. CPU 
running 

time (Sec.) 

1 

6 

2 1 0.10% 0.4 0.14% 0.5 0.09% 0.3 0.08% 0.5 

2 2 2 0.10% 0.4 0.13% 0.4 0.08% 0.3 0.06% 0.4 

3 3 1 0.12% 0.4 0.18% 0.5 0.12% 0.4 0.10% 0.6 

4 3 2 0.12% 0.3 0.17% 0.4 0.10% 0.3 0.07% 0.5 

5 

8 

2 1 0.41% 1.4 0.78% 1.7 0.36% 1.3 0.22% 1.6 

6 2 2 0.39% 1.2 0.71% 1.5 0.30% 1.2 0.19% 1.5 

7 3 1 0.69% 1.7 1.01% 1.9 0.55% 1.5 0.49% 1.9 

8 3 2 0.67% 1.4 0.97% 1.8 0.52% 1.3 0.44% 1.8 

9 

10 

2 1 1.03% 1.9 1.06% 2.1 0.90% 1.8 0.75% 2.2 

10 2 2 0.97% 1.8 1.01% 2 0.85% 1.6 0.74% 2.2 

11 3 1 1.09% 1.9 1.10% 2.3 0.98% 1.9 0.88% 2.3 

12 3 2 1.02% 1.7 1.09% 2.2 0.91% 1.8 0.85% 2.1 

13 

12 

2 1 1.15% 4.3 1.16% 4.7 1.11% 4.1 1.07% 4.8 

14 2 2 1.14% 4.2 1.13% 4.6 1.11% 4 1.06% 4.6 

15 3 1 1.17% 4.4 1.19% 4.9 1.13% 4.2 1.12% 5.1 

16 3 2 1.14% 4.2 1.20% 4.6 1.12% 4.2 1.10% 5 

17 

14 

2 1 1.51% 6.8 1.67% 7.4 1.53% 6.1 1.42% 7.3 

18 2 2 1.41% 6.5 1.65% 7 1.50% 6.2 1.44% 7.1 

19 3 1 1.58% 7.1 1.69% 7.6 1.62% 6.5 1.55% 7.6 

20 3 2 1.58% 6.9 1.66% 7.5 1.61% 6.2 1.49% 7.5 

Average 0.87% 2.95 0.99% 3.28 0.82% 2.76 0.76% 3.33 
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Table V.  The level of factors 

Factors Level 

Number of jobs 20, 40, 60, 80, 100 

Number of customers 2, 3, 4 

Delivery cost level (£) 1, 2, 3 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        
Fig. 7. Avg. MIC index for medium and large-size instances 

C. Ranking the methods 

In the previous section, various instances with different variable settings are solved by the proposed metaheuristic 

algorithms. Here, using the Friedman and Wilcoxon signed-ranks test, a guide table is presented for ranking the 

methods. Initially, normality tests with the help of two popular methods are performed, including Kolmogorov-

Smirnova and Shapiro-Wilk. The results show the significant deviation of the data from the normal distribution (see 

Table VI). 

For ranking, the problem is categorized into three groups; namely, small-size (with 10 and 20 jobs), medium-size 

(with 40 and 60 jobs), and large-size (with 80 and 100 jobs). In each group, 18 (2*3*3) different random instances are 

solved by the methods, and the results of the MIC index are reported. Table XIII in Appendix B shows these results. 

Table VII provides the results of the Friedman test for each group. 
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Table VI. Normality tests result 

Methods 
Kolmogorov-Smirnov Shapiro-Wilk 

Statistic Sig. Statistic Sig. 

BA .435 .000 .517 .000 

PSO .439 .000 .521 .000 

GA .440 .000 .516 .000 

HBA .431 .000 .521 .000 
    

Table VII. Friedman test result 

Class Method Mean Rank Chi-Square df Asymp. Sig. 

Small-size 

BA 2.72 

48.200 3 .000 
PSO 4.00 

GA 1.06 

HBA 2.22 

Medium-size 

BA 2.78 

42.467 3 .000 
PSO 4.00 

GA 1.50 

HBA 1.72 

Large-size 

BA 3.00 

54.000 3 .000 
PSO 4.00 

GA 2.00 

HBA 1.00 
             

The null hypothesis of the Friedman test is rejected in all groups. For this reason, the pairwise comparisons seem 

necessary to be done. In this paper, this comparison is performed by using the Wilcoxon signed-ranks test. Tables VIII 

to X show the Wilcoxon signed-ranks test results for small, medium, and large-size problems, respectively. 

Table VIII. Result of Wilcoxon signed ranks test for small-size problems 

Pairwise comparisons PSO - BA GA - BA HBA - BA GA - PSO HBA - PSO HBA - GA 

Z -3.906a -3.874b -1.964b -4.146b -3.866b -3.586a 

Asymp. Sig. (2-tailed) .000 .000 .050 .000 .000 .000 

a. Based on negative ranks. 
b. Based on positive ranks. 

Table IX. Result of Wilcoxon signed ranks test for medium-size problems 

Pairwise comparisons PSO - BA GA - BA HBA - BA GA - PSO HBA - PSO HBA - GA 

Z -3.947a -3.906b -2.937b -3.834b -3.792b -.831a 

Asymp. Sig. (2-tailed) .000 .000 .003 .000 .000 .406 

a. Based on negative ranks. 
b. Based on positive ranks. 
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Table X. Result of Wilcoxon signed ranks test for large-size problems 

Pairwise comparisons PSO - BA GA - BA HBA - BA GA - PSO HBA - PSO HBA - GA 

Z -4.243a -4.243b -4.243b -4.243b -4.243b -4.243b 

Asymp. Sig. (2-tailed) .000 .000 .000 .000 .000 .000 

a. Based on negative ranks. 
b. Based on positive ranks.             

The results show the GA has an upper MIC than other metaheuristic methods for small-size problems. Also, in these 

problems, the PSO finds the worst MICs among all proposed metaheuristic methods. However, no significant difference 

can be observed between HBA and BA. For medium-size problems, there is no significant difference between HBA and 

GA; and the BA has an upper MIC than PSO. Finally, for large-size problems, the HBA shows the best MICs among all 

proposed metaheuristic methods. To summarize these results, Table XI guides the decision-maker to select the 

appropriate method concerning the size of problems. 

Table XI. Guidance for selecting the best algorithm 

Class Ranking methods 

Small-size problems 

1st. GA 

2nd. HBA and BA (No preference) 

3rd. PSO 

 

Medium-size problems 

1st. GA and HBA (No preference) 

2nd. BA 

3rd. PSO 

 

Large-size problems 

1st. HBA 

2nd. GA 

3rd. BA 

4th. PSO 

V. CONCLUSION 

Since the sequence of jobs has a significant effect on the costs related to customer satisfaction, scheduling, and 

distribution problems are of great importance. Without considering transportation costs, it will be a weak strategy to 

decide how to schedule jobs. Hence, a successful approach needs dealing with both aspects at the same time. The 

current paper proposed a two-machine flow-shop scheduling problem in a batch delivery system to minimize the 

number of tardy jobs and the delivery costs. The problem was proved as NP-hard. First, a MILP model was introduced 

that can solve small instances by specific software. Additionally, as the number of jobs and problem constraints 

increases, the solvers' ability may decrease. A novel hybrid bee algorithm (HBA) was then developed to solve the large-

size problems in reasonable CPU running time. Three metaheuristics were provided for evaluating the HBA 

performance, including a genetic algorithm, bee algorithm, and particle swarm optimization. So, 65 different instances 

were randomly generated and run by the algorithms into two groups of small-size and large-size. The results revealed 

that in small-size problems, the GA shows the highest efficiency, while the HBA can provide the best performance for 

large-size problems. This approach can be enhanced by using a wide range of techniques to search the solution space 

under different situations when space is more extensive. According to the results, the HBA has more capacity to search 
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solution spaces to offer acceptable solutions for even smaller population sizes. The reason is that the HBA employs a 

neighborhood search process to find solutions and to prevent trapping at the local optimum. Due to the HBA algorithm's 

acceptable MIC index compared to other presented methods, this algorithm is recommended for the systems that 

perform their production and distribution process daily and need accurate solutions. 

Future researchers are recommended to study the same problem using exact methods, such as dynamic programming 

or branch-and-bound algorithms. These methods are attractive for researchers, and the industries achieving the optimal 

solution are critical, such as the aerospace industry. Furthermore, vehicles with a limited capacity can be appealing. The 

application of different delivery costs appropriate with batching volumes is also suggested for further study. 
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Appendix A 

Table XII. Detailed S/N ratios of Taguchi method 

Descriptions S/N ratio 

BA parameters Level 1 Level 2 Level 3 

scout bees (A) -26.16 -25.87 -28.64 

best selected bee and their recruits (B) -25.92 -25.75 -24.96 

Np (C) -26.28 -25.97 -29.79 

PSO parameters 
   

c1 (A) -22.98 -16.78 -26.34 

c2 (B) -24.08 -19.62 -23.06 

min
  (C) -23.13 -22.13 -24.36 

max  (D) -26.57 -23.64 -25.11 

Np (E) -23.62 -21.67 -20.06 

GA parameters 
   

Pc (A) -32.57 -29.92 -27.86 

Pm (B) -25.24 -27.21 -34.64 

Np (C) -34.57 -24.82 -22.61 

HBA parameters 
   

c1 (A) -16.84 -22.16 -18.85 

c2 (B) -14.88 -13.51 -20.00 

min
  (C) -21.39 -20.46 -22.60 

max  (D) -21.95 -22.79 -18.47 

ne (E) -15.76 -14.49 -15.56 

nm (F) -22.83 -18.93 -21.62 

nt (G) -18.31 -20.01 -21.94 

Ns (H) -19.98 -18.83 -15.14 

Np (I) -18.63 -19.11 -19.50 
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Appendix B 

Table XIII. Avg. MIC index results for 54 small, medium and large-size instances 

Class No. Jobs No. Customer Delivery cost level (£) 
Avg. MIC index 

BA PSO GA HBA 

S
m

a
ll

-s
iz

e
 

10 2 1 5109.9 4492.4 6172.8 6060.6 

10 2 2 5727.4 4950.5 7352.9 6142.5 

10 2 3 6038.6 5482.5 7002.8 6613.8 

10 3 1 4828.6 3952.6 5370.6 4940.7 

10 3 2 5767.0 4170.1 6105.0 4902.0 

10 3 3 5711.0 4672.9 7102.3 5681.8 

10 4 1 3852.1 3255.2 4290.0 3467.4 

10 4 2 3935.5 3871.5 4965.2 4048.6 

10 4 3 4464.3 3819.7 5291.0 4091.7 

20 2 1 393.7 321.9 426.2 387.0 

20 2 2 408.9 337.4 451.8 423.2 

20 2 3 432.2 352.7 472.8 456.1 

20 3 1 335.0 291.1 342.6 340.2 

20 3 2 348.1 303.3 364.5 354.7 

20 3 3 368.6 311.8 373.6 374.9 

20 4 1 230.2 205.7 253.2 247.6 

20 4 2 240.9 221.6 261.4 257.2 

20 4 3 255.8 215.8 268.6 263.1 

M
ed

iu
m

-s
iz

e
 

40 2 1 82.9 71.3 90.1 82.9 

40 2 2 83.2 73.2 95.1 84.9 

40 2 3 86.2 75.3 96.0 87.2 

40 3 1 78.8 66.8 85.0 77.5 

40 3 2 79.6 67.6 86.4 78.8 

40 3 3 79.9 70.1 88.8 79.6 

40 4 1 73.6 60.4 77.5 74.4 

40 4 2 75.0 60.9 78.6 75.8 

40 4 3 76.1 62.4 80.2 77.3 

60 2 1 40.8 33.1 41.9 43.6 

60 2 2 41.2 33.9 42.3 44.0 

60 2 3 41.5 34.5 42.2 44.8 

60 3 1 35.5 30.0 37.0 40.5 

60 3 2 35.9 30.6 37.4 40.9 



164 Rostami, M. & Shad, S.  / A Hybrid Bee Algorithm for Two-Machine Flow-Shop Scheduling Problems with  ... 

 

 

Continue Table XIII. Avg. MIC index results for 54 small, medium and large-size instances 

Class No. Jobs No. Customer Delivery cost level (£) 
Avg. MIC index 

BA PSO GA HBA 

M
ed

iu
m

-s
iz

e
 

60 3 3 36.4 33.5 38.2 42.0 

60 4 1 33.7 27.9 34.3 37.4 

60 4 2 33.8 28.5 34.5 38.0 

60 4 3 33.8 28.7 35.2 38.3 

L
a

rg
e-

si
ze

 

80 2 1 17.4 14.5 18.3 20.1 

80 2 2 17.5 14.6 18.4 20.7 

80 2 3 17.6 14.8 18.5 20.8 

80 3 1 17.1 14.1 17.8 19.6 

80 3 2 17.2 14.3 17.9 19.8 

80 3 3 17.2 14.2 17.8 19.9 

80 4 1 16.5 13.7 16.8 19.4 

80 4 2 16.5 13.8 16.9 19.6 

80 4 3 16.6 13.9 17.0 19.7 

100 2 1 10.2 8.0 10.4 12.4 

100 2 2 10.3 8.1 10.5 12.5 

100 2 3 10.3 8.1 10.5 12.7 

100 3 1 9.9 7.9 10.2 12.2 

100 3 2 10.0 7.9 10.2 12.2 

100 3 3 10.1 8.0 10.3 12.3 

100 4 1 9.5 7.7 9.9 11.9 

100 4 2 9.6 7.8 9.9 12.0 

100 4 3 9.6 7.8 10.0 12.0 

 

 

 


