Planning of Multiple Energy Hubs and Scheduling of Preventive Maintenance Equipment Under Uncertainty and Energy Storage

Document Type : Research Paper

Authors

1 Alzahra University

2 Industrial Engineering department, K.N. Toosi University of Technology

10.22070/jqepo.2020.5424.1154

Abstract

Nowadays, the lack of energy regarding increasing population growth and increasing consumption to meet industries' needs is one of the major problems worldwide, especially in developing countries. This paper attempts to model multiple energy hubs to promptly meet customers' needs and prevent shortages and pay extra costs during peak periods by storing energy in regular periods. The system has several energy hubs with different equipment that will be used according to the customers' needs. Various maintenance policies have been defined to achieve the optimum conditions based on cost and capacity available by solving the model to increase the quality of service and the equipment's high efficiency. Due to uncertainties in customer demand and different maintenance policies, two-staged stochastic optimization has been used based on the scenario. Model solution results show that concerning the defined costs, each hub's interior equipment has better performance with a six-month maintenance policy and the hub input equipment has better performance with a monthly maintenance policy.

Keywords


Aghezzaf, E. H., JAMALI, M., & Ait-Kadi, D. (2003). A production and maintenance planning model for production systems subject to preventive maintenance with minimal repair at failure. In Industrial Engineering and the New Global Challenges (pp. 1-9).
Aghezzaf, E. H., & Najid, N. M. (2008). Integrated production planning and preventive maintenance in deteriorating production systems. Information Sciences178(17), 3382-3392.
Alipour, M., Zare, K., & Abapour, M. (2017). MINLP probabilistic scheduling model for demand response programs integrated energy hubs. IEEE Transactions on Industrial Informatics, 14(1), 79-88.
Amiri, S., & Honarvar, M. (2018). Providing an integrated Model for Planning and Scheduling Energy Hubs and preventive maintenance. Energy, 163, 1093-1114.
Bahrami, S., Toulabi, M., Ranjbar, S., Moeini-Aghtaie, M., & Ranjbar, A. M. (2017). A decentralized energy management framework for energy hubs in dynamic pricing markets. IEEE Transactions on Smart Grid, 9(6), 6780-6792.
Barylski, R. V. (1995). Russia, the West, and the Caspian Energy Hub. The Middle East Journal, 217-232.
Batić, M., Tomašević, N., Beccuti, G., Demiray, T., & Vraneš, S. (2016). Combined energy hub optimization and demand side management for buildings. Energy and Buildings, 127, 229-241.
Brahman, F., Honarmand, M., & Jadid, S. (2015). Optimal electrical and thermal energy management of a residential energy hub, integrating demand response and energy storage system. Energy and Buildings, 90, 65-75.
Bruno, S. V., Moraes, L. A., & de Oliveira, W. (2017). Optimization techniques for the Brazilian natural gas network planning problem. Energy Systems, 8(1), 81-101.
Dolatabadi, A., Mohammadi-Ivatloo, B., Abapour, M., & Tohidi, S. (2017). Optimal stochastic design of wind integrated energy hub. IEEE Transactions on Industrial Informatics, 13(5), 2379-2388.
Geidl, M., & Andersson, G. (2007). Optimal power flow of multiple energy carriers. IEEE Transactions on power systems, 22(1), 145-155.
Heidari, A., Mortazavi, S. S., & Bansal, R. C. (2020). Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies. Applied Energy, 261, 114393.
Heidari, A., Mortazavi, S. S., & Bansal, R. C. (2020). Equilibrium state of a price-maker energy hub in a competitive market with price uncertainties. IET Renewable Power Generation, 14(6), 976-985.
Huang, Y., Zhang, W., Yang, K., Hou, W., & Huang, Y. (2019). An Optimal Scheduling Method for Multi-Energy Hub Systems Using Game Theory. Energies, 12(12), 2270.
Jamalzadeh, F., Mirzahosseini, A. H., Faghihi, F., & Panahi, M. (2020). Optimal operation of energy hub system using hybrid stochastic-interval optimization approach. Sustainable Cities and Society, 54, 101998.
Kamyab, F., & Bahrami, S. (2016). Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets. Energy, 106, 343-355.
Kang, K., & Subramaniam, V. (2018). Joint control of dynamic maintenance and production in a failure-prone manufacturing system subjected to deterioration. Computers & Industrial Engineering, 119, 309-320.
Karimi, F., & Khalilpour, K. R. (2019). Energy Hubs and Polygeneration Systems: A Social Network Analysis. In Polygeneration with Polystorage for Chemical and Energy Hubs (pp. 53-75). Academic Press.
Krause, T., Andersson, G., Frohlich, K., & Vaccaro, A. (2010). Multiple-energy carriers: modeling of production, delivery, and consumption. Proceedings of the IEEE, 99(1), 15-27.
Luo, X., Liu, Y., Liu, J., & Liu, X. (2020). Energy scheduling for a three-level integrated energy system based on energy hub models: A hierarchical Stackelberg game approach. Sustainable Cities and Society, 52, 101814.
Ma, T., Wu, J., & Hao, L. (2017). Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub. Energy conversion and management, 133, 292-306.
Majidi, M., Nojavan, S., & Zare, K. (2017). A cost-emission framework for hub energy system under demand response program. Energy, 134, 157-166.
Malakoti-Moghadam, M., Askarzadeh, A., & Rashidinejad, M. (2019). Transmission and generation expansion planning of energy hub by an improved genetic algorithm. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-15.
Moghaddas-Tafreshi, S. M., Jafari, M., Mohseni, S., & Kelly, S. (2019). Optimal operation of an energy hub considering the uncertainty associated with the power consumption of plug-in hybrid electric vehicles using information gap decision theory. International Journal of Electrical Power & Energy Systems, 112, 92-108.
Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., Hosseinzadeh, M., Yousefi, H., & Khorasani, S. T. (2018). Optimal management of energy hubs and smart energy hubs–a review. Renewable and Sustainable Energy Reviews, 89, 33-50.
Nojavan, S., Majidi, M., & Zare, K. (2018). Optimal scheduling of heating and power hubs under economic and environment issues in the presence of peak load management. Energy conversion and management, 156, 34-44.
O'kelly, M. E. (1986). The location of interacting hub facilities. Transportation science, 20(2), 92-106.
Pazouki, S., & Haghifam, M. R. (2016). Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty. International Journal of Electrical Power & Energy Systems, 80, 219-239.
Rakipour, D., & Barati, H. (2019). Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response. Energy, 173, 384-399.
Rastegar, M., Fotuhi-Firuzabad, M., Zareipour, H., & Moeini-Aghtaieh, M. (2016). A probabilistic energy management scheme for renewable-based residential energy hubs. IEEE Transactions on Smart Grid, 8(5), 2217-2227.
Sani, M. M., Noorpoor, A., & Motlagh, M. S. P. (2019). Optimal model development of energy hub to supply water, heating and electrical demands of a cement factory. Energy, 177, 574-592.
Shahmohammadi, A., Moradi-Dalvand, M., Ghasemi, H., & Ghazizadeh, M. S. (2014). Optimal design of multicarrier energy systems considering reliability constraints. IEEE Transactions on Power Delivery, 30(2), 878-886.
Skarvelis-Kazakos, S., Papadopoulos, P., Unda, I. G., Gorman, T., Belaidi, A., & Zigan, S. (2016). Multiple energy carrier optimization with intelligent agents. Applied energy, 167, 323-335.
Sovacool, B. K., & Brown, M. A. (2010). Competing dimensions of energy security: an international perspective. Annual Review of Environment and Resources, 35, 77-108.
Vahid-Pakdel, M. J., Nojavan, S., Mohammadi-Ivatloo, B., & Zare, K. (2017). Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response. Energy Conversion and Management, 145, 117-128.
Wang, Y., Zhang, N., Zhuo, Z., Kang, C., & Kirschen, D. (2018). Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch. Applied energy, 210, 1141-1150.
Weinstein, L., & Chung, C. H. (1999). Integrating maintenance and production decisions in a hierarchical production planning environment. Computers & operations research, 26(10-11), 1059-1074.
Winzer, C. (2012). Conceptualizing energy security. Energy policy, 46, 36-48.
Yalaoui, A., Chaabi, K., & Yalaoui, F. (2014). Integrated production planning and preventive maintenance in deteriorating production systems. Information Sciences, 278, 841-861.
Zhang, D., & Liu, T. (2019). A Multi-Step Modeling and Optimal Operation Calculation Method for Large-scale Energy Hub Model Considering Two Types Demand Responses. IEEE Transactions on Smart Grid.
Zhu, X., Zhou, M., Xiang, Z., Zhang, L., Sun, Y., & Li, G. (2020). Research on Optimal Configuration of Energy Hub Considering System Flexibility. In Proceedings of PURPLE MOUNTAIN FORUM 2019-International Forum on Smart Grid Protection and Control (pp. 243-257). Springer, Singapore.